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ABSTRACT

Giving provable guarantees for learning neural networks is a core challenge of
machine learning theory. Most prior work gives parameter recovery guarantees for
one hidden layer networks, however, the networks used in practice have multiple
non-linear layers. In this work, we show how we can strengthen such results
to deeper networks – we address the problem of uncovering the lowest layer in
a deep neural network under the assumption that the lowest layer uses a high
threshold before applying the activation, the upper network can be modeled as a
well-behaved polynomial and the input distribution is gaussian.

1 INTRODUCTION

Understanding the landscape of learning neural networks has been a major challege in machine
learning. Various works gives parameter recovery guarantees for simple one-hidden-layer networks
where the hidden layer applies a non-linear activation u after transforming the input x by a matrix
W, and the upper layer is the weighted sum operator: thus f(x) =

∑
aiu(wT

i x). However, the
networks used in practice have multiple non-linear layers and it is not clear how to extend these
known techniques to deeper networks.

We consider a multilayer neural network with the first layer activation u and the layers above rep-
resented by an unknown polynomial P such that it has non-zero non-linear components. More
precisely, the function f computed by the neural network is as follows:

fW(x) = P (u(wT
1 x), u(wT

2 x), . . . , u(wT
d x)) for P (X1, . . . , Xd) =

∑
r∈Zd+

cr ·
∏
j

X
rj
j .

We assume that the input x is generated from the standard Gaussian distribution and there is an un-
derlying true network (parameterized by some unknown W∗)1 from which the labels are generated.

In this work we strengthen previous results for one hidden layer networks to a larger class of func-
tions representing the transform made by the upper layer functions if the lowest layer uses a high
threshold (high bias term) before applying the activation: u(a − t) instead of u(a). Intuitively, a
high threshold is looking for a high correlation of the input a with a direction w∗i . Thus even if the
function f is applying a complex transform after the first layer, the identity of these high threshold
directions may be preserved in the training data generated using f .

Learning with linear terms in P . Suppose P has a linear component then we show that in-
creasing the threshold t in the lowest layer is equivalent to amplifying the coefficients of the lin-
ear part. Instead of dealing with the polynomial P it turns out that we can roughly think of it as
P (µX1, ..., µXd) where µ decreases exponentially in t (µ ≈ e−t

2

). As µ decreases it has the effect
of diminishing the non-linear terms more strongly so that relatively the linear terms stand out. Tak-
ing advantage of this effect we manage to show that if t exceeds a certain threshold the non linear
terms drop in value enough so that the directions wi can be learned by relatively simple methods. We
show that we can get close to the wi applying a simple variant of PCA. While an application of PCA
can be thought of as finding principal directions as the local maxima of max||z||=1 E[f(x)(zTx)2],

1We suppress W when it is clear from context.
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we instead perform maxE[f(x)H2(zTx)2]=1 E[f(x)H4(zTx)4]]2. If W∗ has a constant condition
number then the local maxima can be used to recover directions that are transforms of wi.
Theorem 1 (informal version of Claim 2, Theorem 11). If t > c

√
log d for large enough constant

c > 0 and P has linear terms with absolute value of coefficients at least 1/poly(d) and all coeffi-
cients at most O(1), we can recover the weight vector wi within error 1/poly(d) in time poly(d).

These approximations of wi obtained collectively can be further refined by looking at directions
along which there is a high gradient in f ; for monotone functions we show how in this way we can
recover wi exactly (or within any desired precision.
Theorem 2. (informal version of Theorem 5) Under the conditions of the previous theorem, for
monotone P , there exists a procedure to refine the angle to precision ε in time poly(1/ε, d) starting
from an estimate that is 1/poly(d) close.

The above mentioned theorems hold for u being sign and ReLU.3

When P is monotone and u is the sign function, learning W is equivalent to learning a union of half
spaces. We learn W∗ by learning sign of P which is exactly the union of halfspaces wT

i x = t.
Thus our algorithm can also be viewed as a polynomial time algorithm for learning a union of large
number of half spaces that are far from the origin – to our knowledge this is the first polynomial time
algorithm for this problem but with this extra requirement (see earlier work Vempala (2010) for an
exponential time algorithm). Refer to Appendix B.6 for more details.

Such linear components in P may easily be present: consider for example the case where P (X) =
u(vTX − b) where u is say the sigmoid or the logloss function. The taylor series of such functions
has a linear component – note that since the linear term in the taylor expansion of u(x) has coefficient
u′(0), for expansion of u(x−b) it will be u′(−b) which is Θ(e−b) in the case of sigmoid. In fact one
may even have a tower (deep network) or such sigmoid/logloss layers and the linear components will
still be present – unless they are made to cancel out precisely; however, the coefficients will drop
exponentially in the depth of the networks and the threshold b.

Sample complexity with low thresholds and no explicit linear terms. Even if the threshold
is not large or P is not monotone, we show that W∗ can be learned with a polynomial sample
complexity (although possibly exponential time complexity) by finding directions that maximize
the gradient of f .
Theorem 3 (informal version of Corollary 1). If u is the sign function and wi’s are orthogonal
then in poly(1/ε, d) samples one can determine W∗ within precision ε if the coefficient of the linear
terms in P (µ(X1 + 1), µ(X2 + 1), µ(X3 + 1), . . .) is least 1/poly(d)

Learning without explicit linear terms. We further provide evidence that P may not even need
to have the linear terms – under some restricted cases (section 4), we show how such linear terms
may implicitly arise even though they may be entirely apparently absent. For instance consider the
case when P =

∑
XiXj that does not have any linear terms. Under certain additional assumptions

we show that one can recover wi as long as the polynomial P (µ(X1 +1), µ(X2 +1), µ(X3 +1), ..)
(where µ is e−t has linear terms components larger than the coefficients of the other terms). Note that
this transform when applied to P automatically introduces linear terms. Note that as the threshold
increases applying this transform on P has the effect of gathering linear components from all the
different monomials in P and penalizing the higher degree monomials. We show that if W∗ is a
sparse binary matrix then we can recover W∗ when activation u(a) = eρa under certain assumptions
about the structure of P . When we assume the coefficients are positive then these results extend
for binary low l1- norm vectors without any threshold. Lastly, we show that for even activations
(∀a, u(a) = u(−a)) under orthogonal weights, we can recover the weights with no threshold.

Learning with high thresholds at deeper layers. We also point out how such high threshold
layers could potentially facilitate learning at any depth, not just at the lowest layer. If there is any
cut in the network that takes inputs X1, . . . , Xd and if the upper layers operations can be modelled
by a polynomial P , then assuming the inputs Xi have some degree of independence we could use
this to modularly learn the lower and upper parts of the network separately (Appendix E)

2Here H4 and H2 are the fourth and second order hermite polynomials respectively.
3Theorem 1 holds for sigmoid with t ≥ c log d.
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Related Work. Various works have attempted to understand the learnability of simple neural net-
works. Despite known hardness results Goel et al. (2016); Brutzkus & Globerson (2017), there
has been an array of positive results under various distributional assumptions on the input and the
underlying noise in the label. Most of these works have focused on analyzing one hidden layer
neural networks. A line of research has focused on understanding the dynamics of gradient descent
on these networks for recovering the underlying parameters under gaussian input distribution Du
et al. (2017b;a); Li & Yuan (2017); Zhong et al. (2017a); Zhang et al. (2017); Zhong et al. (2017b).
Another line of research borrows ideas from kernel methods and polynomial approximations to ap-
proximate the neural network by a linear function in a high dimensional space and subsequently
learning the same Zhang et al. (2015); Goel et al. (2016); Goel & Klivans (2017b;a). Tensor de-
composition methods Anandkumar & Ge (2016); Janzamin et al. (2015) have also been applied to
learning these simple architectures.

The complexity of recovering arises from the highly non-convex nature of the loss function to be
optimized. The main result we extend in this work is by Ge et al. (2017). They learn the neural net-
work by designing a loss function that allows a ”well-behaved” landscape for optimization avoiding
the complexity. However, much like most other results, it is unclear how to extend to deeper net-
works. The only known result for networks with more than one hidden layer is by Goel & Klivans
(2017b). Combining kernel methods with isotonic regression, they show that they can provably learn
networks with sigmoids in the first hidden layer and a single unit in the second hidden layer in poly-
nomial time. We however model the above layer as a multivariate polynomial allowing for larger
representation. Another work Arora et al. (2014) deals with learning a deep generative network
when several random examples are generated in an unsupervised setting. By looking at correlations
between input coordinates they are able to recover the network layer by layer. We use some of their
ideas in section 4 when W is a sparse binary matrix.

Notation. We denote vectors and matrices in bold face. || · ||p denotes the lp-norm of a vector.
|| · || without subscript implies the l2-norm. For matrices || · || denotes the spectral norm and || · ||F
denotes the forbenius norm. N (0,Σ) denotes the multivariate gausssian distribution with mean 0
and covariance Σ. For a scalar x we will use φ(x) to denote the p.d.f. of the univariate standard
normal distribution with mean zero and variance 1 .For a vector x we will use φ(x) to denote
the p.d.f. of the multivariate standard normal distribution with mean zero and variance 1 in each
direction. Φ denotes the c.d.f. of the standard gausssian distribution. Also define Φc = 1 − Φ. Let
hi denote the ith normalized Hermite polynomial Wikipedia contributors (2018). For a function f ,
let f̂i denote the ith coefficient in the hermite expansion of f , that is, f̂i = Eg∼N (0,1)[f(g)hi(g)].
For a given function f computed by the neural network, we assume that the training samples (x, y)
are such that x ∈ Rn is distributed according to N (0, 1) and label has no noise, that is, y = f(x).

Note: Most proofs are deferred to the Appendix due to lack of space.

2 APPROXIMATE RECOVERY WITH LINEAR TERM

In this section we consider the case when P has a positive linear component and we wish to recover
the parameters of true parameters W∗. The algorithm has two-steps: 1) uses existing one-hidden
layer learning algorithm (SGD on carefully designed loss Ge et al. (2017)) to recover an approximate
solution , 2) refine the approximate solution by performing local search (for monotone P ). The in-
tuition behind the first step is that high thresholds enable P to in expectation be approximately close
to a one-hidden-layer network which allows us to transfer algorithms with approximate guarantees.
Secondly, with the approximate solutions as starting points, we can evaluate the closeness of the
estimate of each weight vector to the true weight vector using simple correlations. The intuition of
this step is to correlate with a function that is large only in the direction of the true weight vectors.
This equips us with a way to design a local search based algorithm to refine the estimate to small
error.

For simplicity in this section we will work with P where the highest degree in any Xi is 1. The
degree of the overall polynomial can still be n. See Appendix B.8 for the extension to general P .
More formally,

3



Under review as a conference paper at ICLR 2019

Assumption 1 (Structure of network). We assume that P has the following structure
P (X1, . . . , Xk) = c0 +

∑
i∈[d] ciXi +

∑
S⊆[d]:|S|>1 cS

∏
j∈S Xj such that ci = Θ(1)4 for all

i ∈ [d] and for all S ⊆ [d] such that |S| > 1, |cS | ≤ O(1). W∗ has constant condition number.

Thus f(x) = c0 +
∑
i∈[d] ciu((w∗i )Tx) +

∑
S⊆[d]:|S|>1 cS

∏
j∈S u((w∗j )Tx). Denote flin(x) =

c0 +
∑
i∈[d] ciu((w∗i )Tx) to be the linear part of f .

Next we will upper bound expected value of u(x): for ”high-threshold” ReLU, that is, ut(a) =

max(0, a − t), Eg∼N(0,σ2)[ut(g)] is bounded by a function ρ(t, σ) ≈ e−
t2

2σ2 (see Lemma 10). We
also get a lower bound on |û4| in terms of ρ(t, σ) 5 This enables us to make the following assumption.
Assumption 2. Activation function u is a positive high threshold activation with threshold t, that is,
the bias term is t. Eg∼N(0,σ2)[ut(g)] ≤ ρ(t, σ) where ρ is a positive decreasing function of t. Also,
|ûk| = tΘ(1)ρ(t, 1) for k = 2, 4.
Assumption 3 (Value of t). t is large enough such that ρ(t, ||W∗||) ≈ d−η and ρ(t, 1) ≈ d−pη

with for large enough constant η > 0 and p ∈ (0, 1].

For example, for high threshold ReLU, ρ(t, 1) = e−t
2/2 and µ = ρ(t, ||W∗||) = e−t

2/2||W∗||2 , thus
t =
√

2η log d for large enough d suffices to get the above assumption (κ(W∗) is a constant).

These high-threshold activation are useful for learning as in expectation, they ensure that f is close
to flin since the product terms have low expected value. This is made clear by the following lemmas:
Lemma 1. For |S| > 1, under Assumption 2 we have,

E

∏
j∈S

ut((w
∗
j )Tx)

 ≤ ρ(t, 1) (κ(W∗)ρ(t, ||W∗||))|S|−1
.

So if µ := κ(W∗)ρ(t, ||W∗||), then E[
∏
j∈S Xj [x]] ≤ ρ(t, 1)µ|S|−1

Lemma 2. Let ∆(x) = f(x) − flin(x). Under Assumptions 1, 2 and 3, if t is such that
dρ(t, ||W∗||) ≤ c for some small enough constant c > 0 we have,

E[|∆(x)|] ≤ O
(
d3ρ(t, 1)ρ(t, ||W∗||)

)
= O

(
d−(1+p)η+3

)
.

Note: We should point out that f(x) and flin(x) are very different point wise; they are just close
in expectation under the distribution of x. In fact, if d is some constant then even the difference in
expectation is some small constant.

This closeness suggests that algorithms for recovering under the labels from flin can be used to
recover with labels from f approximately.

Learning One Layer Neural Networks using Landscape Design. Ge et al. (2017) proposed an
algorithm for learning one-hidden-layer networks. Intuitively, the approach of Ge et al. (2017) is to
design a well behaved loss function based on correlations to recover the underlying weight vectors.
They show that the local minima of the following optimization corresponds to some transform of
each of the w∗i – thus it can be used to recover a transform of w∗i , one at a time.

max
z:E[flin(x)H2(zTx)]=û2

sgn(û4)E[flin(x)H4(zTx)]

which they optimize using the Lagrangian formulation (viewed as a minimization):

min
z

Glin(z) := −sgn(û4)E[flin(x)H4(zTx)] + λ(E[flin(x)H2(zTx)]− û2)2

where H2(zTx) = ||z||2h2

(
zTx
||z||

)
= (zTx)2

√
2
− ||z||2√

2
and H4(zTx) = ||z||4h4

(
zTx
||z||

)
=

√
6 (zTx)4

12 − ||z||2(zTx)2

2 + ||z||4
4 (see Appendix A.1 for more details). Using properties

4We can handle ∈ [d−C , dC ] for some constant C by changing the scaling on t.
5For similar bounds for sigmoid and sign refer to Appendix B.7.
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of Hermite polynomials, we have E[flin(x)H2(zTx)] = û2

∑
i ci(z

Tw∗i )2 and similarly
E[flin(x)H4(zTx)] = û4

∑
i(z

Tw∗i )4. Thus

Glin(z) = −|û4|
∑
i

ci(z
Tw∗i )4 + λû2

2

(∑
i

ci(z
Tw∗i )2 − 1

)2

.

Using results from Ge et al. (2017), it can be shown that the approximate local minima of this
problem are close to columns of (TW∗)−1 where T is a diagonal matrix with Tii =

√
ci.

Definition 1 ((ε, τ)-local minimum/maximum). z is an (ε, τ)-local minimum of F if ||∇F (z)|| ≤ ε
and λmin(∇2F (z)) ≤ τ .
Claim 1 (Ge et al. (2017)). An (ε, τ)-local minima of the Lagrangian formulation z with ε ≤
O
(√

τ3/|û4|
)

is such that for an index i |zTwi| = 1 ± O(ε/λû2
2) ± O(dτ/|û4|) and ∀j 6=

i, |vTwj | = O(
√
τ/|û4|) where wi are columns of (TW∗)−1.

Ge et al. (2017) do not mention û2 but it is necessary in the non-orthogonal weight vectors case for
the correct reduction. Since for us, this value can be small, we mention the dependence.Note that
these are not exactly the directions w∗i that we need, one way to think about is that we can get the
correct directions by estimating all columns and then inverting.

One-hidden-layer to Deep Neural Network. Consider the loss with f instead of flin:

min z : G(z) = −sgn(û4)E[f(x)H4(zTx)] + λ(E[f(x)H2(zTx)]− û2)2

We previously showed that f is close to flin in expectation due to the high threshold property. This
also implies that Glin and G are close and so are the gradients and (eignevalues of) hessians of the
same. This closeness implies that the landscape properties of one approximately transfers to the
other function. More formally,
Theorem 4. Let Z be an (ε, τ)-local minimum of functionA. If ||∇(B−A)(Z)|| ≤ ρ and ||∇2(B−
A)(Z)|| ≤ γ then Z is an (ε+ ρ, τ + γ)-local minimum of function B and vice-versa.

We will now apply above lemma on our Glin(z) and G(z).
Claim 2. For λ = Θ(|û4|/û2

2) ≈ dη , an (ε, τ)-approximate local minima of G (for small enough
ε, τ ≤ d−2η) is an (O(log d)d−(1+p)η+3, O(log d)d−(1+p)η+3)-approximate local minima of Glin.
This implies z is such that for an index i, |zTwi| = 1 ± O(1)d−2/3pη+3 and ∀j 6= i, |zTwj | =

O(1)d−1/3pη+3/2 where wi are columns of (TW∗)−1 (ignoring log d factors).

Note: For ReLU, setting t =
√
C log d for large enough C > 0 we can get closeness 1/poly(d) to

the columns of (TW∗)−1. Refer Appendix B.7 for details for sigmoid.

The paper Ge et al. (2017) also provides an alternate optimization that when minimized simultane-
ously recovers the entire matrix W∗ instead of having to learn columns of (TW∗)−1 separately.
We show how applying our methods can also be applied to that optimization in Appendix B.4 to
recover W∗ by optimizing a single objective.

2.1 APPROXIMATE TO ARBITRARILY CLOSE FOR MONOTONE P

Assuming P is monotone, we can show that the approximate solution from the previous analysis can
be refined to arbitrarily closeness using a random search method followed by approximately finding
the angle of our current estimate to the true direction.

The idea at a high level is to correlate with δ′(zTx − t) where δ is the Dirac delta function. It
turns out that the correlation is maximized when z is equal to one of the wi. Correlation with
δ′(zTx−t) is checking how fast the correlation of f with δ(zTx−t) is changing as you change t. To
understand this look at the case when our activation u is the sign function then note that correlation
of ut(wTx− t) with δ′(wTx− t) is very high as its correlation with δ(wTx− t′) is 0 when t′ < t
and significant when t′ > t. So as we change t’ slightly from t− ε to t+ ε there is a sudden increase.
If z and w differ then it can be shown that correlation of ut(wTx− t) with δ′(zTx− t) essentially
depends on cot(α) where α is the angle between w and z (for a quick intuition note that one can
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prove that E[ut(w
Tx)δ′(zTx)] = c cot(α). See Lemma 16 in Appendix). In the next section we

will show how the same ideas work for non-monotone P even if it may not have any linear terms but
we only manage to prove polynomial sample complexity for finding w instead of polynomial time
complexity.

In this section we will not correlate exactly with δ′(zTx− t) but instead we will use this high level
idea to estimate how fast the correlation with δ(zTx − t′) changes between two specific values as
one changes t′, to get an estimate for cot(α). Secondly since we can’t to a smooth optimization over
z, we will do a local search by using a random perturbation and iteratively check if the correlation
has increased. We can assume that the polynomial P doesn’t have a constant term c0 as otherwise it
can easily be determined and cancelled out6.

We will refine the weights one by one. WLOG, let us assume that w∗1 = e1 and we have z such that
zTw∗1 = z1 = cos−1(α1). Let l(z, t, ε) denote {x : zTx ∈ [t− ε, t]} for z ∈ Sn−1.

Algorithm 1 RefineEstimate
1: Run EstimateTanAlpha on z to get s = tan(α) where α is the angle between z and w∗1 .
2: Perturb current estimate z by a vector along the d− 1 dimensional hyperplane normal to z with

the distribution n(0,Θ(α/d))d−1 to get z′.
3: Run EstimateTanAlpha on z′ to get s′ = tan(α′) where α′ is the angle between z′ and w∗1 .
4: if α′ ≤ O(α/d) then
5: z ← z′

6: Repeat till α′ ≤ ε.

Algorithm 2 EstimateTanAlpha
1: Find t1 and t2 such that Pr[sgn(f(x))|x ∈ l(z, t′, ε)] at t1 is 0.4 and at t2 is 0.6.
2: Return t2−t1

Φ−1(0.6)−Φ−1(0.4) .

The algorithm (Algorithm 1) estimates the angle of the current estimate with the true vector and then
subsequently perturbs the vector to get closer after each successful iteration.

Theorem 5. Given a vector z ∈ Sd−1 such that it is 1/poly(d)-close to the underlying true vector
w∗1 , that is cos−1(zTw∗1) ≤ 1/poly(d), running RefineEstimate for O(T ) iterations outputs a
vector z∗ ∈ Sd−1 such that cos−1((z∗)Tw∗1) ≤

(
1− c

d

)T
γ for some constant c > 0. Thus after

O(d log(1/ε)) iterations cos−1((z∗)Tw∗1) ≤ ε.

We prove the correctness of the algorithm by first showing that EstimateTanAlpha gives a multi-
plicative approximation to tan(α). The following lemma captures this property.

Lemma 3. EstimateTanAlpha(z) outputs y such that y = (1 ± O(η)) tan(α) where α is the
angle between z and w∗1 .

Proof. We first show that the given probability when computed with sgn(xTw∗1−t) is a well defined
function of the angle between the current estimate and the true parameter up to multiplicative error.
Subsequently we show that the computed probability is close to the one we can estimate using
f(x) since the current estimate is close to one direction. The following two lemmas capture these
properties.

Lemma 4. For t, t′ and ε ≤ 1/t′, we have

Pr[xTw∗1 ≥ t and x ∈ l(z, t′, ε)|x ∈ l(z, t, ε)] = Φc
(
t− t∗ cos(α1)

| sin(α1)|

)
±O(ε)t′

Lemma 5. For t′ ∈ [0, t/ cos(α1)], we have

Pr[sgn(f(x))|x ∈ l(z, t′, ε)] = Pr[sgn((w∗1)Tx− t)|x ∈ l(z, t, ε)] + de−Ω(t2).

6for example with RELU activation, f will be c0 most of the time as other terms in P will never activate.
So c0 can be set to say the median value of f .
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Using the above, we can show that,

t2 − t1 =
(
Φ−1(0.6− η1 ±O(ε)t1)− Φ−1(0.4− η2 ±O(ε)t2)

)
tan(α)

=
(
Φ−1(0.6)− Φ−1(0.4)− (η1 ±O(ε)t1)(Φ−1)′(p1) + (η2 ±O(ε)t2)(Φ−1)′(p2)

)
tan(α)

where η1, η2 > 0 are the noise due to estimating using f and p1 ∈ [0.6 − η1 ± O(ε)t1, 0.6] and
p2 ∈ [0.4 − η2 ± O(ε)t2, 0.4] as long as t1, t2 ∈ [0, t/ cos(α1)]. The following lemma bounds the
range of t1 and t2.

Lemma 6. We have 0 ≤ t1 ≤ t2 ≤ t
cos(α1) .

Thus, we have,
t2 − t1

Φ−1(0.6)− Φ−1(0.4)
= (1±O (η1 + η2 + εt2)) tan(α)

as long as η2+O(ε)t2 ≤ c for some constant c > 0. Thus, we can get a multiplicative approximation
to tan(α) up to error η (ε can be chosen to make its contribution smaller than η).

Finally we show (proof in Appendix ??) that with constant probability, a random perturbation re-
duces the angle by a factor of (1 − 1/d) of the current estimate hence the algorithm will halt after
O(d log(1/ν)) iterations.

Lemma 7. By applying a random Gaussian perturbation along the d − 1 dimensional hyperplane
normal to z with the distribution n(0,Θ(α/d))d−1 and scaling back to the unit sphere, with constant
probability, the angle α (< π/2) with the fixed vector decreases by at least Ω(α/d).

3 SAMPLE COMPLEXITY

We extend the methods of the previous section to a broader class of polynomials but only to obtain
results in terms of sample complexity. The main idea as in the previous section is to correlate with
δ′(zTx−t) (the derivative of the dirac delta function) and find arg max||z||2=1 E[f(x)δ′(zTx−t)].
We will show that the correlation goes to infinity when z is one of w∗i and bounded if it is far from
all of them. From a practical standpoint we calculate δ′(zTx − s) by measuring correlation with
1
2ε (δ(z

Tx− s+ ε)− δ(zTx− s− ε). In the limit as ε→ 0 this becomes δ′(zTx− s). δ(zTx− s)
in turn is estimated using 1

ε (sgn(zTx− s+ ε)− sgn(zTx− s)), as in the previous section, for an
even smaller ε; however, for ease of exposition, in this section, we will assume that correlations with
δ(zTx− s) can be measured exactly.

Let us recall that f(x) = P (u((w∗1)Tx), u((w∗2)Tx), . . . , u((w∗d)Tx)). Let C1(f, z, s) denote
E[f(x)δ(zTx− s)] and let C2(f, z, s) denote E[f(x)(δ(zTx− s− ε)− δ(zTx− s+ ε)].

If u = sgn then P has degree at most 1 in each Xi. Let ∂P
∂Xi

denote the symbolic partial derivative
of P with respect to Xi; so, it drops monomials without Xi and factors off Xi from the remaining
ones. Let us separate dependence on Xi in P as follows:

P (X1, , .., Xd) = XiQi(X1, ..Xi−1, Xi+1, .., Xd) +R1(X1, .Xi−1, Xi+1, .., Xd)

then ∂P
∂Xi

= Qi.

We will overload the polynomial P such that P [x] to denote the polynomial computed by substitut-
ing Xi = u((w∗1)Tx) and similarly for Q and R. Under this notation f(x) = P [x]. We will also
assume that |P (X)| ≤ ||X||O(1) = ||X||c1 (say). By using simple correlations we will show:
Theorem 6. If u is the sgn function, P (X) ≤ ||X||c1 and for all i, E[Qi[x]|(w∗i )Tx = t] ≥ ε3
then using poly( d

ε3ε2
) samples one can determine the w∗i ’s within error ε2.7

Note that if all the w∗i ’s are orthogonal then Xi are independent and E
[
Qi[x]

∣∣(w∗i )Tx = t
]

is just
value ofQi evaluated by settingXi = 1 and setting all the the remainingXj = µwhere µ = E[Xj ].
This is same as 1/µ times the coefficient of Xi in P (µ(X1 + 1), . . . , µ(Xd + 1)).

7The theorem can be extended to ReLU by correlating with the second derivative δ′′ (see Appendix C.1).
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Corollary 1. If u is the sgn function and w∗i s are orthogonal then in sample complexity poly( d
ε3ε2

)
one can determine W∗ within error ε2 in each entry, if the coefficient of the linear terms in
P (µ(X1 + 1), µ(X2 + 1), µ(X3 + 1), ..) is larger than ε3µ, where µ = E[Xi].

The main point behind the proof of Theorem 6 is that the correlation is high when z is along one of
w∗i and negligible if it is not close to any of them.

Lemma 8. Assuming P (X) < ||X||c1 . If z = w∗i then C2(f, z, t) = φ(t)E
[
∂P
∂Xi

∣∣∣zTx = t
]

+

εdO(1). Otherwise if all angles αi between z and w∗i are at least ε2 it is at most εdO(1)/ε2.

We will use the notation g(x)x=s to denote g(x) evaluated at x = s. Thus Cauchy’s mean value
theorem can be stated as g(x + ε) − g(x) = ε[g′(s)](s = s′ ∈ [x, x + ε]). We will over load
the notation a bit: φ(zTx = s) will denote the probability density that vzTx = s; so if z is a
unit vector this is just φ(s); φ(zT1 x = s1, z

T
2 x = s2) denotes the probability density that both

zT1 x = s1, z
T
2 x = s2; so again if z1, z2 are orthonormal then this is just φ(s1)φ(s2).

The following claim interprets correlation with δ(zTx − s) as the expected value along the corre-
sponding plane zTx = s.
Claim 3. E[f(x)δ(zTx− s)] = E[f(x)|zTx = s]φ(zTx = s).

The following claim computes the correlation of P with δ′(zTx− s).
Claim 4. E[P [x]δ′(zTx = s)] is equal to

∑
i | cot(αi)|φ(zTx = s, (w∗i )Tx = t)

E
[
∂P
∂Xi

[x]|zTx = s, (w∗i )Tx = t
]

+ φ′(s)E[P [x]|zTx = s].

We use this to show that the correlation is bounded if all the angles are lower bounded.
Claim 5. If P (X) ≤ ||X||c1 and if z has an angle of at least ε2 with all the w∗i ’s then C2(f, z, s) ≤
εdO(1)/ε2.

Above claims can be used to prove main Lemma 8. Refer to the Appendix C for proofs.

Proof of Theorem 6. If we wish to determine w∗i within an angle of accuracy ε2 let us set ε to be
O(ε3ε2φ(t)d−c). From Lemma 8, for some large enough c, this will ensure that if all αi > ε2 the
correlation is o(φ(t)ε3). Otherwise it is φ(t)ε3(1±o(1)). Since φ(t) = poly(1/d), given poly( d

ε2ε3
)

samples, we can test if a given direction is within accuracy ε2 of a w∗i or not.

4 STRONGER RESULTS UNDER STRUCTURAL ASSUMPTIONS

Under additional structural assumptions on W∗ such as the weights being binary, that is, in {0, 1},
sparsity or certain restrictions on activation functions, we can give stronger recovery guarantees.
Proofs have been deferred to Appendix D.

Theorem 7. For activation ut(a) = eρ(a−t). Let the weight vectors w∗i be 0, 1 vectors that select
the coordinates of x. For each i, there are exactly d indices j such that wij = 1 and the coefficient
of the linear terms in P (µ(X1 + 1), µ(X2 + 1), µ(X3 + 1), ..) for µ = e−ρt is larger than the
coefficient of all the product terms (constant factor gap) then we can learn the W∗.

In order to prove the above, we will construct a correlation graph over x1, . . . , xn and subsequently
identify cliques in the graph to recover w∗i ’s.

With no threshold, recovery is still possible for disjoint, low l1-norm vector. The proof uses simple
correlations and shows that the optimization landscape for maximizing these correlations has local
maximas being w∗i ’s.
Theorem 8. For activation u(a) = ea. If all w∗i ∈ {0, 1}n are disjoint, then we can learn w∗i as
long as P has all positive coefficients and product terms have degree at most 1 in each variable.

For even activations, it is possible to recover the weight vectors even when the threshold is 0. The
technique used is the PCA like optimization using hermite polynomials as in Section 2. Denote
C(S, µ) =

∑
S⊆S′⊆[n] cS′µ

|S′|.

8
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Theorem 9. If the activation is even and for every i, j: C({i}, û0) + C({j}, û0) >
6û2

2

û0û4
C({i, j}, û0) then there exists an algorithm that can recover the underlying weight vectors.

5 CONCLUSION

In this work we show how activations in a deep network that have a high threshold make it easier to
learn the lowest layer of the network. We show that for a large class of functions that represent the
upper layers, the lowest layer can be learned with high precision. Even if the threshold is low we
show that the sample complexity is polynomially bounded. An interesting open direction is to apply
these methods to learn all layers recursively. It would also be interesting to obtain stronger results if
the high thresholds are only present at a higher layer based on the intuition we discussed.
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A PREREQUISITES

A.1 HERMITE POLYNOMIALS

Hermite polynomials form a complete orthogonal basis for the gaussian distribution with unit vari-
ance. For more details refer to Wikipedia contributors (2018). Let hi be the normalized hermite
polynomials. They satisfy the following,

Fact 0. E[hn(x)] = 0 for n > 0 and E[h0(x)] = 1.

Fact 1. Ea∼N(0,1)[hi(a)hj(a)] = δij where δij = 1 iff i = j.

This can be extended to the following:

Fact 2. For a, b with marginal distribution N(0, 1) and correlation ρ, E[hi(a)hj(b)] = δijρ
j .

Consider the following expansion of u into the hermite basis (hi),

u(a) =

∞∑
i=0

ûihi(a).

Lemma 9. For unit norm vectors u, v, E[u(vTx)hj(w
Tx)] = ûj(v

Tw)j .

Proof. Observe that vTx and wTx have marginal distribution N(0, 1) and correlation vTw. Thus
using Fact 2,

E[u(vTx)hj(w
Tx)] =

∞∑
i=1

ûiE[hi(v
Tx)hj(w

Tx)] =

∞∑
i=1

ûiδij(v
Tw)j = ûj(v

Tw)j .

For gaussians with mean 0 and variance σ2 define weighted hermite polynomials Hσ
l (a) =

|σ|lhl(a/σ). Given input vTx for x ∼ N(0, I), we suppress the superscript σ = ||v||.
Corollary 2. For a non-zero vector v (not necessarily unit norm) and a unit norm vector w,
E[Hi(v

Tx)hj(w
Tx)] = δij(v

Tw)j .

Proof. It follows as the proof of the previous lemma,

E[u(vTx)hj(w
Tx)] =

∞∑
i=1

ûiE[hi(v
Tx)hj(w

Tx)] =

∞∑
i=1

ûiδij(v
Tw)j = ûj(v

Tw)j .

Fact 3. hn(x+ y) = 2−
n
2

∑n
k=0

(
n
k

)
hn−k(x

√
2)hk(y

√
2).

Fact 4. hn(γx) =
∑bn2 c
k=0 γ

n−2k(γ2 − 1)k
(
n
2k

) (2k)!
k! 2−khn−2k(x).

Fact 5. α(n,m, γ) = E[hm(x)hn(γx)] = γn−2k(γ2 − 1)k
(
n
2k

) (2k)!
k! 2−k for k = n−m

2 if k ∈ Z+

else 0.

A.2 PROPERTIES OF MATRICES

Consider matrix A ∈ Rm×m. Let σi(A) to be the ith singular value of A such that σ1(A) ≥
σ2(A) ≥ . . . ≥ σm(A) and set κ(A) = σ1(A)/σm(A).

Fact 6. |det(A)| =
∏m
i=1 σi(A).

Fact 7. Let B be a (mk)× (mk) principal submatrix of A, then κ(B) ≤ κ(A).

11
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A.3 ACTIVATION FUNCTIONS

Lemma 10. For u being a high threshold ReLU, that is, ut(a) = max(0, a− t) we have for t ≥ C
for large enough constant C > 0, Eg∼N(0,σ2)[ut(g)] ≤ e−

t2

2σ2 . Also, û4, û2 = tΘ(1)e−
t2

2 .

Proof. We have

Eg∼N(0,σ2)[ut(g)] =
1√
2πσ

∫ ∞
−∞

max(0, g − t)e−
g2

2σ2 dg

=
1√
2πσ

∫ ∞
t

(g − t)e−
g2

2σ2 dg

≤ 1√
2πσ

∫ ∞
t

ge−
g2

2σ2 dg

=
σ√
2π

∫ ∞
t2

2σ2

e−hdh

=
σ√
2π
e−

t2

2σ2 .

Also,

û4 = Eg∼N(0,1)[ut(g)h4(g)]

=
1√
2π

∫ ∞
−∞

max(0, g − t)(g4 − 6g2 + 3)e−
g2

2 dg

=
1√
2π

∫ ∞
t

(g − t)(g4 − 6g2 + 3)e−
g2

2 dg

≥ 1√
2π

(t4 − 6t2)
1

t
e−

t2

2 −1− 1
2t2

≥ Ω
(
t3e−

t2

2

)
.

To upper bound,

û4 =
1√
2π

∫ ∞
−∞

max(0, g − t)(g4 − 6g2 + 3)e−
g2

2 dg

=
1√
2π

∫ ∞
t

(g − t)(g4 − 6g2 + 3)e−
g2

2 dg

≤ 1√
2π

∫ ∞
t

2g5e−
g2

2 dg

=
1√
2π

∫ ∞
t2

2

h2e−hdh

= O
(
t4e−

t2

2

)
.

Similar analysis holds for û2.

Observe that sgn can be bounded very similarly replacing g− t by 1 which can affect the bounds up
to only a polynomial in t factor.

Lemma 11. For u being a high threshold sgn, that is, ut(a) = sgn(a − t) we have for t ≥ C for

large enough constant C > 0, Eg∼N(0,σ2)[ut(g)] ≤ e−
t2

2σ2 . Also, û4, û2 = tΘ(1)e−
t2

2 .

For sigmoid, the dependence varies as follows:

Lemma 12. For u being a high threshold sigmoid, that is, ut(a) = 1
1+e−(a−t) we have for t ≥ C

for large enough constant C > 0, Eg∼N(0,σ2)[ut(g)] ≤ e−t+σ2

2 . Also, û4, û2 = Θ(e−t).

12
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Proof. We have

Eg∼N(0,σ2)[ut(g)] =
1√
2πσ

∫ ∞
−∞

1

1 + e−(g−t) e
− g2

2σ2 dg

=
e−t√
2πσ

∫ ∞
−∞

1

e−t + e−g
e−

g2

2σ2 dg

≤ e−t√
2πσ

∫ ∞
−∞

ege−
g2

2σ2 dg

=
e−te

σ2

2

√
2πσ

∫ ∞
−∞

e−
(g−σ2)2

2σ2 dg

= e−te
σ2

2

Also,

û4 = Eg∼N(0,1)[ut(g)h4(g)]

=
1√
2π

∫ ∞
−∞

1

1 + e−(g−t) e
− g

2

2 dg

=
e−t√

2π

∫ ∞
−∞

1

e−t + e−g
(g4 − 6g2 + 3)e−

g2

2 dg

≥ e−t√
2π

∫ ∞
0

1

e−t + e−g
(g4 − 6g2 + 3)e−

g2

2 dg

≥ e−t√
2π

∫ ∞
0

1

2
(g4 − 6g2 + 3)e−

g2

2 dg

= Ω(e−t).

We can upper bound similarly and bound û2.

B APPROXIMATE RECOVERY WITH LINEAR TERMS

B.1 CONSTRAINED OPTIMIZATION VIEW OF LANDSCAPE DESIGN

Let us consider the linear case with w∗i ’s are orthonormal. Consider the following maximization
problem for even l ≥ 4,

max
z∈Sn−1

sgn(ûl) · E
[
f(x) ·Hl

(
zTx

)]
where hl is the lth hermite polynomial. Then we have,

sgn(ûl) · E
[
f(x) · hl

(
zTx

)]
= sgn(ûl) · E

[(
k∑
i=1

ciut((w
∗
i )Tx)

)
· hl
(
zTx

)]

= sgn(ûl) ·
k∑
i=1

ciE
[
ut((w

∗
i )Tx) · hl

(
zTx

)]
= |ûl|

k∑
i=1

ci((w
∗
i )Tz)l.

It is easy to see that for z ∈ Sn−1, the above is maximized at exactly one of the wi’s (up to sign flip
for even l) for l ≥ 3 as long as ul 6= 0. Thus, each wi is a local minima of the above problem.

Let L(z) = −
∑k
i=1 ciz

l
i. For constraint ||z||2 = 1, we have the following optimality conditions

(see Nocedal & Wright (2006) for more details).

13
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First order:

∇L(z)− zT∇L(z)

||z||2
z = 0 and ||z||2 = 1.

This applied to our function gives us that for λ = −
∑
i ciz

l
i

||z||2 (λ < 0),

−lcizl−1
i − 2λzi = 0

The above implies that either zi = 0 or zl−2
i = − λ

lci
with ||z||2 = 1. For this to hold z is such that

for some set S ⊆ [n], |S| > 1, only i ∈ S have zi 6= 0 and
∑
i∈S z

2
i = 1. This implies that for all

i ∈ S, zl−2
i = − 2λ

lci
.

Second order:

For all w 6= 0 such that wTz = 0,wT (∇2L(z)− 2λI)w ≥ 0.

For our function, we have:

∇2L(z) = −l(l − 1)diag(c · z)l−2

=⇒ (∇2L(z))ij =

{
2(l − 1)λ if i = j and i ∈ S
0 otherwise.

The last follows from using the first order condition. For the second order condition to be satisfied
we will show that |S| = 1. Suppose |S| > 2, then choosing w such that wi = 0 for i 6∈ S and such
that wTz = 0 (it is possible to choose such a value since |S| > 2), we get wT (∇2L(z)− 2λI)w =
2(l − 2)λ||w||2 which is negative since λ < 0, thus these cannot be global minima. However, for
|S| = 1, we cannot have such a w, since to satisfy wTz = 0, we need wi = 0 for all i ∈ S, this
gives us wT (∇2L(z)− 2λI)w = −2λ||w||2 which is always positive. Thus z = ±ei are the only
local minimas of this problem.

B.2 IMPORTANT RESULTS FROM GE ET AL. (2017)

Lemma 13 (Ge et al. (2017)). If z is an (ε, τ)-local minima of F (z) = −
∑
i αiz

4
i +λ(

∑
i z

2
i −1)2

for ε ≤
√
τ3/αmin where αmin = mini αi, then

• (Lemma 5.2) |z|2nd ≤
√

τ
αmin

where |z|2nd denotes the magnitude of the second largest

entry in terms of magnitude of z.

• (Derived from Proposition 5.7) zmax = ±1± O(dτ/αmin)± O(ε/λ) where |z|max is the
value of the largest entry in terms of magnitude of z.

B.3 OMITTED PROOFS FOR ONE-BY-ONE RECOVERY

Proof of Lemma 1. Let O ∈ Rd×d be the orthonormal basis (row-wise) of the subspace spanned by
w∗i for all i ∈ [d] generated using Gram-schmidt (with the procedure done in order with elements
of |S| first). Now let OS ∈ R|S|×d be the matrix corresponding to the first S rows and let O⊥S ∈
R(d−|S|)×n be that corresponding to the remaining rows. Note that OW∗ (W∗ also has the same
ordering) is an upper triangular matrix under this construction.

E

∏
j∈S

ut((w
∗
j )Tx)


=

1

(2π)n/2

∫
x

∏
i∈S

ut(x
Tw∗i )e−

||x||2
2 dx

=
1

(2π)n/2

∫
x

∏
i∈S

ut((OSw
∗
i )TOSx)e−

||OSx||2+||O⊥S x||2

2 dx

=

(
1

(2π)
|S|
2

∫
x′∈R|S|

∏
i∈S

ut((OSw
∗
i )Tx′)e−

||x′||2
2 dx′

)(
1

(2π)
d−|S|

2

∫
x′∈Rd−|S|

e−
||x′||2

2 dx′

)

14
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=
1

(2π)
|S|
2

∫
x′∈R|S|

∏
i∈S

ut((OSw
∗
i )Tx′)e−

||x′||2
2 dx′

=
|det(OSW

∗
S)|−1

(2π)
|S|
2

∫
b∈R|S|

∏
i∈S

ut(bi)e
− ||(OSW∗S)−T b||2

2 db

Now observe that OSW
∗
S is also an upper triangular matrix since it is a principal sub-matrix of

OW∗. Thus using Fact 6 and 7, we get the last equality. Also, the single non-zero entry row has
non-zero entry being 1 (||w∗i || = 1 for all i). This gives us that the inverse will also have the single
non-zero entry row has non-zero entry being 1. WLOG assume index 1 corresponds to this row.
Thus we can split this as following

E

∏
j∈S

ut((w
∗
j )Tx)


≤ |det(OSW

∗
S)|−1

(
1√
2π

∫
b1

ut(b1)e−
b21
2 db1

) ∏
i∈S\{1}

1√
2π

∫
bi

ut(bi)e
− b2i

2||OSW∗
S
||2 dbi


≤ |det(OSW

∗
S)|−1

(
1√
2π

∫
b1

ut(b1)e−
b21
2 db1

) ∏
i∈S\{1}

1√
2π

∫
bi

ut(bi)e
− b2i
||W∗||2 dbi


≤ ρ(t, 1) (κ(W∗)ρ(t, ||W∗||))|S|−1

Proof of Claim 1. Consider the SVD of matrix M = UDUT . Let W = UD−1/2 and yi =√
ciW

Tw∗i for all i. It is easy to see that yi are orthogonal. Let F (z) = G(Wz):

F (z) = |û4|
∑
i

ci(z
TWTw∗i )4 − λû2

2

(∑
i

ci(z
TWTw∗i )2 − 1

)2

= |û4|
∑
i

1

ci
(zTyi)

4 − λû2
2

(∑
i

(zTyi)
2 − 1

)2

.

Since yi are orthogonal, for means of analysis, we can assume that yi = ei, thus the formulation
reduces to maxz |û4|

∑
i

1
ci

(zi)
4 − λ′

(
||z||2 − 1

)2
up to scaling of λ′ = λû2

2. Note that this is of
the form in Lemma 13 hence using that we can show that the approximate local minimas of F (z) are
close to yi and thus the local maximas of G(z) are close to Wyi =

√
ciWWTw∗i =

√
ciM

−1w∗i
due to the linear transformation. This can alternately be viewed as the columns of (TW∗)−1 since
TW∗M−1(TW∗)T = I.

Proof of Theorem 4. Let Z be an (ε, τ)-local minimum of A, then we have ||∇A(Z)|| ≤ ε and
λmin(∇2A(Z)) ≥ −τ . Observe that

||∇B(Z)|| = ||∇(A+ (B −A)(Z)|| ≤ ||∇A(Z)||+ ||∇(B −A)(Z)|| ≤ ε+ ρ.

Also observe that

λmin(∇2B(Z)) = λmin(∇2(A+ (B −A))(Z))

≥ λmin(∇2A(Z)) + λmin(∇2(B −A)(Z))

≥ −τ − ||∇2(B −A)(Z)|| ≥ −τ − γ

Here we use |λmin(M)| ≤ ||M|| for any symmetric matrix. To prove this, we have ||M|| =
maxx∈Sn−1 ||Mx||. We have x =

∑
i xivi where vi are the eigenvectors. Thus we have Mx =∑

i xiλi(M)vi and
∑
x2
i = 1. Which gives us that ||M|| =

√∑
i x

2
iλ

2
i (M) ≥ |λmin(M)|.

15



Under review as a conference paper at ICLR 2019

Proof of Lemma 2. Expanding f , we have

E[|∆(x)|] = E

∣∣∣∣∣∣
∑

S⊆[d]:|S|>1

cS
∏
j∈S

ut((w
∗
j )Tx)

∣∣∣∣∣∣


≤
∑

S⊆[d]:|S|>1

|cS |E

∏
j∈S

ut((w
∗
j )Tx)


using Lemma 1 ≤ C

∑
S⊆[d]:|S|>1

ρ(t, 1)

(
1

σmin(W∗)
ρ(t, ||W∗||)

)|S|−1

= C

d∑
i=1

(
d

i

)
ρ(t, 1)

(
1

σmin(W∗)
ρ(t, ||W∗||)

)i−1

using
(
d

i

)
≤ di ≤ C

d∑
i=1

dρ(t, 1)

(
d

σmin(W∗)
ρ(t, ||W∗||)

)i−1

using assumption on t ≤ Cd2ρ(t, 1)

(
d

σmin(W∗)
ρ(t, ||W∗||)

)

Lemma 14. For any function L such that ||L(z,x)|| ≤ C(z)||x||O(1) where C is a function that is
not dependent on x, we have ||E[∆(x)L(x)]|| ≤ C(z)d−(1+p)η+3O(log d).

Proof. We have

||E[∆(x)L(x)]||
≤ E[|∆(x)||L(x)||]
≤ E[|∆(x)C(z)||x||O(1)]

= C(z)
(
E[|∆(x)| ||x||O(1)| ||x|| ≥ c]Pr[||x|| ≥ c]

+ E[|∆(x)| ||x||O(1)| ||x|| < c]Pr[||x|| < c]
)

≤ C(z)(E[||x||O(1)|||x|| ≥ c]Pr[||x|| ≥ c] + cE[|∆(x)|])

= C(z)(cO(1)e−
c2

2 + cO(1)E[|∆(x)|]).

Now using Lemma 2 to bound E[|∆(x)|], for c = Θ(
√
η log d we get the required result.

Lemma 15. For ||z|| = Ω(1) and λ = Θ(|û4|/û2
2) ≈ dη , ||∇G(z)|| ≥ Ω(1)d−η .

Proof. Let K = κ(W∗) which by assumption is θ(1). We will argue that local minima of G cannot
have z with large norm. First lets argue this for Glin(z). We know that Glin(z) = −α

∑
(zTw∗i )4 +

λβ2((
∑

(zTw∗i )2)− 1)2 where α = |û4| and β = û2. We will argue that zT∇Glin(z) is large if z
is large.

zT∇Glin(z) = −4α
∑

(zTw∗i )3(zTw∗i ) + 2λβ2
(∑

(zTw∗i )2 − 1
)(∑

2(zTw∗i )(zTw∗i )
)

= −4α
∑

(zTw∗i )4 + 4λβ2
(∑

(zTw∗i )2 − 1
)(∑

(zTw∗i )2
)

Let y = W∗z then K||z|| ≥ ||y|| ≥ ||z||/K since K is the condition number of W∗. Then this
implies

zT∇Glin(z) = −4α
∑

y4
i + 4λβ2(||y||2 − 1)||y||2

= 4||y||2((−α+ λβ2)||y||2 + λβ2)

≥ ||y||4(−α+ λβ2) ≥ Ω(1)d−η||y||4
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Since ||y|| ≥ ||z||/K = Ω(1) by assumptions on λ, z we have zT∇Glin(z) ≥ Ω(λβ2||y||4) =
Ω(1)d−η||z||4. This implies ||∇Glin(z)|| = Ω(1)d−η||z||3.

Now we need to argue for G.
G(z)−Glin(z)

= −sgn(û4)E[(flin(x) + ∆(x))H4(zTx)] + λ(E[(flin(x) + ∆(x))H2(zTx)]− β)2

+ sgn(û4)E[(flin(x))H4(zTx)]− λE[(flin(x))H2(zTx)]− β]2

= −sgn(û4)E[∆(x)H4(zTx)] + λE[∆(x)H2(zTx)]2 + 2λE[∆(x)H2(zTx)]E[flin(x)H2(zTx)− β]

= −sgn(û4)||z||4E[∆(x)h4(zTx/||z||)] + λ||z||4E[∆(x)h2(zTx/||z||)]2

+ 2λ||z||4E[∆(x)h2(zTx/||z||)]E[flin(x)h2(zTx/||z||)]− 2λβ||z||2E[∆(x)h2(zTx/||z||)]
Now h4(zTx/||z||) doesn’t have a gradient in the direction of z so zT∇h4(zTx/||z||) = 0. Simi-
larly zT∇h2(zTx/||z||) = 0. So
zT∇(G(z)−Glin(z))

= −4sgn(û4)||z||4E[∆(x)h4(zTx/||z||)] + 4λ||z||4(E[∆(x)h2(zTx/||z||)])2

+ 8λ||z||4E[∆(x)h2(zTx/||z||)]E[flin(x)h2(zTx/||z||)]− 4λβ||z||2E[∆(x)h2(zTx/||z||)]
We know that E[flin(x)h2(zTx/||z||)] has a factor of β giving us using Lemma 14:

|zT∇(G(z)−Glin(z))| ≤ O(log d)d−(1+p)η+3||z||4.

So zT∇G(z) is also Ω(||z||4). so ||∇G(z)|| ≥ Ω(1)d−η

Proof of Claim 2. We have G−Glin as follows,
G(z)−Glin(z)

= −sgn(û4)E[(flin(x) + ∆(x))H4(zTx)] + λ(E[(flin(x) + ∆(x))H2(zTx)]− û2)2

+ sgn(û4)E[(flin(x))H4(zTx)]− λ(E[(flin(x))H2(zTx)]− û2)2

= −sgn(û4)E[∆(x)H4(zTx)] + λ(E[∆(x)H2(zTx)])2

+ 2λE[∆(x)H2(zTx)]E[flin(x)H2(zTx)− û2]

Thus we have,
∇(G(z)−Glin(z))

= −sgn(û4)E[∆(x)∇H4(zTx)] + 2λE[∆(x)H2(zTx)]E[∆(x)∇H2(zTx)]

+ 2λE[flin(x)H2(zTx)− û2]E[∆(x)∇H2(zTx)]

+ 2λE[∆(x)H2(zTx)]E[flin(x)∇H2(zTx)]

Observe that H2 and H4 are degree 2 and 4 (respectively) polynomials thus norm of gradient and
hessian of the same can be bounded by at most O(||z||||x||4). Using Lemma 14 we can bound each
term by roughly O(log d)d−(1+p)η+3||z||4. Note that λ being large does not hurt as it is scaled
appropriately in each term. Subsequently, using Lemma 15, we can show that ||z|| is bounded by a
constant since ||G(z)|| ≤ d−2η . Similar analysis holds for the hessian too.

Now applying Theorem 4 gives us that z is an (O(log d)d−(1+p)η+3, O(log d)d−(1+p)η+3)-
approximate local minima of Glin. This implies that it is also an (ε′ := C log(d)d−(1+2p)η+3, τ ′ :=
C log(d)d−(1+2p/3)η+3)-approximate local minima of Glin for large enough C > 0

by increasing τ . Observe that
√
τ3/|û4| = C3/2 log3/2(d)d−(3/2+p)η+9/2/d−η/2 =

C3/2 log3/2(d)d−(1+p)η+9/2 ≥ ε′. Now using Claim 1, we get the required result.

B.4 SIMULTANEOUS RECOVERY

Ge et al. (2017) also showed simultaneous recovery by minimizing the following loss function Glin

defined below has a well-behaved landscape.

Glin(W) = E

flin(x)
∑

j,k∈[d],j 6=k

ψ(wj ,wk,x)

− γE
flin(x)

∑
j∈[d]

H4(wT
j x)

 (1)
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+ λ
∑
i

(
E
[
flin(x)H2(wT

i x)
]
− û2

)2
(2)

where ψ(v, w,x) = H2(vTx)H2(wTx) + 2(vTw)2 + 4(vTx)(wTx)vTw.

They gave the following result.

Theorem 10 (Ge et al. (2017)). Let c be a sufficiently small universal constant (e.g. c = 0.01
suffices), and suppose the activation function u satisfies û4 6= 0. Assume γ ≤ c, λ ≥ Ω(|û4|/û2

2),
and W∗ be the true weight matrix. The function Glin satisfies the following:

1. Any saddle point W has a strictly negative curvature in the sense that λmin(∇2Glin(W)) ≥
−τ0 where τ0 = cmin{γ|û4|/d, λû2

2}.

2. Suppose W is an (ε, τ0)-approximate local minimum, then W can be written as W−T =
PDW∗ + E where D is a diagonal matrix with Dii ∈ {±1±O(γ|û4|/λû2

2)±O(ε/λ)},
P is a permutation matrix, and the error term ||E|| ≤ O(εd/û4).

We show that this minimization is robust. Let us consider the corresponding function G to Glin with
the additional non-linear terms as follows:

G(W) = E

f(x)
∑

j,k∈[d],j 6=k

ψ(wj ,wd,x)

− γE
f(x)

∑
j∈[d]

H4(wj ,x)


+ λ

∑
i

(E [f(x)H2(wi,x)]− û2)
2

Now we can show that G and Glin are close as in the one-by-one case.

R(W) := G(W)−Glin(W)

= E [∆(x)A(W,x)]− γE [∆(x)B(W,x)] + λ
(
E [f(x)C(W,x)]

2 − E [flin(x)C(W,x)]
2
)

= E [∆(x)A(W,x)]− γE [∆(x)B(W,x)] + λE [(∆(x)C(W,x)(f(x′) + flin(x
′))C(W,x′)]

= E [∆(x)A(W,x)]− γE [∆(x)B(W,x)] + λE [(∆(x)D(W,x)]

= E [∆(x)(A(W,x)− γB(W,x) + λD(W,x))]

= E [∆(x)L(W,x)]

where A(W,x) =
∑
j,k∈[d],j 6=k ψ(wj ,wd,x), B(W,x) =

∑
j∈[d]H4(wj ,x), C(W,x) =∑

iH2(wi,x), D(W,x) = C(W,x)E[(f(x′)+flin(x
′))C(W,x′)] and L(W,x) = A(W,x)−

γB(W,x) + λD(W,x).

Using similar analysis as the one-by-one case, we can show the required closeness. It is easy
to see that ||∇L|| and ||∇2L|| will be bounded above by a constant degree polynomial in
O(log d)d−(1+p)η+3 max ||wi||4. No row can have large weight as if any row is large, then looking
at the gradient for that row, it reduces to the one-by-one case, and there it can not be larger than a
constant. Thus we have the same closeness as in the one-by-one case. Combining this with Theorem
10 and 4, we have the following theorem:

Theorem 11. Let c be a sufficiently small universal constant (e.g. c = 0.01 suffices), and under
Assumptions 1, 2 and 3. Assume γ ≤ c, λ = Θ(dη), and W∗ be the true weight matrix. The function
G satisfies the following

1. Any saddle point W has a strictly negative curvature in the sense that λmin(∇2Glin(W)) ≥
−τ where τ0 = O(log d)d−Ω(1).

2. Suppose W is a (d−Ω(1), d−Ω(1))-approximate local minimum, then W can be written as
W−T = PDW∗ + E where D is a diagonal matrix with Dii ∈ {±1±O(γ)± d−Ω(1))},
P is a permutation matrix, and the error term ||E|| ≤ O(log d)d−Ω(1).

Using standard optimization techniques we can find a local minima.
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B.5 APPROXIMATE TO ARBITRARY CLOSE

Lemma 16. If u is the sign function then E[u(wTx)δ′(zTx)] = c| cot(α)| where w, z are unit
vectors and α is the angle between them and c is some constant.

Proof. WLOG we can work the in the plane spanned by z and w and assume that z is the vector
i along and w = i cosα + j sinα. Thus we can replace the vector x by ix + jy where x, y are
normally distributed scalars. Also note that u′ = δ (Dirac delta function).

E[u(wTx)δ′(zTx)] = E[u(x cosα+ y sinα)δ′(x)]

=

∫
y

∫
x

u(x cosα+ y sinα)δ′(x)φ(x)φ(y)dxdy

Using the fact that
∫
x
δ′(x)h(x)dx = h′(0) this becomes

=

∫
y

φ(y)[(∂/∂x)u(x cosα+ y sinα)φ(x)]x=0dy

=

∫
y

φ(y)[n(x)u′(x cosα+ y sinα) cosα+ φ′(x)u(x cosα+ y sinα)]x=0dy

=

∫ ∞
y=−∞

φ(y)φ(0)δ(y sinα) cosαdy

Substituting s = y sinα this becomes

=

∫ ∞/ sinα

s=−∞/ sinα

φ(s/ sinα)φ(0)δ(s) cosα(1/ sinα)ds

=sgn(sinα) cot(α)φ(0)

∫
s

φ(s/ sinα)δ(s)ds

=| cot(α)|φ(0)φ(0)

Proof of Lemma 4. Let us compute the probability of lying in the ε-band for any t:

Pr[x ∈ l(z, t, ε)] = Pr[t− ε ≤ zTx ≤ t]
= Pr
g∈N(0,||z||2)

[t− ε ≤ g ≤ t]

=
1√

2π||z||

∫ t

g=t−ε
e
− g2

2||z||2 dg =
ε√

2π||z||
e
− t̄2

2||z||2

where the last equality follows from the mean-value theorem for some t̄ ∈ [t− ε, t].
Next we compute the following:

Pr[xTw∗1 ≥ t and x ∈ l(z, t′, ε)]

=
1

(2π)
n
2

∫
x

sgn(x1 − t)1[x ∈ l(z, t′, ε)]e−
||x||2

2 dx

=
1

(2π)
1
2

∫ ∞
x1=t

e−
x2
1
2

(
1

(2π)
n−1

2

∫
x−1

1[x−1 ∈ l(z−1, t
′ − z1x1, ε)]e

− ||x−1||
2

2 dx−1

)
dx1

=
1

(2π)
1
2

∫ ∞
x1=t

e−
x2
1
2 Pr[x−1 ∈ l(z−1, t− z1x1, ε)]dx−1

=
ε

2π||z−1||

∫ t′

g=t′−ε

∫ ∞
x1=t

e−
x2
1
2 e
− (g−z1x1)2

2||z−1||2 dx1dg
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=
1

2π||z−1||

∫ t′

g=t′−ε
e
− g2

2||z||2

∫ ∞
x1=t

e

−

(
x1−

gz1
||z||2

)2

2
||z−1||2

||z||2 dx1dg

=
1√

2π||z||

∫ t′

g=t′−ε
e
− g2

2||z||2 Φc
(
t||z||2 − gz1)

||z−1| |||z||

)
dg

=
ε√
2π
e−

t∗2
2 Φc

(
t− t ∗ cos(α1)

| sin(α1)|

)
where the last equality follows from the mean-value theorem for some t∗ ∈ [t′ − ε, t′]. Combining,
we get:

Pr[xTw1∗ ≥ t and x ∈ l(z, t′, ε)|x ∈ l(z, t, ε)]

= e−
t∗2−t̄2

2 Φc
(
t− t∗ cos(α1)

| sin(α1)|

)
= Φc

(
t− t∗ cos(α1)

| sin(α1)|

)
±O(ε)t′

for ε ≤ 1/t′.

Proof of Lemma 5. Recall that P is monotone with positive linear term, thus for high threshold u (0
unless input exceeds t and positive after) we have sgn(f(x)) = ∨sgn(xTw∗i − t). This is because,
for any i, P applied to Xi > 0 and ∀j 6= i,Xj = 0 gives us ci which is positive. Also, P (0) = 0.
Thus, sgn(P ) is 1 if any of the inputs are positive. Using this, we have,

Pr[sgn(f(x))|x ∈ l(z, t′, ε)] ≥ Pr[sgn((w∗1)Tx− t)|x ∈ l(z, t′, ε)]
Also,

Pr[sgn(f(x))|x ∈ l(z, t′, ε)]

≤
∑

Pr[sgn(xTw∗i − t)|x ∈ l(z, t′, ε)]

= Pr[sgn((w∗1)Tx− t)|x ∈ l(z, t′, ε)] +
∑
i 6=1

Pr[sgn(xTw∗i − t)|x ∈ l(z, t′, ε)]

≤ Pr[sgn((w∗1)Tx− t)|x ∈ l(z, t, ε)] + η

where
∑
i 6=1 Pr[sgn(xTw∗i − t)|x ∈ l(z, t′, ε)] ≤ η. We will show that η is not large since a z is

close to one of the vectors, it can not be close to the others thus αi will be large for all i 6= j. Let us
bound η,∑

i6=1

Pr[sgn(xTw∗i − t)|x ∈ l(z, t′, ε)] ≤
∑
i 6=1

(
Φc
(
t− t∗i cos(αi)

| sin(αi)|

)
+O(ε)t′i

)

≤
∑
i6=1

(
Φc
(
t− t∗i cos(αi)

| sin(αi)|

)
+O(ε)t′

)

≤
∑
i6=1

(
Φc
(
t− t′ cos(αi)

| sin(αi)|

)
+O(ε)t′

)
≤
∑
i6=1

1√
2πγi

e−
γ2
i
2 +O(ε)kt′

where γi = t−t′ cos(αi)
| sin(αi)| . The above follows since γi ≥ 0 by assumption on t′. Under the assumption,

let β = maxi 6=1 cos(αi) we have

γi ≥
t
(

1− β
cos(α1)

)
√

1− β2
= Ω(t)

under our setting. Thus we have,∑
i 6=1

Pr[sgn(xTw∗i − t))|x ∈ l(z, t′, ε)] ≤ de−Ω(t2) +O(ε)dt = de−Ω(t2)

for small enough ε.

20



Under review as a conference paper at ICLR 2019

Proof of Lemma 6. Let us assume that ε < c/t′ for sufficiently small constant c, then we have that

0.6 = Pr[sgn(f(x)) and x ∈ l(z, t2, ε)|x ∈ l(z, t2, ε)]
≥ Pr[xTw∗1 ≥ t and x ∈ l(z, t2, ε)|x ∈ l(z, t2, ε)]

≥ Φc
(
t− t∗ cos(α1)

| sin(α1)|

)
− 0.1

=⇒ 0.7 ≥ Φc
(
t− t∗ cos(α1)

| sin(α1)|

)
=⇒ (Φc)−1(0.7) ≤ t− t∗ cos(α1)

| sin(α1)|

=⇒ t2 ≤ t− (Φc)−1(0.7) sin(α1)

cos(α1)
+O(1) ≤ t

cos(α)
+O(1)

Similarly for t1. Now we need to argue that t1, t2 ≥ 0. Observe that

Pr[sgn(f(x)) and x ∈ l(z, 0, ε)|x ∈ l(z, 0, ε)]

≤
∑

Pr[xTw∗i ≥ t and x ∈ l(z, 0, ε)|x ∈ l(z, 0, ε)]

=
∑

Φc
(
t− ε cos(α1)

| sin(α1)|

)
+O(ε2)d ≤ de−Ω(t2) < 0.4

Thus for sufficiently large t = Ω(
√

log d), this will be less than 0.4. Hence there will be some
t1, t2 ≥ 0 with probability evaluating to 0.4 since the probability is an almost increasing function of
t up to small noise in the given range (see proof of Lemma 5).

Proof of Lemma 7. Let V be the plane spanned by w∗1 and z and let v1 = w∗1 and v2 be the basis
of this space. Thus, we can write z = cos(α)v1 + sin(α)v2.

Let us apply a Gaussian perturbation ρ along the tangential hyperplane normal to z. Say it has
distribution εN(0, 1) along any direction tangential to the vector z. Let ε1 be the component of
ρ on to V and let ε2 be the component perpendicular to it. We can write the perturbation as ρ =
ε1(sin(α)v1 − cos(α)v2) + ε2v3 where v3 is orthogonal to both v1 and v2.

So the new angle α′ of z after the perturbation is given by

cos(α′) =
vT1 (z + ρ)

||z + ρ||

=
cos(α) + ε1 sin(α)√

1 + ||ρ||2

Note that with constant probability ε1 ≥ ε as ρ is a Gaussian variable with standard deviation ε. And
with high probability ||ρ|| < O(ε

√
d− 1). We will set ε = Θ(sin(α)/d) = Θ(α/d). Thus with

constant probability:

cos(α′) ≥ cos(α) + ε sin(α)√
1 +O(ε2d)

≥ (cos(α) + ε sin(α))(1−O(ε2d))

≥ cos(α) + Ω(ε sin(α))−O(ε2d)

≥ cos(α) + Ω(ε sin(α)).

Thus change in cos(α) is given by ∆ cos(α) ≥ Ω(ε sin(α)). Now change in the angle α satisfies by
the Mean Value Theorem:

∆ cos(α) = ∆α

[
d

dx
cos(x)

]
x∈[α,α′]

=⇒ −∆α = ∆ cos(α)

[
1

sin(x)

]
x∈[α,α′]
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≥ Ω(ε sin(α))

sin(α)
= Ω(ε) = Ω(α/d).

B.6 LEARNING UNION OF HALFSPACES FAR FROM THE ORIGIN

Theorem 12. Given non-noisy labels from a union of halfspaces that are at a distance Ω(
√

log d)
and are each a constant angle apart, there is an algorithm to recover the underlying weights to ε
closeness in polynomial time.

Proof. Observe that
∨
Xi is equivalent to P (X1, ·, Xd) = 1−

∏
(1−Xi). Thus

f(x) =
∨

sgn(xTw∗i − t) = 1−
∏

(1− sgn(xTw∗i − t)).

Since P and sgn here satisfies our assumptions 1, 2, for t = Ω(
√

log d) (see Lemma 11) we can
apply Theorem 11 to recover the vectors w∗i approximately. Subsequently, refining to arbitrarily
close using Theorem 5 is possible due to the monotonicity. Thus we can recover the vectors to
arbitrary closeness in polynomial time.

B.7 SIGMOID ACTIVATIONS

Observe that for sigmoid activation, Assumption 2 is satisfied for ρ(t, σ) = e−t+σ
2/2. Thus to

satisfy Assumption 3, we need t = Ω(η log d).

Note that for such value of t, the probability of the threshold being crossed is small. To avoid this
we further assume that f is non-negative and we have access to an oracle that biases the samples
towards larger values of f ; that after x is drawn from the Gaussian distribution, it retains the sample
(x, f(x)) with probability proportional to f(x) – so Pr[x] in the new distribution. This enables us
to compute correlations even if ExÑ(0,I[f(x)] is small. In particular by computing E[h(x)] from
this distribution, we are obtaining E[f(x)h(x)]/E[f(x)] in the original distribution. Thus we can
compute correlations that are scaled.

We get our approximate theorem:
Theorem 13. For t = Ω(log d), columns of (TW∗)−1 can be recovered within error 1/poly(d)
using the algorithm in polynomial time.

B.8 POLYNOMIALS P WITH HIGHER DEGREE IN ONE VARIABLE

In the main section we assumed that the polynomial has degree at most 1 in each variable. Let us
give a high level overview of how to extend this to the case where each variable is allowed a large
degree. P now has the following structure,

P (X1, . . . , Xd) =
∑
r∈Zd+

cr

d∏
i=1

Xri
i

If P has a higher degree in Xi then Assumption 2 changes to a more complex (stronger) condition.
Let qi(x) =

∑
r∈Zd+|∀j 6=i,rj=0 crx

ri , that is qi is obtained by setting all Xj for j 6= i to 0.

Assumption 4. Eg∼N(0,σ2)[|ut(g)|r] ≤ ρ(t, σ) for all r ∈ Z+
8. E[qi(ut(g))hk(g))] = tΘ(1)ρ(t, 1)

for k = 2, 4. Lastly, for all d ≥ i > 1,
∑

r∈Zd+
||r||0=i

|cr| ≤ dO(i).

The last assumption holds for the case when the degree is a constant and each coefficient is upper
bounded by a constant. It can hold for decaying coefficients.

Let us collect the univariate terms Puni(X) =
∑d
i=1 qi(Xi). Corresponding to the same we get

funi. This will correspond to the flin we had before. Note that the difference now is that instead of
8For example, his would hold for any u bounded in [−1, 1] such as sigmoid or sign.
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being the same activation for each weight vector, now we have different ones qi for each. Using H4

correlation as before, now we get that:

E[funi(x)H4(zTx)] =

d∑
i=1

q̂i ◦ ut4(zTw∗i )4 and E[funi(x)H2(zTx)] =

d∑
i=1

q̂i ◦ ut2(zTw∗i )2

where q̂i ◦ ut are hermite coefficients for qi ◦ ut. Now the assumption guarantees that these are
positive which is what we had in the degree 1 case.

Second we need to show that even with higher degree, E[|f(x)− funi(x)|] is small. Observe that
Lemma 17. For r such that ||r||0 > 1, under Assumption 4 we have,

E

[
d∏
i=1

(
ut((w

∗
j )Tx)

)ri] ≤ ρ(t, 1)O (ρ(t, ||W∗||))||r||0−1
.

The proof essentially uses the same idea, except that now the dependence is not on ||r||1 but only
the number of non-zero entries (number of different weight vectors). With this bound, we can now
bound the deviation in expectation.
Lemma 18. Let ∆(x) = f(x)−funi(x). Under Assumptions 4, if t is such that ρ(t, ||W∗||) ≤ d−C
for large enough constant C > 0, we have, E[|∆(x)|] ≤ dO(1)ρ(t, 1)ρ(t, ||W∗||).

Proof. We have,

E[|∆(x)|] = E


∣∣∣∣∣∣∣∣∣

∑
r∈Zd+

ri≤D,||r||0>1

cr

d∏
i=1

(
ut((w

∗
j )Tx)

)ri
∣∣∣∣∣∣∣∣∣


≤

∑
r∈Zd+

ri≤D,||r||0>1

|cr|E

[∣∣∣∣∣
d∏
i=1

(
ut((w

∗
j )Tx)

)ri∣∣∣∣∣
]

=
∑
r∈Zd+

ri≤D,||r||0>1

|cr|ρ(t, 1) (ρ(t, ||W∗||))||r||0−1

≤ C
d∑
i=1

(
d

i

)
Diρ(t, 1) (ρ(t, ||W∗||))i−1

≤ dC
d∑
i=1

ρ(t, 1)
(
dCρ(t, ||W∗||)

)i−1
using Assumption 4

≤ d2C+1ρ(t, 1)ρ(t, ||W∗||) since ρ(t, ||W∗||) ≤ d−C .

Thus as before, if we choose t appropriately, we get the required results. Similar ideas can be used
to extend to non-constant degree under stronger conditions on the coefficients.

C SAMPLE COMPLEXITY

Proof of Lemma 3. C1(f, z, s) = E[f(x)δ(zTx− s)] =
∫
x
f(x)δ(zTx− s)φ(x)dx Let x0 be the

component of x along z and y be the component along z⊥. So x = x0ẑ + yz⊥. Interpreting x as
a function of x0 and y:

C1(f, z, s) =

∫
y

∫
x0

f(x)δ(x0 − s)φ(x0)φ(y)dx0dy
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=

∫
y

[f(x)]x0=sφ(y)dy

= φ(s)E[f(x)|x0 = s]

= φ(zTx = s)E[f(x)|x0 = s]

where the second equality follows from
∫
x
δ(x− a)f(x) = [f(x)]x=a.

Proof of Claim 4. Let x0 be the component of x along z and y be the component of x in the space
orthogonal to z. Let ẑ denote a unit vector along z. We have x = x0ẑ + y and ∂x

∂x0
= ẑ. So,

correlation can be computed as follows:

E[P [x].δ′(zTx− s)] =

∫
y

φ(y)

∫
x0

δ′(x0 − s)P [x]φ(x0)dx0dy

Since
∫
x
δ′(x− a)f(x)dx = [ dfdx ](x = a) this implies:

E[P [x]δ′(zTx− s)]

=

∫
y

[
∂

∂x0
P [x]φ(x)

]
x0=s

dy

=

∫
y

[
φ(x0)

∑
i

∂P

∂Xi
.
∂Xi

∂x0
+ P [x]φ′(x0))

]
x0=s

φ(y)dy

=
∑
i

∫
y

[
φ(x0)

∂P

∂Xi
.
∂Xi

∂x0

]
x0=s

φ(y)dy + φ′(s)

∫
y

P [x]φ(y)dy

Note that ∂Xi∂x0
= ∂

∂x0
u(xTw∗i − t) = u′(xTw∗i − t)ẑTw∗i . If u is the sign function then u′(x) =

δ(x). So focusing on one summand in the sum we get

∫
y

[
φ(x0)

∂P

∂Xi
.
∂Xi

∂x0

]
x0=s

φ(y)dy

=

∫
y

[φ(x0)u′(xTw∗i − t)(ẑTw∗i )
∂P

∂Xi
]x0=sφ(y)dy

=

∫
y

(ẑTw∗i )[φ(x0)δ(ẑTw∗i x0 + (w∗i )T y − t) ∂P
∂Xi

]x0=sφ(y)dy

= (ẑTw∗i )

∫
y

φ(s)δ(s(w∗1)T ẑ + (w∗1)T y − t) ∂P
∂Xi

φ(y)dy

Again let y = y0(w∗i )′ + z where z is perpendicular to w∗i and z. And (w∗i )′ is perpendicular
component of w∗i to z. Interpreting x = tẑ + y0(w∗1)′ + z as a function of y0, z we get:

= (ẑTw∗i )

∫
z

∫
y0

φ(s)δ(s(w∗1)T ẑ + ((w∗1)T (w∗1)′)y0 − t)φ(y0)φ(z)
∂P

∂Xi
dy0dz

Note that by substituting v = ax we get
∫∞
x=−∞ f(x)δ(ax− b)dx =

∫∞/a
x=−∞/a f(x)δ(ax− b)dx =

sgn(a) 1
af( ba ) = 1

|a|f( ba ). So this becomes:

=
ẑTw∗i

|(w∗i )T (w∗i )′|

∫
z

φ(s)[φ(y0)
∂P

∂Xi
]
y0=

t−sẑTw∗
i

(w∗
i

)T (w∗
i

)′
φ(z)dz
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=
ẑTw∗i

|(w∗i )T (w∗i )′|

∫
z

[φ(y0)φ(x0)φ(z)
∂P

∂Xi
]
x0=s,y0=

t−sẑTw∗
i

(w∗
i

)T (w∗
i

)′
dz

=
ẑTw∗i

|(w∗i )T (w∗i )′|
φ

(
y0 =

t− sẑTw∗i
(w∗i )T (w∗i )′

)
φ(x0 = t)

∫
z

[φ(z)
∂P

∂Xi
]
x0=t,y0=

t−sẑTw∗
i

(w∗
i

)T (w∗
i

)′
dz

=
ẑTw∗i

|(w∗i )T (w∗i )′|

∫
z

[φ(x)
∂P

∂Xi
]
x0=t,y0=

t−sẑTw∗
i

(w∗
i

)T (w∗
i

)′
dz

=
ẑTw∗i

|(w∗i )T (w∗i )′|

∫
x:zTx=s,xTw∗i=t

φ(x)
∂P

∂Xi
dx

=
ẑTw∗i

|(w∗i )T (w∗i )′|
φ(zTx = s,xTw∗i = t)E[

∂P

∂Xi
|xTz = s,xTw∗i = t].

Let αi be the angle between z and w∗i . Then this is

= | cot(αi)|φ(zTx = t, (w∗i )Tx = t)E[
∂P

∂Xi
]|xTz = s,xTw∗i = t]

Thus, overall correlation

=
∑
i∈S
| cot(αi)|φ(zTx = s,xTw∗i = t)E[

∂P

∂Xi
|xTz = s,xTw∗i = t]

+ φ′(s)E[P [x]|xTz = s]

Proof of Claim 5. Note that for small α, | cotα| = O(1/α) ≤ O(1/ε2). Since P (X) ≤ ||X||c1 ,
we have f(x) ≤ dc1 (as with sgn function each sgn((w∗i )Tx) ≤ 1) and all Qi[x], Ri[x] are at most
2dc1 .

By Cauchy’s mean value theorem C2(f, z, t) = 2ε[E[f(x)δ′(zTx = s)]]s∈t±ε. Note that
cot(αi)φ(zTx = t, (w∗i )Tx = t) = cot(αi)φ(t tan(αi/2)) which is a decreasing function of
αi in the range [0, π] So if all αi are upper bounded by ε2 then by above corollary,

C2(f, z, s) ≤ 2εn cot(ε2)φ(zTx = t, (w∗1)Tx = t)(2dc1) + (2dc1)

= 2εn cot(ε2)φ(t tan(ε2/2))(2dc1) + (2dc1)

≤ ε

ε2
dO(1).

Observe that the above proof does not really depend on P and holds for for any polynomial of
u((w∗i )Tx) as long as the polynomial is bounded and the w∗i are far off from z.

Proof Of Lemma 8. If z = w∗i , then

C2(f, z, t) = E[f(x)(δ(zTx− t− ε)− δ(zTx− t+ ε))]

= E[u((w∗i )Tx)Qi[x](δ(zTx− t− ε)− δ(zTx− t+ ε))]

+ E[Ri[x](δ(zTx− t− ε)− δ(zTx− t+ ε))]

Since u((w∗i )Tx) = 0 for zTx = t − ε and 1 for zTx = t + ε, and using the Cauchy mean value
theorem for the second term this is

= E[Qi[x]δ(zTx− t− ε)] + 2ε[E[Ri[x]δ′(zTx− s1)]s1∈t±ε

= E[Qi[x]δ(zTx− t)] + E[Ri[x](δ(zTx− t− ε)− δ(zTx− t))]
= φ(t)E[Qi[x]|zTx = t+ ε] + ε[C2(Qi, z, s2)]s2∈[t,t+ε] + 2ε[C2(Ri, z, s)]s∈t±ε
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= φ(t)E[Qi[x]|zTx = t] + εdO(1)

The last step follows from Claim 5 applied onQi andRi as all the directions of w∗j are well separated
from z = w∗i and w∗i is absent from both Qi and Ri. Also the corresponding Qi and Ri are
bounded.

C.1 RELU ACTIVATION

If u is the RELU activation, the high level idea is to use correlation with the second derivative δ′′ of
the Dirac delta function instead of δ′. More precisely we will computeC3(f, z, s) = E[f.(δ′(zTx−
s− ε)− δ′(zTx− s+ ε)]. Although we show the analysis only for the RELU activation, the same
idea works for any activation that has non-zero derivative at 0.

Note that now u′ = sgn and u′′ = δ.

For ReLU activation, Lemma 8 gets replaced by the following Lemma. The rest of the argument is
as for the sgn activation. We will need to assume that P has constant degree and sum of absolute
value of all coefficients is poly(d)

Lemma 19. Assuming polynomial P has constant degree, and sum of the magnitude of
all coefficients is at most poly(d), if z = w∗i then C3(f, z, t) = E[φ(t) ∂

∂Xi
P +

φ(t)
∑
j 6=i cos(αj)sgn(xTw∗i − t) ∂

∂Xj
P +φ′(t)P |xTw∗i = t] + εdO(1). Otherwise if all angles αi

between z and wi are at least ε2 it is at most εdO(1)/ε2.

We will prove the above lemma in the rest of this section. First we will show that z is far from any
of the w∗i ’s then E[P.δ′′(zTx− s)] is bounded.
Lemma 20. If the sum of the absolute value of the coefficients of P is bounded by poly(d), its degree
is at most constant, αi > ε2 then E[P.δ′′(zTx− s)] is dO(1)/ε2.

Proof. Let x0 be the component of x along z and y be the component of x in the space orthogonal
to z as before. We have x = x0ẑ + y and ∂x

∂x0
= ẑ. We will look at monomials Ml in P =

∑
lMl.

As before since
∫
x
δ′′(x− a)f(x)dx =

[
d2f
dx2

]
x=a

we get

E[f(x).δ′′(zTx− s)] =

∫
y

f(x)φ(x)δ′′(zTx− s)dy

=

∫
y

[
∂2

∂x2
0

(P [x]φ(x))

]
x0=s

dy

=
∑
l

∫
y

[
∂2

∂x2
0

(Ml[x]φ(x0))

]
x0=s

φ(y)dy

Now consider a monomial M = Xi1
1 ..X

ik
k .

Take the symbolic second derivative ∂2

∂x2
0

of M [x]φ(x0) w.r.t x0. This will produce a polynomial

involving Xi’s, ∂Xi∂x0
, ∂

2Xi
∂x2

0
, φ, φ′, φ′′. Let us examine each of these terms.

∂

∂x0
Xi[x] =

∂

∂x0
u(xTw∗i − t)

= sgn(xTw∗i − t)(w∗i )T
∂

∂x0
x

= sgn(xTw∗i − t)((w∗i )Tz)

= cos(αi)sgn(xTw∗i − t)

Thus ∂
∂x0

Xi[x] is a bounded function of x. We have

∂2

∂x2
0

Xi(x) =
∂

∂x0
sgn(xTw∗i − t)((w∗i )Tz) = cos2(αi)δ(x

Tw∗i − t).
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Again as before ∫
y

[δ(xTw∗i − t)g(x)φ(x0)φ(y)]x0=sdy

= (1/| sin(αi)|)E[g(x)|x0 = s,xTw∗i = t]φ(x0 = s,xTw∗i = t)

Note that if the degree is bounded, since | sin(αi)| is at least ε2 expected value of each monomial
obtained is bounded. So the total correlation is poly(d)/ε2.

Proof of Lemma 20. As in the case of sgn activation, if z = w∗i ,

E[P [x]δ′(xTw∗i − s)]

=

∫
x

P [x]φ(x)δ′(zTx− s)dx

=

∫
y

[
∂

∂x0
(P [x]φ(x))

]
x0=s

dy

=

∫
y

∑
j

(
∂P

∂Xj

)
[x]

∂Xj [x]

∂x0
φ(x) + P [x]

∂φ(x)

∂x0


x0=s

dy

=

∫
y

φ(y)

sgn(x0 − t)φ(s)

(
∂P

∂Xi

)
[x] +

∑
j 6=i

sgn(xTw∗j − t) cos(αj)φ(s)

(
∂P

∂Xj

)
[x] + Pφ′(x0)


x0=s

dy

=

∫
y

φ(y)

sgn(s− t)φ(s)

(
∂P

∂Xi

)
[x] +

∑
j 6=i

sgn(xTw∗j − t) cos(αj)φ(s)

(
∂P

∂Xj

)
[x] + Pφ′(x0)


x0=s

dy

For s = t+ ε this is

=

∫
y

φ(y)

φ(s)

(
∂P

∂Xi

)
[x] +

∑
j 6=i

cos(αj)sgn(xTw∗j − t)φ(s)

(
∂P

∂Xj

)
[x] + Pφ′(s)


s=t+ε

dy

=

∫
y

φ(y)

φ(t)

(
∂P

∂Xi

)
[x] +

∑
j 6=i

cos(αj)sgn(xTw∗j − t)φ(t)

(
∂P

∂Xj

)
[x] + Pφ′(t)

 dy

+ εdO(1)

=E

φ(t)

(
∂P

∂Xi

)
[x] + φ(t)

∑
j 6=i

cos(αj)sgn(xTw∗i − t)
(
∂P

∂Xj

)
[x] + φ′(t)P

∣∣∣∣∣∣xTw∗i = t

+ εdO(1)

If z is away from every w∗i by at least ε2 then again E[PC3(f, z, t)] = E[Pδ′(xTw∗i − s)](s ∈
[t− ε, t+ ε]) = εdO(1)/ε2.

D STRUCTURAL RESTRICTIONS HELPS LEARNING

D.1 PROOF OF THEOREM 7

To construct this correlation graph, we will run the following Algorithm 3 Denote Ti := {j : wij =
1}. Let us compute E[f(x)xixj ]:

E[f(x)xixj ] =
∑
S⊆[d]

cSE

∏
p∈S

u(xTw∗p)

xixj


=
∑
S⊆[d]

cSe
−ρt|S|E

[
eρ
∑
p∈S xTw∗pxixj

]
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Algorithm 3 ConstructCorrelationGraph
1: Let G be an undirected graph on n vertices each corresponding to the xi’s.
2: for every pair i, j do
3: Compute αij = E[f(x)xixj ].
4: if αij ≥ ρ then
5: Add edge (i, j) to the graph.

=
∑
S⊆[d]

cSe
−ρt|S|E

[
e
ρ
∑
q∈∪p∈STp

xqxixj

]
=
∑
S⊆[d]

cSe
−ρt|S|

1[i, j ∈ ∪p∈STp]E [xie
ρxi ]E [xje

ρxj ]
∏

q∈∪p∈STp\{i,j}

E [eρxq ]

=
∑
S⊆[d]

cSe
−ρt|S|

1[i, j ∈ ∪p∈STp]ρ2eρ
2

E [xje
ρxj ]

∏
q∈∪p∈STp\{i,j}

eρ
2/2

=
∑
S⊆[d]

cSe
−ρt|S|

1[i, j ∈ ∪p∈STp]ρ2e
ρ2|∪p∈STp|

2

By assumption, for all p, Tp are disjoint. Now, if i, j ∈ Tr for some r, we have

E[f(x)xixj ] = ρ2
∑

S⊆[d]:r∈S

cSe
−ρ|S|(t−ρd)

2

Similarly, if i ∈ Tr1 and j ∈ Tr2 with r1 6= r2, we have

E[f(x)xixj ] = ρ2
∑

S⊆[d]:r1,r2∈S

cSe
−ρ|S|(t−ρd)

2

It is easy to see that these correspond to coefficients of Xr and Xr1Xr2 (respectively) in the follow-
ing polynomial:

Q(X1, . . . , Xn) = ρ2P (µ(X1 + 1), . . . , µ(Xn + 1))

for µ = e
−ρ(t−ρd)

2 . For completeness we show that this is true. We have,

Q(X1, . . . , Xn) = ρ2
∑
S⊆[d]

cS
∏
j∈S

µ(Xj + 1)

= ρ2
∑
S⊆[d]

cSµ
|S|
∏
j∈S

(Xj + 1)

The coefficient of Xr in the above form is clearly ρ2
∑
S⊆[d]:r∈S cSµ

|S| (corresponds to picking the
1 in each product term). Similarly coefficient of Xr1Xr2 is ρ2

∑
S⊆[d]:r1,r2∈S cSµ

|S|.

Now as in the assumptions, if we have a gap between these coefficients, then we can separate the
large values from the small ones and form the graph of cliques. Each clique will correspond to the
corresponding weight vector.

D.2 PROOF OF THEOREM 8

Consider f(x) =
∑
cS
∏
i∈S e

xTw∗i where w∗i =
∑
j∈Si ej for Si ⊆ [n] such that for all i 6= j,

Si ∩ Sj = n and cS ≥ 0. Let us compute g(z) = e−
||z||2

2 E
[
f(x)ez

Tx
]

where z =
∑
ziei for

some αi.

E
[
f(x)ez

Tx
]

= E

[(∑
cS
∏
i∈S

e
∑
j∈Si

xj

)
ez

Tx

]
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=
∑

cSE

[(∏
i∈S

e
∑
p∈Si

xp

)
e
∑
q∈[n] zqxq

]

=
∑

cSE

 ∏
p∈∪i∈SSi

e(1+zp)xp

 ∏
q∈[n]\∪i∈SSi

ezqxq


=
∑

cS

 ∏
p∈∪i∈SSi

E
[
e(1+zp)xp ]

] ∏
q∈[n]\∪i∈SSi

E [ezqxq ]


=
∑

cS

 ∏
p∈∪i∈SSi

e
(1+zp)2

2

 ∏
q∈[n]\∪i∈SSi

e
z2q
2


=
∑

cSe
||z||2

2

∏
p∈∪i∈SSi

e
1
2 +zp

=⇒ g(z) =
∑

cS
∏

p∈∪i∈SSi

e
1
2 +zp

Consider the following optimization problem:

max
z

[
g(z)− λ||z||1 − γ||z||22

]︸ ︷︷ ︸
h(z)

for λ, γ > 0 to be fixed later.

We can assume that zi ≥ 0 for all i at a local maxima else we can move in the direction of ei and
this will not decrease g(z) since cS ≥ 0 for all S and will decrease ||z||1 and ||z||2 making h(z)
larger. From now on, we assume this for any z at local maxima.

We will show that the local maximas of the above problem will have z such that most of the mass is
equally divided among j ∈ Si for some i and close to 0 everywhere else.

Lemma 21. There exists at most one i such that there exists j ∈ Si with |zj | ≥ β for γ satisfying

4γ < mini6=j

[
eβ
∑
S:i∈S,j 6∈S∨i6∈S,j∈S cSe

|∪i∈SSi|
2

]
.

Proof. Let us prove by contradiction. Assume that there is a local maxima such that there are at
least 2 indices say 1, 2 such that ∃j ∈ S1, k ∈ S2, |zj |, |zk| ≥ β. Now we will show that there
exists a perturbation such that g(z) can be improved. Now consider the following perturbation,
z + sεej − sεek for s ∈ {±1}. Observe that ||z||1 remains unchanged for ε < β also ||z||22 changes
by 2s2ε2 + 2(zj − zk)sε. We have

Es[h(z + sεej − sεek)− h(z)]

=
∑

S:1∈S,26∈S

cS
∏

p∈∪i∈SSi

e
1
2 +zp (Es [esε]− 1) +

∑
S:1 6∈S,2∈S

cS
∏

p∈∪i∈SSi

e
1
2 +zp

(
Es
[
e−sε

]
− 1
)

− γEs
[
2ε2 + 2(zj − zk)sε

]
≥ ε2

2

−4γ +
∑

S:1∈S,26∈S

cS
∏

p∈∪i∈SSi

e
1
2 +zp +

∑
S:1 6∈S,2∈S

cS
∏

p∈∪i∈SSi

e
1
2 +zp



The inequality follows since E [esε] = eε+e−ε

2 ≥ 1 + ε2

2 . Observe that∑
S:1∈S,26∈S

cS
∏

p∈∪i∈SSi

e
1
2 +zp ≥

∑
S:1∈S,2 6∈S

cSe
|∪i∈SSi|

2 ezj ≥
∑

S:1∈S,26∈S

cSe
|∪i∈SSi|

2 eβ .

For chosen value of γ, there will always be an improvement, hence can not be a local maxima.
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Lemma 22. At the local maxima, for all i ∈ [n], z is such that for all j, k ∈ Si, zj = zk at local
maxima.

Proof. We prove by contradiction. Suppose there exists j, k such that zj < zk. Consider the
following perturbation: z + ε(zk − zj)(ej − ek) for 1 ≤ ε > 0. Observe that g(z) depends on
only

∑
r∈Si zr and since that remains constant by this update g(z) does not change. Also note that

||z||1 does not change. However ||z||22 decreases by 2ε(1− ε)(zk − zj)2 implying that overall h(z)
increases. Thus there is a direction of improvement and thus it can not be a local maxima.

Lemma 23. At the local maxima, ||z||1 ≥ α for λ <
∑
S cS

|∪i∈SSi|
n e

|∪i∈SSi|
2 − γ(2α+ 1).

Proof. We prove by contradiction. Suppose ||z||1 < α, consider the following perturbation, z+ ε1.
Then we have

h(z + ε1)− h(z) =
∑

cSe
|∪i∈SSi|

2 +
∑
p∈∪i∈SSi

zp(eε|∪i∈SSi| − 1)− nλε− nγε(2||z||1 + ε)

>
∑

cSe
|∪i∈SSi|

2 | ∪i∈S Si|ε− nλε− nγε(2α+ 1)

For given λ there is a direction of improvement giving a contradiction that this is the local maxima.

Combining the above, we have that we can choose λ, γ = poly(n, 1/ε, s) where s is a paramater
that depends on structure of f such that at any local maxima there exists i such that for all j ∈ Si,
zj ≥ 1 and for all k 6∈ ∪j∈Si , zk ≤ ε.

D.3 PROOF OF THEOREM 9

Let function f =
∑
S⊆[n] cS

∏
i∈S u((w∗i )Tx) for orthonormal w∗i . WLOG, assume w∗i = ei.

Let u(x) =
∑∞
i=0 û2ih2i(x) where hi are hermite polynomials and u′(x) = u(x) − û0 =∑∞

i=1 û2ih2i(x). This implies E[u′(x)] = 0. Observe that,

∏
i∈S

u(xi) =
∏
i∈S

(u′(xi) + û0) =

|S|∑
k=0

û
|S|−k
0

∑
S′⊆S:|S′|=k

∏
i∈S′

u′(xi).

Let us consider correlation with h4(zTx). This above can be further simplified by observing that
when we correlate with h4,

∏
i∈S′ u

′(xi)h4(zTx) = 0 for |S′| ≥ 2. Observe that h4(zTx) =∑
d1,...,dn∈[4]:

∑
di≤4 c(d1, . . . , dn)

∏
hdi(xi) for some coefficients cwhich are functions of z. Thus

when we correlate
∏
i∈S′ u

′(xi)h4(zTx) for |S′| ≥ 3 then we can only get a non-zero term if we
have at least h2k(xi) with k ≥ 1 for all i ∈ S′. This is not possible for |S′| ≥ 3, hence, these terms
are 0. Thus,

E

[∏
i∈S

u(xi)h4(zTx)

]
=

2∑
k=0

û
|S|−k
0

∑
S′⊆S:|S′|=k

E

[∏
i∈S′

u′(xi)h4(zTx)

]
.

Lets compute these correlations.

E
[
u′(xi)h4(zTx)

]
= E

[∑
p>0

û2ph2p(xi)h4(zixi + zT−ix−i)

]

=
1

4

∑
p>0

û2pE

[
h2p(xi)

4∑
k=0

(
4

k

)
h4−k(zixi

√
2)hk(zT−ijx−ij

√
2)

]

=
1

4

∑
p>0

û2pE
[
h2p(xi)

(
h4(zixi

√
2) + 6h2(zixi

√
2)(2||z−i||2 − 1) + 3(2||z−i||2 − 1)2

)]
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=
1

4

(
û4α(4, 4, zi

√
2) + û2α(4, 2, zi

√
2) + 6û2α(2, 2, zi

√
2)(2||z−i||2 − 1)

)
=

1

4

(
4û4z

4
i + 12û2z

2
i (2z2

i − 1) + 6û2(2z2
i )(2||z−i||2 − 1)

)
= û4z

4
i + 3û2z

2
i (2||z||2 − 1)

E
[
u′(xi)u

′(xj)h4(zTx)
]

= E

[ ∑
p,q>0

û2pû2qh2p(xi)h2q(xj)h4(zixi + zjxj + zT−ijx−ij)

]

=
1

4

∑
p,q>0

û2pû2qE

[
h2p(xi)h2q(xj)

4∑
k=0

(
4

k

)
h4−k((zixi + zjxj)

√
2)hk(zT−ijx−ij

√
2)

]

=
1

4

∑
p,q>0

û2pû2qE
[
h2p(xi)h2q(xj)

(
h4((zixi + zjxj)

√
2) + 6h2((zixi + zjxj)

√
2)(2||z−ij ||2 − 1)

+3(2||z−ij ||2 − 1)2
)]

=
1

16

∑
p,q

ûpûq

4∑
k=0

(
4

k

)
E [h2p(xi)h2q(xj)h4−k(2zixi)hk(2zjxj)]︸ ︷︷ ︸

1

+
3

4
(2||z−ij ||2 − 1)

∑
p,q<0

û2pû2q

2∑
k=0

(
2

k

)
E [h2p(xi)h2q(xj)h2−k(2zixi)hk(2zjxj)]︸ ︷︷ ︸
2

We will compute 1 and 2 :

1 =
1

16

4∑
k=0

(
4

k

) ∑
p,q>0

û2pû2qE [h2p(xi)h4−k(2zixi)]E [h2q(xj)hk(2zjxj)]

=
1

16

4∑
k=0

(
4

k

) ∑
p,q>0

û2pû2qα(4− k, 2p, 2zi)α(k, 2q, 2zj)

=
3

8
û2

2α(2, 2, 2zi)α(2, 2, 2zj)

= 6û2
2z

2
i z

2
j

Similarly,

2 =
3

4
(2||z−ij ||2 − 1)

∑
p,q>0

û2pû2q

2∑
k=0

(
2

k

)
E [h2p(xi)h2q(xj)h2−k(2zixi)hk(2zjxj)]

=
3

4
(2||z−ij ||2 − 1)

2∑
k=0

(
2

k

)
û2û2α(2− k, 2, 2zi)α(k, 2, 2zj) = 0.

Combining, we get

E
[
u′(xi)u

′(xj)h4(zTx)
]

= 6û2
2z

2
i z

2
j .

Further, taking correlation with f , we get:

E
[
f(x)h4(zTx)

]
=
∑
S⊆[n]

cS

2∑
k=0

û
|S|−k
0

∑
S′⊆S:|S′|=k

E

[∏
i∈S′

u′(xi)h4(zTx)

]
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=
∑
S⊆[n]

cS û
|S|−2
0

û0

∑
i∈S

(û4z
4
i + 3û2z

2
i (2||z||2 − 1)) + 6û2

2

∑
j 6=k∈S

z2
j z

2
k

+ constant

=

n∑
i=1

αiz
4
i + (2||z||2 − 1)

n∑
i=1

βiz
2
i +

∑
1≤i 6=j≤n

γijz
2
j z

2
k + constant

=

n∑
i=1

αiz
4
i +

n∑
i=1

βiz
2
i +

∑
1≤i 6=j≤n

γijz
2
j z

2
k + constant

where αi = û4

∑
S′⊆[n]|i∈S′ cS′ û

|S′|−1
0 , βi = 3û2

∑
S′⊆[n]|i∈S′ cS′ û

|S′|−1
0 and γij =

6û2
2

∑
S′⊆[n]|i,j∈S′ cS′ û

|S′|−2
0 .

If γij < αi + αj for all i, j then the local maximas of the above are exactly ei. To show that this
holds, we prove by contradiction. Suppose there is a maxima where zi, zj 6= 0. Then consider the
following second order change z2

i → z2
i +sε and z2

j → z2
j −sε where ε ≤ min z2

i , z
2
j and s is 1 with

probability 0.5 and -1 otherwise. Observe that the following change does not violate the constraint
and in expectation affects the objective as follows:

∆ = Es
[
αi(2sεz

2
i + ε2) + αj(−2sεz2

i + ε2) + βisε− βjsε+ γij(sεz
2
j − sεz2

i − ε2)
]

= (αi + αj − γij)ε2 > 0

Thus there is a direction in which we can improve and hence it can not be a maxima.

E MODULAR LEARNING BY DIVIDE AND CONQUER

Finally we point out how such high threshold layers could potentially facilitate the learning of deep
functions f at any depth, not just at the lowest layer. Note that essentially for Lemma 2 to hold,
outputs X1, ., Xd needn’t be present after first layer but they could be at any layer. If there is
any cut in the network that outputs X1, ...Xd, and if the upper layer functions can be modelled
by a polynomial P , then again assuming the inputs Xi have some degree of independence one
can get something similar to Lemma 2 that bounds the non-linear part of P . The main property
we need is E[Πi∈SXi]/E[Xj ] < µ|S|−1 for a small enough µ = 1/poly(d) which is essentially
replaces Lemma 1. Thus high threshold layers can essentially reduce the complexity of learning deep
networks by making them roughly similar to a network with lower depth. Thus such a cut essentially
divides the network into two simpler parts that can be learned separately making it amenable to a
divide and conquer approach. If there a robust algorithm to learn the lower part of the network that
output Xi, then by training the function f on that algorithm would recover the lower part of the
network, having learned which one would be left with learning the remaining part P separately.
Remark 1. If there is a layer of high threshold nodes at an intermediate depth l, u is sign function,
if outputs Xi at depth l satisfy the following type of independence property: E[Πi∈SXi]/E[Xj ] <

µ|S|−1 for a small enough µ = 1/poly(d), if there is a robust algorithm to learn Xi from
∑
ciXi

that can tolerate noise, then one can learn the nodes Xi, from a function P (X1, .., Xd)
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