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ABSTRACT

In visual planning (VP), an agent learns to plan goal-directed behavior from ob-
servations of a dynamical system obtained offline, e.g., images obtained from self-
supervised robot interaction. VP algorithms essentially combine data-driven per-
ception and planning, and are important for robotic manipulation and navigation
domains, among others. A recent and promising approach to VP is the semi-
parametric topological memory (SPTM) method, where image samples are treated
as nodes in a graph, and the connectivity in the graph is learned using deep image
classification. Thus, the learned graph represents the topological connectivity of
the data, and planning can be performed using conventional graph search methods.
However, training SPTM necessitates a suitable loss function for the connectivity
classifier, which requires non-trivial manual tuning. More importantly, SPTM is
constricted in its ability to generalize to changes in the domain, as its graph is
constructed from direct observations and thus requires collecting new samples for
planning. In this paper, we propose Hallucinative Topological Memory (HTM),
which overcomes these shortcomings. In HTM, instead of training a discrimina-
tive classifier we train an energy function using contrastive predictive coding. In
addition, we learn a conditional VAE model that generates samples given a con-
text image of the domain, and use these hallucinated samples for building the
connectivity graph, allowing for zero-shot generalization to domain changes. In
simulated domains, HTM outperforms conventional SPTM and visual foresight
methods in terms of both plan quality and success in long-horizon planning.

1 INTRODUCTION

For robots to operate in unstructured environments such as homes and hospitals, they need to manip-
ulate objects and solve complex tasks as they perceive the physical world. While task planning and
object manipulation have been studied in the classical AI paradigm [20, 9, 30, 10], most successes
have relied on a human-designed state representation and perception, which can be challenging to
obtain in unstructured domains. While high-dimensional sensory input such as images can be easy
to acquire, planning using raw percepts is challenging. This has motivated the investigation of data-
driven approaches for robotic manipulation. For example, deep reinforcement learning (RL) has
made impressive progress in handling high-dimensional sensory inputs and solving complex tasks
in recent years [7, 4, 15, 23].

One of the main challenges in deploying deep RL methods in human-centric environment is inter-
pretability. For example, before executing a potentially dangerous task, it would be desirable to
visualize what the robot is planning to do step by step, and intervene if necessary. Addressing both
data-driven modeling and interpretability, the visual planning (VP) paradigm seeks to learn a model
of the environment from raw perception and then produce a visual plan of solving a task before actu-
ally executing a robot action. Recently, several studies in manipulation and navigation [13, 29, 5, 22]
have investigated VP approaches that first learn what is possible to do in a particular environment by
self-supervised interaction, and then use the learned model to generate a visual plan from the current
state to the goal, and finally apply visual servoing to follow the plan.

One particularly promising approach to VP is the semi-parametric topological memory (SPTM)
method proposed by Savinov et al. [22]. In SPTM, images collected offline are treated as nodes in
a graph and represent the possible states of the system. To connect nodes in this graph, an image
classifier is trained to predict whether pairs of images were ‘close’ in the data or not, effectively
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learning which image transitions are feasible in a small number of steps. The SPTM graph can then
be used to generate a visual plan – a sequence of images between a pair of start and goal images – by
directly searching the graph. SPTM has several advantages, such as producing highly interpretable
visual plans and the ability to plan long-horizon behavior.

However, since SPTM builds the visual plan directly from images in the data, when the environ-
ment changes – for example, the lighting varies, the camera is slightly moved, or other objects are
displaced – SPTM requires recollecting images in the new environment; in this sense, SPTM does
not generalize in a zero-shot sense. Additionally, similar to [5], we find that training the graph
connectivity classifier as originally proposed by [22] requires extensive manual tuning.

Figure 1: HTM illustration. Top left: data collection. In this illustration, the task is to move a
green object between gray obstacles. Data consists of multiple obstacle configurations (contexts),
and images of random movement of the object in each configuration. Bottom left: the elements
of HTM. A CVAE is trained to hallucinate images of the object and obstacles conditioned on the
obstacle image context. A connectivity energy model is trained to score pairs of images based on
the feasibility of their transition. Right: HTM visual planning. Given a new context image and a
pair of start and goal images, we first use the CVAE to hallucinate possible images of the object
and obstacles. Then, a connectivity graph (blue dotted lines) is computed based on the connectivity
energy, and we plan for the shortest path from start to goal on this graph (orange solid line). For
executing the plan, a visual servoing controller is later used to track the image sequence.

In this work, we propose to improve both the robustness and zero-shot generalization of SPTM. To
tackle the issue of generalization, we assume that the environment is described using some context
vector, which can be an image of the domain or any other observation data that contains enough
information to extract a plan (see Figure 1 top left). We then train a conditional generative model
that hallucinates possible states of the domain conditioned on the context vector. Thus, given an
unseen context, the generative model hallucinates exploration data without requiring actual explo-
ration. When building the connectivity graph with these hallucinated images, we replace the vanilla
classifier used in SPTM with an energy-based model that employs a contrastive loss. We show that
this alteration drastically improves planning robustness and quality. Finally, for planning, instead
of connecting nodes in the graph according to an arbitrary threshold of the connectivity classifier,
as in SPTM, we cast the planning as an inference problem, and efficiently search for the shortest
path in a graph with weights proportional to the inverse of a proximity score from our energy model.
Empirically, we demonstrate that this provides much smoother plans and barely requires any hy-
perparameter tuning. We term our approach Hallucinative Topological Memory (HTM). A visual
overview of our algorithm is presented in Figure 1.

We evaluate our method on a set of simulated VP problems of moving an object between obstacles,
which require long-horizon planning. In contrast with prior work, which only focused on the success
of the method in executing a task, here we also measure the interpretability of visual planning,
through mean opinion scores of features such as image fidelity and feasibility of the image sequence.

2



Under review as a conference paper at ICLR 2020

In both measures, HTM outperforms state-of-the-art data-driven approaches such as visual foresight
[4] and the original SPTM.

2 BACKGROUND

Context-Conditional Visual Planning and Acting (VPA) Problem. We consider the context-
conditional visual planning problem from [13, 29]. Consider deterministic and fully-observable
environments E1, ..., EN that are sampled from an environment distribution PE . Each environment Ei
can be described by a context vector ci that entirely defines the dynamics oit+1 = m(oit, a

i
t|ci), where

oit, a
i
t are the observations and actions, respectively, at timestep t from context ci. For example, in

the illustration in Figure 1, the context could represent an image of the obstacle positions, which is
enough to predict the possible movement of objects in the domain.1 As is typical in VP problems,
we assume our data D = {oi1, ai1, ..., oiTi , ci}i∈{1,...,N} is collected in a self-supervised manner, and
that in each environment Ei, the observation distribution is defined as Po(·|ci). At test time, we are
presented with a new environment, its corresponding context vector c, and a pair of start and goal
observations ostart, ogoal. Our goal is to use the training data to build a planner Qh(ostart, ogoal, c)
and an h-horizon policy πh. The planner’s task is to generate a sequence of observations between
ostart and ogoal, in which any two consecutive observations are reachable within h time steps. The
policy takes as input the image sequence and outputs a control policy that transitions the system
from ostart to ogoal. As the problem requires a full plan given only a context image in the new
environment, the planner must be capable of zero-shot generalization. Note that the planner and
policy form an interpretable planning method that allows us to evaluate their performance separately.
For simplicity we will omit the subscript h for the planner and the policy.

Semi-Parametric Topological Memory (SPTM) [22] is a visual planning method that can be used
to solve a special case of VPA. where there is only a single training environment, E and no context
image. SPTM builds a memory-based planner and an inverse-model controller. At training, a classi-
fier R is trained to map two observation images oi, oj to a score ∈ [0, 1] representing the feasibility
of the transition, where images that are ≤ h steps apart are labeled positive and images that are ≥ l
are negative. The policy is trained as an inverse model L, mapping a pair of observation images
oi, oj to an appropriate action a that transitions the system from oi to oj .

Given an unseen environment E∗, new observations are manually collected and organized as nodes in
a graph G. Edges in the graph connect observations oi, oj if R(oi, oj) ≥ sshortcut, where sshortcut
is a manually defined threshold. To plan, given start and goal observations ostart and ogoal, SPTM
first usesR to localize, i.e., find the closest nodes inG to ostart and ogoal. A path is found by running
Dijkstra’s algorithm, and the method then selects a waypoint owi on the path which represents the
farthest observation that is still feasible under R. Since both the current localized state oi and its
waypoint owi are in the observation space, we can directly apply the inverse model and take the
action ai where ai = L(oi, owi). After localizing to the new observation state reached by ai, SPTM
repeats the process until the node closest to ogoal is reached.

Conditional Variational Auto-Encoder (CVAE) [25] is a deep generative model that can be
used for learning a high-dimensional conditional distribution Po(·|c). The CVAE is trained
by maximizing the evidence lower bound (ELBO): LCV AE = −DKL (qθ(z|o, c)|rψ(z|c)) +
Eqφ(z|o,c) [log pθ(o|z, c)] , where qθ(z|o, c) is the encoder that maps observations and contexts to
the latent distribution, pθ(o|z, c) is the decoder that maps latents and contexts to the observation dis-
tribution, and rψ(z|c) is the prior that maps contexts to latent prior distributions. Together pθ, qφ, rψ
are trained to maximize the variational lower bound above. We assume that the prior and the encoder
are Gaussian, which allows the DKL term to be computed in closed-form. Monte-Carlo sampling
and the reparametrization trick [12] are used to approximate the gradient of the loss.

Contrastive Predictive Coding (CPC) [17] extracts compact representations that maximize the
causal and predictive aspects of high-dimensional sequential data. A non-linear encoder genc
encodes the observation ot to a latent representation zt = genc(ot). We maximize the mu-
tual information between the latent representation zt and future observation ot+k with a log-

1We used such a context image in our experiments. We assume that in a practical application, observing the
domain without the robot would be feasible, making this setting relevant to applications.
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bilinear model2 fk(ot+k, ot) = exp(zTt+kWkzt). This model is trained to be proportional to the
density ratio p(ot+k|zt)/p(ot+k) by the CPC loss function: the cross entropy loss of correctly
classifying a positive sample from a set X = {o1, ..., oN} of N random samples with 1 pos-
itive sample from p(ot+k|zt) and N − 1 negative samples sampled from p(ot+k): LCPC =

−Eot,ot+k
[
log fk(ot+k,ot)∑

oj∈X
fk(oj ,ot)

]
.

3 HALLUCINATIVE TOPOLOGICAL MEMORY

SPTM has been shown to solve long-horizon planning problems such as navigation from first-person
view [22]. However, SPTM is not zero-shot: even a small change to the training environment re-
quires collecting substantial exploration data for building the planning graph. This can be a limi-
tation in practice, especially in robotic domains, as any interaction with the environment requires
robot time, and exploring a new environment can be challenging (indeed, [22] applied manual ex-
ploration). In addition, similarly to [5], we found that training the connectivity classifier as proposed
in [22] requires extensive hyperparameter tuning.

In this section, we propose an extension of SPTM to overcome these two challenges by employing
three ideas – (1) using a CVAE [25] to hallucinate samples in a zero-shot setting, (2) using con-
trastive loss for a more robust score function and planner, and (3) planning based on an approximate
maximum likelihood formulation of the shortest path under uniform state distribution. We call this
approach Hallucinative Topological Memory (HTM), and next detail each component in our method.

3.1 HALLUCINATING SAMPLES WITH CVAE

We propose a zero-shot learning solution for automatically building the planning graph using only
a context vector of the new environment. Our idea is that, after seeing many different environments
and corresponding states of the system during training, given a new environment we should be able
to effectively hallucinate possible system states. We can then use these hallucinations in lieu of real
samples from the system in order to build the planning graph. To generate images conditioned on a
context, we implement a CVAE as depicted in Figure 1. During training, we learn the prior latent
distribution rψ(z|c), modeled as a Gaussian with mean µ(c) and covariance matrix Σ(c), where µ(·)
and Σ(·) are learned non-linear neural network transformations. During testing, when prompted with
a new context vector c, we can sample latent vectors z1, ..., zN | c ∼ N (µ(c),Σ(c)), and pass them
through the decoder pθ(x|z, c) for hallucinating samples in replacement of exploration data.

3.2 LEARNING THE CONNECTIVITY VIA CONTRASTIVE LOSS

A critical component in the SPTM method is the connectivity classifier that decides which image
transitions are feasible. False positives may result in impossible short-cuts in the graph, while false
negatives can make the plan unnecessarily long. In [22], the classifier was trained discriminatively,
using observations in the data that were reached within h steps as positive examples, and more
than l steps as negative examples, where h and l are chosen arbitrarily. In practice, this leads to
three important problems. First, this method is known to be sensitive to the choice of positive
and negative labeling [5]. Second, training data are required to be long, non-cyclic trajectories for
a high likelihood of sampling ‘true’ negative samples. However, self-supervised interaction data
often resembles random walks that repeatedly visit a similar state, leading to inconsistent estimates
on what constitutes negative data. Third, since the classifier is only trained to predict positively
for temporally nearby images and negatively for temporally far away images, its predictions of
medium-distance images can be arbitrary. This creates both false positives and false negatives,
thereby increasing shortcuts and missing edges in the graph.

To solve these problems, we propose to learn a connectivity score using contrastive predictive loss
[17]. Similar to CVAE, we initialize a CPC encoder genc that takes in both observation and context,
and a density-ratio model fk that does not depend on the context. Through optimizing the CPC
objective, fk of positive pairs are encouraged to be distinguishable from that of negative pairs. Thus,
it serves as a proxy for the temporal distance between two observations, leading to a connectivity
score for planning. Theoretically, CPC loss is better motivated than the classification loss in SPTM

2The original CPC model has an additional autoregressive memory variable [17]. We drop it in our formu-
lation as our domains are fully observable and do not require memory.

4



Under review as a conference paper at ICLR 2020

as it structures the latent space on a clear objective: maximize the mutual information between
current and future observations. In practice, this results in less hyperparameter tuning and a smoother
distance manifold in the representation space. Finally, instead of only sampling from the same
trajectory as done in SPTM, our negative data are collected by sampling from the latent space of
a trained CVAE or the replay buffer. Without this trick, we found that the SPTM classifier fails to
handle self-supervised data.

3.3 PLANNING AS INFERENCE

Planning Algorithm. Given a start observation ostart, a goal observation ogoal sampled from a
potentially new environment E∗, and the context vector c, we propose a 4-step planning algorithm.
First, we hallucinate exploration data by sampling from the latent space Po(·|c) of the CVAE. Sec-
ond, we build a fully-connected weighted graph G(V,E) by forming connections between all i
generated image samples ôi = pθ(·|zi, c), where pθ is the trained CVAE decoder and zi is the vector
sampled from the CVAE prior. We choose our edge weight between nodes i and j as one of two
choices: (1) an energy model, i.e., the inverse of fk(i, j), or (2) a density ratio, i.e., the inverse
of normalized fk between two nodes, ie. fk(i, j)/

∑
l(fk(i, l)). This score reflects the difficulty

in transitioning to the next state from the current state by self-supervised exploration. The learned
connectivity graph G can be viewed as a topological memory upon which we can use conventional
graph planning methods to efficiently perform visual planning. In the third step, we find the short-
est path using Dijkstra’s algorithm on the learned connectivity graph G between the start and end
node. In the fourth step, we apply our policy to follow the visual plan, reaching the next node in our
shortest path and replan every fixed number of steps until we reach ôgoal. For the policy, we train an
inverse model which predicts actions given two observations that are within h steps apart.

Maximum likelihood trajectory with Dijkstra’s. We show that the CPC loss can be utilized to
cast the planning problem as an inference problem, and results in an effective planning algorithm.
After training the CPC objective to convergence, we have fk(ot+k, ot) ∝ p(ot+k|ot)/p(ot+k) [17].
To estimate p(ot+k|ot)/p(ot+k), we compute the normalizing factor

∑
o′∈V [fk(o′, ot)] for each ot

by averaging over all nodes in the graph. Let’s define our non-negative weight from ot to ot+k as
ω(ot+k, ot) =

∑
o′∈V [fk(o′, ot)]/fk(ot+k, ot) ≈ p(ot+k)/p(ot+k|ot).

A shortest-path planning algorithm finds T, o0, ..., oT that minimizes
∑T−1
t=0 ω(ot, ot+1) such that

o0 = ostart, oT = ogoal. By Jensen’s inequality and the Markovian property of o0, ..., oT
we have that, log 1

T

∑T−1
t=0 ω(ot, ot+1) ≥ 1

T

∑T−1
t=0 logω(ot, ot+1) = 1

T

∑T−1
t=0 (log p(ot+1) −

log p(ot+1|ot)) = 1
T

∑T−1
t=1 p(ot) − log p(o1, ..., oT−1|o0 = ostart, oT = ogoal), Thus, assum-

ing that the self-supervised data distribution is approximately uniform, the shortest path algorithm
with proposed weight ω maximizes a lower bound on the trajectory likelihood given the start and
goal states. In practice, this leads to a more stable planning approach and yields more feasible plans.

4 RELATED WORK

Reinforcement Learning. Most of the study of data-driven planning has been under the model-free
RL framework [23, 15, 24]. However, the need to design a reward function, and the fact that the
learned policy does not generalize to tasks that are not defined by the specific reward, has motivated
the study of model-based approaches. Recently, [11, 8] investigated model-based RL from pixels on
Mujoco and Atari domains, but did not study generalization to a new environment. [6, 4] explored
model-based RL with image-based goals using visual model predictive control (visual MPC). These
methods rely on video prediction, and are limited in the planning horizon due to accumulating errors.
In comparison, our method does not predict full trajectories but only individual images, mitigating
this problem. Our method can also use visual MPC as a replacement for the visual servoing policy.

Self-supervised learning. Several studies investigated planning goal directed behavior from data
obtained offline, e.g., by self-supervised robot interaction [1, 18]. Nair et al. [16] used an inverse
model to reach local sub-goals, but require human demonstrations of long-horizon plans. Wang et
al. [29] solve the visual planning problem using a conditional version of Causal InfoGAN [13].
However, as training GAN is unstable and requires tedious model selection [21], we opted for the
CVAE-based approach, which is much more robust.
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Classical planning and representation learning. In classical planning literature, task and motion
planning also separates the high-level planning and the low-level controller [30, 27, 10]. In these
works, domain knowledge is required to specify preconditions and effects at the task level. Our
approach only requires data collected through self-supervised interaction.

Other studies that bridge between classical planning and representation learning include [13, 3, 2, 5].
These works, however, do not consider zero-shot generalization. While Srinivas et al. [26] and
Qureshi et al. [19] learn representations that allow goal-directed planning to unseen environments,
they require expert training trajectories. Ichter and Pavone [8] also generalizes motion planning to
new environments, but require a collision checker and valid samples from test environments.

5 EXPERIMENTS

Recent work in visual planning (e.g., [13, 29, 4]) focused on real robotic tasks with visual input.
While impressive, such results can be difficult to reproduce or compare. For example, it is not clear
whether manipulating a rope with the PR2 robot [29] is more or less difficult than manipulating
a rigid object among many visual distractors [4]. In light of this difficulty, we propose a suite of
simulated tasks with an explicit difficulty scale and clear evaluation metrics. Our domains consider
moving a rigid object between obstacles using Mujoco [28], and by varying the obstacle positions,
we can control the planning difficulty. For example, placing the object in a cul-de-sac would require
non-trivial planning compared to simply moving around an obstacle along the way to the goal. We
thus create two domains, as seen in Figure 2:

1. Block wall:: A green block navigates around a static red obstacle, which can vary in position.

2. Block wall with complex obstacle: Similar to the above, but here the wall is a 3-link object
which can vary in position, joint angles, and length, making the task significantly harder.

Figure 2: Block wall domain (left) and block wall with complex obstacle (right) domain. The top
row shows some example contexts. The bottom rows show example observations.

With these domains, we aim to asses the following attributes:

• Does HTM improve visual plan quality over state-of-the-art VP methods [22, 4]?

• How does HTM execution success rate compare to state-of-the-art VP methods?

• How well does HTM generalize its planning to unseen contexts?

We discuss our evaluation metrics for these attributes in Section 5.1. To fully assess success of HTM
relative to other state-of-the-art VP methods, we run these evaluation metrics on SPTM [22] and
Visual Foresight [4]. In the first baseline, since vanilla SPTM cannot plan in a new environment, we
use the same samples generated by the same CVAE as HTM, and then build the graph by assigning
edge weights in the graph proportional to their exponentiated SPTM classifier score. 3 We also give
it the same negative sampling proceedure as HTM. The same low-level controller is also used to
follow the plans. In the second baseline, Visual Foresight trains a video prediction model, and then
performs model predictive control (MPC) which finds the optimal action sequence through random
shooting. For the random shooting, we used 3 iterations of the cross-entropy method with 200
sample sequences. The MPC acts for 10 steps and replans, where the planning horizon T is 15. We
use the state-of-the-art video predictor as proposed by Lee et al. [14] and the public code provided
by the authors. For evaluating trajectories in random shooting, we studied two cost functions that are
suitable for our domains: pixel MSE loss and green pixel distance. The pixel MSE loss computes the

3We found that negative exponential weighting, which requires no tuning, performed slightly better in results
than our best tuned version of the original SPTM edge weighting through thresholding.
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pixel distance between the predicted observations and the goal image. This provides a sparse signal
when the object pixels in the plan can overlap with those of the goal. We also investigate a cost
function that uses prior knowledge about the task – the position of the moving green block, which
is approximated by calculating the center of mass of the green pixels. As opposed to pixel MSE,
the green pixel distance provides a smooth cost function which estimates the normalized distance
between the estimated block positions of the predicted observations and the goal image. Note that
this assumes additional domain knowledge compared to HTM.

5.1 EVALUATION METRICS

We design a set of tests that measure both qualitative and quantitative performance of an algorithm.
To motivate the need for qualitative metrics, we reiterate the importance of planning interpretability;
it is highly desirable that the generated plan visually make sense so as to allow a human to approve
of the plan prior to execution.

Qualitative Visual plans have the essential property of being intuitive, in that the imagined trajectory
is perceptually sensible. Since these qualities are highly subjective, we devised a set of tests to
evaluate plans based on human visual perception. For each domain, we asked 5 participants to
visually score 5 randomly generated plans from each model by answering the following questions:
(1) Fidelity: Does the pixel quality of the images resemble the training data?; (2) Feasibility: Is each
transition in the generated plan executable by a single action step?; and (3) Completeness: Is the
goal reachable from the last image in the plan using a single action? Answers were in the range
[0,1], where 0 denotes No to the proposed question and 1 means Yes. The mean opinion score were
calculated for each model.

Quantitative In addition to generating visually sensible trajectories, a planning algorithm must also
be able to successfully navigate towards a predefined goal. Thus, for each domain, we selected
20 start and goal images, each with an obstacle configuration unseen during training. Success was
measured by the ability to get within some L2 distance to the goal in a n steps or less, where the
distance threshold and n varied on the domain but was held constant across all models. A controller
specified by the algorithm executed actions given an imagined trajectory, and replanning occurred
every r steps. Specific details can be found in the Appendix D.

5.2 RESULTS

As shown in Table 5.2, HTM outperforms all baselines in both qualitative and quantitative mea-
surements across all domains. In the simpler block wall domain, Visual Foresight with green pixel
distance only succeeds under the assumption of additional state information of the object’s location.
the other algorithms do not have. However, in the complex obstacle domain, Visual Foresight fails
to perform comparably to our algorithm, regardless of the additional assumption. We also com-
pared our method with SPTM, using the same inverse model and CVAE to imagine testing samples.
However, without a robust classification loss and improved method of weighting the graph’s edges,
SPTM often fails to find meaningful transitions.

In regards to perceptual evaluation, Visual Foresight generates realistic transitions, as seen by the
high participant scores for feasibility. However, the algorithm is limited in creating a visual plan
within the optimal T = 15 timesteps. 4 Thus, when confronted with a challenging task of navigating
around a convex shape where the number of timesteps required exceeds T , Visual Foresight fails
to construct a reliable plan (see Figure 3), and thus lacks plan completeness. Conversely, SPTM is
able to imagine some trajectory that will reach the goal state. However, as mentioned above and
was confirmed in the perceptual scores, SPTM fails to select feasible transitions, such as imagining
a trajectory where the block will jump across the wall or split into two blocks. Our approach, on the
other hand, received the highest scores of fidelity, feasibility, and completeness. Finally, we show
in Figure 3 the results of our two proposed improvements to SPTM in isolation. The results clearly
show that a classifier using contrastive loss outperforms that which uses Binary Cross Entropy
(BCE) loss, and furthermore that the inverse of the score function for edge weighting is more
successful than the best tuned version of binary edge weights.

4For plans require > T steps, we found that error across the image translations accumulate and the predicted
image drastically decreases in interpretability. This optimal value of T is consistent with that of [4].
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Algorithms Domain Fidelity Feasibility Completeness Execution Success

HTM (1) 1 0.86 ± .05 0.84 ± .16 1.00 ± .00 100%
2 0.95 ± .03 0.92 ± .11 1.00 ± .00 95%

HTM (2) 1 0.75 ± .09 0.88 ± .14 1.00 ± .00 95%
2 0.96 ± .03 0.96 ± .08 0.96 ± .08 100%

SPTM with CVAE 1 0.40 ± .11 0.00 ± .00 1.00 ± .00 55%
2 0.92 ± .07 0.00 ± .00 1.00 ± .00 30%

Visual Foresight [4] 1 0.74 ± .08 0.84 ± .16 0.04 ±. 08 25%
(pixel MSE loss) 2 0.59 ± .16 0.64 ± .21 0.00 ± .00 0%

Visual Foresight [4] 1 0.80 ± .07 0.84 ± .16 0.04 ± .08 90%
(green pixel distance) 2 0.69 ± .14 0.56 ± .21 0.00 ± .00 35%

Inverse Model 1 - - - 20%
2 - - - 25%

Table 1: Qualitative and quantitative evaluation for the the block wall (1) and block wall with com-
plex obstacle (2) domains. Qualitative data also displays the 95% confidence interval. Note HTM
(1) refers to edge weighting using the energy model, and (2) is weighting using the density ratio, as
described in 3.3.

Figure 3: Left: HTM plan examples (top) and Visual Foresight (green pixel distance) plan examples
(bottom). Note Visual Foresight is unable to conduct a long-horizon plan, and thus greedily moves
in the direction of the goal state. Right: Comparison of score function and edge weighting function
by examining final average distance to the goal state for 10 test start/goal pairs (the lower the better).
For the score function, we denote the energy model structured with contrastive loss as CPC and the
classifier as proposed in [22] with BCE loss as SPTM. For the edge weighting function, we test
the binary edge weighting from the original SPTM paper, the inverse of the score function, and the
inverse of the normalized score function.

6 DISCUSSION

We propose a method that is visually interpretable and modular – we first hallucinate possible con-
figurations, then compute a connectivity between them, and then plan. Our HTM can generalize to
unseen environments and improve visual plan quality and execution success rate over state-of-the-art
VP methods. Our results suggest that combining classical planning methods with data-driven per-
ception can be helpful for long-horizon visual planning problems, and takes another step in bridging
the gap between learning and planning. In future work, we plan to combine HTM with Visual MPC
for handling more complex objects, and use object-oriented planning for handling multiple objects.
Another interesting aspect is to improve planning by hallucinating samples conditioned on the start
and goal configurations, which can help reduce the search space during planning.
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A DISCRIMINATIVE MODELS: CLASSIFIER VS. ENERGY MODEL

In this section, we assume the dataset as described in VPA, D = {oi1, ..., oiTi}
n
i=1. There are two

ways of learning a model to distinguish the positive from the negative transitions.

Classifier: As noted above, SPTM first trains a classifier which distinguishes between an image pair
that is within h steps apart, and the images that are far apart using random sampling. The classifier
is used to localize the current image and find possible next images for planning. In essence, the
classifier contains the encoder gθ that embeds the observation x and the the score function f that
takes the embedding of each image and output the logit for a sigmoid function. The binary cross
entropy loss of the classifier can be written as follows:

LSPTM (θ, ψ;D) = −
∑

(zt,zt+k)∼D

[
log

f(z, zt+k)

1 + f(zt, zt+k)
+ log

1

1 + f(zt, z
−
t )

]

= −
∑

(zt,zt+1)∼D

log

[
fψ(zt, zt+k)

1 + fψ(zt, zt+k) + fψ(zt, z
−
t ) + fψ(zt, zt+k) ∗ fψ(zt, z

−
t )

]
,

where z−t is a random sample from D.

Energy model: Another form of discriminating the the positive transition out of negative transitions
is through an energy model. Oord et al. [17] learn the embeddings of the current states that are
predictive of the future states. Let g be an encoder of the input x and z = gθ(x) be the embedding.
The loss function can be described as a cross entropy loss of predicting the correct sample from
N + 1 samples which contain 1 positive sample and N negative samples:

LCPC(θ, ψ;D) = −
∑

(zt,zt+k)∼D

log

[
fψ(zt, zt+k)

fψ(zt, zt+k) +
∑N
i=1 fψ(zt, z

i−
t )

]
,

where fψ(u, v) = exp (uTψv) and z1−t , ..., zN−t are the random samples from D.

Note that when the number of negative samples is 1 the loss function resembles the SPTM.

B MUTUAL INFORMATION (MI)

This quantity measures how much knowing one variable reduces the uncertainty of the other vari-
able. More precisely, the mutual information between two random variables X and Y can be de-
scribed as I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = EX,Y

[
pX,Y
pXpY

]
.

C ADDITIONAL PROOF

Lemma C.1. For any random variable X,Y and a deterministic function g, I(X,Y ) ≥
I(X, g(Y )).5
Proof. I(X,Y ) = H(X) − H(X|Y ) = H(X) − H(X|Y, g(Y )) ≥ H(X) − H(X|g(Y )) =
I(X, g(Y ))

D ADDITIONAL RESULTS AND HYPERPARAMETERS

5This is also known as the data processing inequality.
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Figure 4: HTM plan examples. The hallucination allows the planner to imagine how to go around
the wall even though it has not seen the context before.

Figure 5: Visual Foresight plan examples. The plans do not completely show the trajectory to the
goal.

Table 2: Data parameters.
Domain 1 Domain 2

no. contexts 150 400
initializations per context 50 30

trajectory length 20 100
action space U [−.05, .05] U [−.1, .1]

Table 3: Planning hyperparameters.
Domain 1 Domain 2

no. of samples from CVAE 300 500
L2 threshold for success .5 .75
n (timesteps to get to goal) 500 400
r (timesteps until replanning) 200 80

Figure 6: Sample observations (top) and contexts (bottom). In this domain, an object can be trans-
lated and rotated (SE(2)) slightly per timestep. The data are collected from 360 different object
shapes with different number of building blocks between 3 to 7. Each object is randomly initialized
50 times and each episode has length 30. The goal is to plan a manipulation of an unseen object
through the narrow gap between obstacles in zero-shot.
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Figure 7: HTM evaluated on real data. Ground truth start and goal are the leftmost and rightmost
images, respectively, in the row.

Figure 8: SPTM evaluated on real data. Ground truth start and goal are the leftmost and rightmost
images, respectively, in the row.

Figure 9: HTM evaluated on hallucinated data. Ground truth start and goal are the leftmost and
rightmost images, respectively, in the row.
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