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ABSTRACT

A successful application of convolutional architectures is to increase the resolution
of single low-resolution images – a image restoration task called super-resolution
(SR). Naturally, SR is of value to resource constrained devices like mobile phones,
electronic photograph frames and televisions to enhance image quality. However,
SR demands perhaps the most extreme amounts of memory and compute opera-
tions of any mainstream vision task known today, preventing SR from being de-
ployed to devices that require them. In this paper, we perform a early systematic
study of system resource efficiency for SR, within the context of a variety of ar-
chitectural and low-precision approaches originally developed for discriminative
neural networks. We present a rich set of insights, representative SR architectures,
and efficiency trade-offs; for example, the prioritization of ways to compress mod-
els to reach a specific memory and computation target and techniques to compact
SR models so that they are suitable for DSPs and FPGAs. As a result of doing so,
we manage to achieve better and comparable performance with previous models
in the existing literature, highlighting the practicality of using existing efficiency
techniques in SR tasks. Collectively, we believe these results provides the foun-
dation for further research into the little explored area of resource efficiency for
SR.

1 INTRODUCTION

Rapid progress has been made in the development of convolutional networks (Dong et al., 2015)
that are capable of taking a low-resolution image and producing an image with a significant increase
in resolution. This image restoration task is referred to as super-resolution (SR) and has many
potential applications in devices with limited memory and compute capacity. The fundamental
problem however is that the state-of-the-art networks (Lim et al., 2017; Zhang et al., 2018; Zhang
et al., 2018) consist of thousands of layers and are some of the most resource intensive networks
currently known. Furthermore, due to the spatial dimensions of feature maps needed to maintain
or up-scale the input, the number of operations are counted in the billions as opposed to millions
in models for discriminative tasks. As a result, there is a need for a general systematic approach to
improve the efficiency of SR models.

The challenge of the system resource requirements for deep learning models for tasks other than
SR have been carefully studied in previous works (Zhang et al., 2017b; Howard et al., 2017; Ma
et al., 2018; Sandler et al., 2018), achieving massive gains in size and compute with little to no
loss in performance. These reductions are achieved with a wide variety of methods being developed
grounded in primarily architecture-level changes and techniques grounded in the use of low precision
and quantized model parameters. However, how these efficiency methods behave when applied
within SR have not yet been studied in significant depth, with very few results published in the
literature. Extrapolating from prior results for other tasks is problematic given that predominantly
existing studies are applied to discriminative tasks with substantially different architectures and
operations. Due to the up-sampling structure of SR models, these efficiency methods may therefore
produce potentially stronger side-effects to image distortion.

In this paper, we detail a systematic study that seeks to bridge current understanding in SR and
known approaches for scaling down the consumption of system resources by deep models. By
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examining the impact on image distortion quality when performing various efficiency techniques,
we provide the following new insights:

• The effectiveness of low rank tensor decomposition and other convolution approximations,
which are comparable and successful in discriminative tasks, can vary considerably in SR.
(See section 4.1).

• Unlike image discriminative networks, SR networks suffer from a worse trade-off between
efficiency and performance as more layers are compressed. (See section 4.2)

• The practicality of adopting compression techniques for other tasks to SR as our best mod-
els are better or comparable to existing literature. For instance, our best model achieves
significantly better performance and 6x less compute than MemNet (Tai et al., 2017b) and
VDSR (Kim et al., 2015b). Additionally, it also performs better and is 4.1x-5.8x smaller
than SRMDNF (Zhang et al., 2017a). (See section 4.3)

• Successful quantization techniques used in image discriminative tasks are equally success-
ful in SR. (See section 5)

2 RELATED WORK

We focus on using neural networks for SR as they have shown to achieve superior performance
against previous traditional approaches (Timofte et al., 2013; Kim & Kwon, 2010; Chang et al.,
2004). An SR image can either be evaluated using standard image distortion metrics, such as PSNR,
SSIM (Wang et al., 2004) and IFC (Sheikh et al., 2005), or using perception metrics, such as Ma
et al. (2016), NIQE (Mittal et al., 2013), and BRISQUE (Mittal et al., 2012). Blau & Michaeli
(2017) provided theoretical backups on the trade-off between image distortion and perception.

Distortion SR: In the distortion line of work, models favour pixel-to-pixel comparisons and are
usually trained on either the L1 or L2 (MSE) loss. These models have been known to produce
more visually pleasing outcomes on structural images Blau et al. (2018) than perceptual SR models.
Dong et al. (2015) first proposed using convolutional networks for SR, leading to a surge in using
neural networks for SR. These networks differ in their building blocks for feature extraction and
up-sampling. For instance, Dong et al. (2016) proposed a faster convolutional network by taking
the down-sampled low-resolution image as an input. Other variations include using more layers
(Kim et al., 2015b), recursive layers (Kim et al., 2015a; Tai et al., 2017a), memory blocks (Tai
et al., 2017b; Ahn et al., 2018), DenseNet (Huang et al., 2016) blocks (Tong et al., 2017), residual
(He et al., 2015) blocks (Ledig et al., 2016; Lim et al., 2017; Kim & Lee, 2018), and multiple-
image degradations (Zhang et al., 2017a). Additionally, more recent models use attention (Bahdanau
et al., 2014) mechanisms (Liu et al., 2018; Zhang et al., 2018), back-projection (Haris et al., 2018;
Navarrete Michelini et al., 2018), and other non-conventional non-linear layers (Choi & Kim, 2017;
Gu et al., 2018).

Perceptual SR: Perceptual SR models, on the other hand, are better at reconstructing unstructured
details with high perceptual quality (Blau et al., 2018). These models usually adopt popular models
for image distortion and train them using a variety of different loss functions, such as the perceptual
loss (Johnson et al., 2016), contextual loss (Mechrez et al., 2018b), adversarial loss (Goodfellow
et al., 2014), and the Gram loss (Gatys et al., 2015). For instance, Choi et al. (2018) adopted EUSR
Kim & Lee (2018) and Ledig et al. (2016); Wang et al. (2018); Mechrez et al. (2018a) adopted
SRResNet (Ledig et al., 2016) by making slight architecture changes and replacing the objective.
Although these perceptual models are able to generate more visually pleasing results on certain
images, they do not seem to work well as inputs for image classification (Jaffe et al., 2017).

Efficient SR: As models in both tracks are resource-intensive, the recent PIRM 2018 Challenge for
mobile (Ignatov et al., 2018) presented a range of high efficiency models that were designed to run
faster and perform better than SRCNN (Dong et al., 2015). These models are complementary to our
work and can follow our best practices to achieve greater efficiency gains. A work closely related
to our work is done by Ahn et al. (2018) who systemically investigate the impact of using grouped
convolutions. Due to the massive design space caused by the variability of training and evaluating
these models, we focus on the trade-offs between performance measured by the image distortion
metrics and efficiency and leave the rest as future work.
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3 SYSTEMATIC STUDY OF LOW-RESOURCE SUPER RESOLUTION NETWORKS

The key step in our work is to build understanding towards building resource-efficient architectures
for super-resolution. While there is a lot of understanding of how these efficiency-saving techniques
work in classification problems, there is a lack of experimental studies and systematic approaches to
understand their practicality in super-resolution. To our knowledge, this is the first systematic study
of wide range efficiency methods on super-resolution.

We measure performances using PSNR and SSIM (Wang et al., 2004) and measure efficiency of
memory and compute using the number of parameters and the number of multiply-add operations
(Mult-Adds), both of which dictate which platform these models can run on. However, these metrics
alone do not reflect the trade-off between performance and efficiency. Therefore, we introduce two
new metrics that measures the number of Giga Mult-Adds saved and the number of parameters
saved for every 0.01dB PSNR loss in the test sets: Set5 (Bevilacqua et al., 2012), Set14 (Yang
et al., 2010), B100 (Martin et al., 2001), and Urban100 (Huang et al., 2015). These metrics are
calculated by taking the difference between the compressed model and the uncompressed model.
All Mult-Adds are calculated by upscaling to a 720p image.

We decide to use RCAN Zhang et al. (2018) as our baseline model as it proves to be the state-of-
the-art and has the best performance in the image distortion metrics at the time of writing. We take
its simplest building block and build a shallower network and use that as a basis for exploring the
use of a variety of techniques.

Implementation Details: We train our models in section 4 and section 5.1 in the same manner as
that of EDSR Lim et al. (2017). In particular, we use 48×48 RGB patches of LR images from the
DIV2K dataset Timofte et al. (2017). We augment the training data with random horizontal flips and
90 degree rotations and pre-process them by subtracting the mean RGB value of the DIV2K dataset.
Our model is trained using the ADAM Kingma & Ba (2014) optimizer with hyper-parameters β1 =
0.9, β2 = 0.999, and ε = 10−8. The mini-batch size is 16, learning rate begins with 1e − 4 and is
halved at 200 epochs, and the model is trained for 300 epochs using L1 loss. We train x2 models
from scratch and use them as pre-trained models to train x3 and x4 models for faster convergence.
Lastly, for ternary quantization in section 5.2, we further train the model with quantization enabled
in each forward pass for 40 epochs, starting at a learning rate of 5e − 5, and then fix the quantized
ternary weights and further train for another 10 epochs at a learning rate of 2.5e− 5.

4 EFFICIENT NETWORK ARCHITECTURES FOR SUPER RESOLUTION

We begin our evaluation by conducting a series of experiments: (i) we explore the effects of applying
different resource-efficient architectures to our baseline model (section 4.1), (ii) we consider two
best techniques and present trade-off solutions while applying them to different parts of our baseline
model (section 4.2), (iii) and lastly, we compare our best results with previous SR architectures
(section 4.3).

4.1 EFFECTS OF VARIOUS RESOURCE-EFFICIENT TECHNIQUES

Motivation: Resource-efficient architectures use various low rank tensor decomposition and other
convolutional approximation techniques, which is agnostic and is not specifically designed for any
particular task, to build fast and accurate image discriminative models. We first develop an initial
understanding of the trade-off solution by replacing and modifying 3x3 convolution layer blocks in
the baseline model.

Approach: We explore the use of known techniques such as the bottleneck design, separa-
ble/grouped convolutions, and channel shuffling. We take the feature extraction unit from resource-
efficient architectures and remove all batch normalisation layers as they were previously shown to
reduce performance and increase GPU memory usage (Lim et al., 2017). For our first set of experi-
ments, we replace all 3x3 convolution layers in the residual groups of our baseline model.

bl: Our baseline model from RCAN (Zhang et al., 2018). We reduce the number of residual groups
(RG) from 10 to 2 and the number of residual channel attention block (RCAB) in each RG from 20
to 5. We use a feature map size of 64. Making the network shallower and small in parameters allow
us to clearly understand each architectural changes as opposed to having a deep network which may
cause other effects and interplay.
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blrn(r): We adopt the residual bottleneck design from ResNet (He et al., 2015) with a reduction
factor of r. Specifically, a 1x1 convolution is used to compress information among channels by a
reduction factor, resulting in a cheaper 3x3 convolution. Another 1x1 convolution is then used to
recover the dimension of the output channel and a skip connection is used to pass on information
that may have been lost.

blrxn(r,g): We replace the 3x3 convolution in blrn to a 3x3 grouped convolution, forming a block
that is similar to that of ResNeXt (Xie et al., 2016) with an additional group size of g. Computation
cost is further reduced by the use of grouped convolutions (Krizhevsky et al., 2012).

blm1: In order to further improve efficiency of the 3x3 grouped convolution, we can maximise the
group size, forming a convolution that is known as depthwise convolution. Following this idea,
we adopt the MobileNet v1 (Howard et al., 2017) unit which uses depthwise separable convolu-
tions, each consist of a 3x3 depthwise convolution followed by a 1x1 convolution, also known as a
pointwise convolution.

bleff(r): We can further approximate the 3x3 depthwise convolution by using a 1x3 and a 3x1
depthwise convolution, a technique that is used in EffNet (Freeman et al., 2018). We adopt the unit
from EffNet by removing the pooling layers.

bls1(r, g): We group both 3x3 and 1x1 convolutions and added channel shuffling in order to improve
the information flow among channels. In order to test the effects of channel shuffling, we adopt the
ShuffleNet v1 (Zhang et al., 2017b) unit.

blclc(g1, g2): Channel shuffle is also used in Clcnet (Zhang, 2017) to further improve efficiency
of blm1. In order to maximise efficiency from our adoption of ClcNet units, we follow the group
size guidelines recommended by the authors for both the group sizes of the 3x3 (g1) and 1x1 (g2)
grouped convolution.

bls2: Apart from using grouped convolutions, Ma et al. (2018) proposed splitting the flow into two,
which is termed as channel splitting, and performing convolution on only half of the input channels
in each unit at each pass. Channel shuffle is then used to enable information flow between both
branches.

blm2(e): Inverted residuals can be used to enable skip connections directly on the bottleneck layers.
Therefore, we adopt the MobileNet v2 (Sandler et al., 2018) unit in our experiments

Table 1: Quantitative results of applying resource-efficient techniques. bold/italics indicates
best/second-best trade-off.

Scale Model Params
(K)

Mult-Adds
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Mult-Add
Saved

(G)

Params
Saved

(K)

2×

bl 1006 231.2 37.86/0.9600 33.39/0.9159 32.06/0.8982 31.74/0.9248 - -
blrn(r=2) 464 106.5 37.61/0.9591 33.18/0.9137 31.90/0.8961 31.09/0.9173 0.9819 4.27
blm1 265 60.7 37.45/0.9586 33.00/0.9122 31.79/0.8948 30.65/0.9128 0.7894 3.43
blrxn(r=2, g=4) 305 69.9 37.45/0.9585 33.01/0.9123 31.80/0.8948 30.71/0.9131 0.7755 3.37
blrn(r=4) 258 59 37.42/0.9583 32.96/0.9120 31.76/0.8943 30.66/0.9123 0.7653 3.32
blclc(g1=32, g2=2) 232 52.9 37.40/0.9581 32.94/0.9118 31.73/0.8939 30.53/0.9108 0.7278 3.16
bls2 211 48.4 37.37/0.9580 32.96/0.9117 31.71/0.8936 30.49/0.9102 0.7254 3.15
bleff(r=2) 257 58.7 37.33/0.9580 32.94/0.9114 31.71/0.8936 30.41/0.9098 0.6485 2.82
blm2(e=2) 561 128.9 37.43/0.9586 33.08/0.9130 31.81/0.8949 30.77/0.9138 0.5219 2.27
bls1(r=2, g=4) 188 42.9 37.06/0.9568 32.74/0.9096 31.52/0.8912 29.94/0.9031 0.4968 2.16
blm2(e=3) 763 175.4 37.56/0.9589 33.11/0.9133 31.86/0.8954 30.93/0.9155 0.3509 1.53

Results: Our results in Table 1 show that techniques that result in a better trade-off between memory
and performance will have a better trade-off between compute and performance. 1. Overall, the use
of bottlenecks alone (blrn) result in the best trade-offs followed by the use of separable/grouped
convolutions.

Reducing the number of features to accommodate inverted bottlenecks (blm2) severely impact the
performance and thus we omit the results from the table. We speculate that doing so would result in
insufficient features at the up-sampling layer to fully capture the up-sampled image representation.
Thus, we use the same number of feature maps as our bottleneck. Although the use of inverted

1Results for 3x and 4x upscaling show similar performance and efficiency trade-offs
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residuals in our experiments seem worse off, it may perform better on models that use a larger
feature size or multiple smaller up-sampling layers.

Lastly, the use of 1x1 grouped convolution or channel splitting with channel shuffling further re-
duces the evaluation metric. Although doing so can drastically reduce size, the trade-off does not
seem to justify its advantages. Therefore, we recommend using bottlenecks for building resource-
efficient SR architectures. If the budget for memory and efficiency is tight, we recommend the use
of depthwise separable convolutions instead.

In image discriminative tasks, the proposed architecture changes are comparable in terms of effi-
ciency and accuracy trade-offs. In our work, we show that the sole use of low rank tensor decompo-
sition (bottleneck architectures) provide the best trade-offs, followed by the use of separable/grouped
convolutions and the use of both channel splitting and shuffling.

4.2 EFFECTS OF ARCHITECTURAL LAYERS BETWEEN THE INPUT AND OUTPUT LAYER

Motivation: Bhattacharya & Lane (2016) and Kim et al. (2015c) have shown that it is possible in
image classification to maintain a similar or slight drop in performance by decomposing tensors of
known models. However, our models suffer a significant drop in performance. (Table 1). Therefore,
in order to further understand the extent of their applicability in SR, we apply the top two best
techniques, which are bottleneck reduction (blrn) and depthwise separable convolutions (blm1), on
various different parts of our baseline model.

Approach: Our preliminary experiments with applying some of these techniques on the first and
last convolution layer led to worse trade-offs. Therefore, we apply our techniques between them.
We replace the sub-pixel convolution upsampling layer to the enhanced upscaling module (EUM)
as proposed by Kim & Lee (2018) to allow the use of skip connections. Using EUM leads to an
increase in performance at a slight cost of both memory and compute. Thus, in order to maintain the
memory cost, we use recursion, forming the enhanced recursive upscaling module (ERUM) shown
in figure 1. The number of ERUMs is the same as the scaling factor and each ERUM recurses twice
or thrice for x2, x4 or x3 scales respectively. Experiments that use ERUMs for up-sampling are
indicated with a postfix -e. We calculate our trade-off metrics based on our baseline model with
ERUM as its up-sampling layer instead bl-e. We modify all 3x3 convolution layers as such:

rb: Changes are made in residual blocks/modules.

rg: Changes are made in residual groups, therefore including those in rb. (Experiments in section
4.1 are done in this setting.)

rg+u: Changes are made in both rg and the up-sampling layers (ERUMs).

Figure 1: Our proposed ERUM for image upscaling.

Results: Our results in Table 2 reinforce our findings in section 4.1 that the adoption of bottleneck
reduction alone leads to the best trade-offs, followed by the use of group convolutions. Therefore,
we recommend taking gradual steps to compress the model. For instance, we suggest gradually
changing convolutions to use bottleneck reduction, avoiding the up-sampling, first, and last con-
volutions until a budget is reached. If further compression is needed, we suggest changes to the
up-sampling layer or the use of group convolutions.

4.3 COMPARISONS WITH PREVIOUS SR MODELS

We take our derived best models based on different budgets from our first two experiments (See
section 4.1 & 4.2) and compare them with the existing literature, which is shown in Table 3. For
fair comparisons, we omit models that are way bigger by several magnitudes as their performances
are much better. Likewise, we exclude models that are way smaller as their performance are much
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Table 2: Quantitative results of applying techniques on different parts of the model. We took the
best three derived models given three different budgets and compared them with previous models in
Table 3 bold/italics indicates best/second-best trade-off.

Scale Model
[Changes]

Params
(K)

Mult-Adds
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Mult-Add
Saved

(G)

Params
Saved

(K)

2×

bl-e 1006 265.3 37.92/0.9602 33.43/0.9162 32.09/0.8988 31.83/0.9256 - -
blrn-e(r=2)[rb] 535 156.8 37.75/0.9596 33.30/0.9153 32.00/0.8973 31.48/0.9218 1.4662 6.3649
blm1-e[rb] 363 117 37.65/0.9592 33.19/0.9143 31.92/0.8964 31.13/0.9181 1.0746 4.6594
blm1-e[rg] 265 94.7 37.59/0.9590 33.12/0.9132 31.87/0.8959 30.91/0.9158 0.9584 4.1629
blrn-e(r=2)[rg] 464 140.5 37.64/0.9592 33.20/0.9142 31.93/0.8967 31.18/0.9185 0.9455 4.1061
blrn-e(r=2)[rg+u] 370 97.1 37.56/0.9589 33.10/0.9131 31.86/0.8954 30.99/0.9164 0.9557 3.6136
blm1-e[rg+u] 137 35.4 37.35/0.9580 32.94/0.9117 31.72/0.8939 30.45/0.9103 0.8181 3.0925

3×

bl-e 1080 156.3 34.35/0.9269 30.29/0.8415 29.06/0.8046 28.13/0.8521 - -
blrn-e(r=2)[rb] 609 108.1 34.19/0.9257 30.18/0.8394 29.00/0.8026 27.89/0.8469 0.8456 8.2632
blm1-e[rb] 437 90.5 34.09/0.9249 30.13/0.8379 28.95/0.8015 27.69/0.8419 0.6784 6.6289
blrn-e(r=2)[rg+u] 397 57.6 33.97/0.9236 30.04/0.8362 28.89/0.7997 27.50/0.8376 0.6902 4.7762
blrn-e(r=2)[rg] 538 100.9 34.13/0.9251 30.14/0.8380 28.97/0.8016 27.72/0.8421 0.6368 6.2299
blm1-e[rg] 339 80.6 34.08/0.9244 30.03/0.8356 28.92/0.8005 27.55/0.8386 0.6056 5.928
blm1-e[rg+u] 146 21.4 33.73/0.9221 29.83/0.8320 28.78/0.7970 27.10/0.8283 0.5644 3.9079

4×

bl-e 1154 135.5 32.08/0.8942 28.58/0.7815 27.56/0.7360 26.16/0.7872 - -
blrn-e(r=2)[rb] 683 108.3 32.10/0.8938 28.51/0.7795 27.51/0.7340 25.95/0.7808 0.8774 15.1935
blm1-e[rb] 511 98.4 31.98/0.8921 28.45/0.7778 27.47/0.7328 25.80/0.7754 0.5456 9.4559
blrn-e(r=2)[rg+u] 424 50 31.84/0.8898 28.34/0.7750 27.38/0.7295 25.52/0.7673 0.6577 5.6154
blm1-e[rg] 413 92.8 32.02/0.8921 28.44/0.7765 27.44/0.7310 25.67/0.7715 0.5272 9.1481
blrn-e(r=2)[rg] 612 104.3 32.02/0.8925 28.47/0.7779 27.48/0.7323 25.79/0.7755 0.5032 8.7419
blm1-e[rg+u] 156 18.7 31.47/0.8847 28.12/0.7697 27.26/0.7252 25.16/0.7538 0.4928 4.211

worse. Regardless, our techniques can be applied to any model for further trade-offs between per-
formance and efficiency.

Although our main objective is not to beat previous models but to understand and recommend tech-
niques that can be applied to any existing model, we manage to derive models that are better or
comparable to other models in the literature. For instance, in terms of size and evaluation metric,
our best model (blrn-e[rb]) outperforms all models that have a count of 1,500K parameters and
below. By comparing compute and evaluation, our best model performs better and has roughly x6
less operations than MemNet (Tai et al., 2017b). It is also comparable with the CARN model in the
number of operations, trading a slightly worse performance with a 2.5x size reduction. Overall, our
best model is better than earlier models such as VDSR (Kim et al., 2015b) and later models such
as SRMDNF (Zhang et al., 2017a) for 3x and 4x scales. Our second and third best models also
outperform earlier models in performance with huge savings in the number of operations for 3x and
4x scales. Our results show that these techniques which are designed for image discriminative tasks
can be effective in SR. Visual comparisons for some of these models can be found in the appendix.

5 QUANTIZATION AND LOW-PRECISION UNDER SUPER RESOLUTION

In our next set of experiments, we examine the viability of quantization and the use of extreme
low-precision (ternary/binary) as mechanisms to reduce system resource for SR.

5.1 INTEGER QUANTIZATION

Motivation: With the success of low precision on neural networks on classification problems, we
aim to show initial understanding of applying 8-bits integer quantization on our baseline model as
described in section 4.1. Moving from 32-bits to 8-bits will result in a 4x reduction in memory and
allow support for low-power embedded devices.

Approach: We train the model in full precision and apply the quantization scheme in Tensorflow-
Lite for integer-only arithmetic (Jacob et al., 2017) and retrain for an additional 5 epochs with the a
learning rate of 5e− 5.

Results: Our results show that applying quantization lead to a slight evaluation loss in 2x scaling
and a slight improvement in 4x scaling. Our results are similar to that of classification Jacob et al.
(2017). Furthermore the results show that deep neural networks are robust to noise and perturbations
caused by quantization. Therefore, we strongly recommend quantization especially on hardware that
can further utilise its benefits.
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Table 3: We extend the table that is provided by Ahn et al. (2018) and compared our best three
models (in order). For fair comparisons, we do not include models that are much bigger or much
smaller than our derived models.

Scale Model Params
(K)

Mult-Adds
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

2×

VDSR (Kim et al., 2015b) 665 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN (Kim et al., 2015a) 1,774 9,788.7 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
LapSRN (Lai et al., 2017) 813 29.9 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
DRRN (Tai et al., 2017a) 297 6,796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
BTSRN (Fan et al., 2017) 410 207.7 37.75/- 33.20/- 32.05/- 31.63/-
MemNet (Tai et al., 2017b) 677 623.9 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
SelNet (Choi & Kim, 2017) 974 225.7 37.89/0.9598 33.61/0.9160 32.08/0.8984 -
SRMDNF (Zhang et al., 2017a) 2218 513.6 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204
D-DBPN (Haris et al., 2018) 1,261 158.9 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324
CARN (Ahn et al., 2018) 1,592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
CARN-M (Ahn et al., 2018) 412 91.2 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193
blrn-e(r=2)[rb](ours) 535 156.8 37.75/0.9596 33.30/0.9153 32.00/0.8973 31.48/0.9218
blm1-e[rb](ours) 363 117 37.65/0.9592 33.19/0.9143 31.92/0.8964 31.13/0.9181
blm1-e[rg](ours) 265 94.7 37.59/0.9590 33.12/0.9132 31.87/0.8959 30.91/0.9158

3×

VDSR (Kim et al., 2015b) 665 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN (Kim et al., 2015a) 1,774 9,788.7 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
DRRN (Tai et al., 2017a) 297 6,796.9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
BTSRN (Fan et al., 2017) 410 176.2 34.03/- 29.90/- 28.97/- 27.75/-
MemNet (Tai et al., 2017b) 677 623.9 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
SelNet (Choi & Kim, 2017) 1,159 120.0 34.27/0.9257 30.30/0.8399 28.97/0.8025 -
SRMDNF (Zhang et al., 2017a) 2,956 305.5 34.12/0.9254 30.04/0.8382 28.97/0.8225 27.570.8398
CARN (Ahn et al., 2018) 1,592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
CARN-M (Ahn et al., 2018) 412 46.1 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385
blrn-e(r=2)[rb](ours) 609 108.1 34.19/0.9257 30.18/0.8394 29.00/0.8026 27.89/0.8469
blm1-e[rb](ours) 437 90.5 34.09/0.9249 30.13/0.8379 28.95/0.8015 27.69/0.8419
blrn-e(r=2)[rg+u](ours) 397 57.6 33.97/0.9236 30.04/0.8362 28.89/0.7997 27.50/0.8376

4×

VDSR (Kim et al., 2015b) 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN (Kim et al., 2015a) 1,774 9,788.7 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
LapSRN (Lai et al., 2017) 813 149.4 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560
DRRN (Tai et al., 2017a) 297 6,796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
BTSRN (Fan et al., 2017) 410 165.2 31.85/- 28.20/- 27.47/- 25.74/-
MemNet (Tai et al., 2017b) 677 623.9 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
SelNet (Choi & Kim, 2017) 1,417 83.1 32.00/0.8931 28.49/0.7783 27.44/0.7325 -
SRDenseNet (Tong et al., 2017) 2,015 389.9 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819
SRMDNF (Zhang et al., 2017a) 3,988 232.7 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731
D-DBPN (Haris et al., 2018) 2,207 79.7 32.47 0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946
CARN (Ahn et al., 2018) 1,592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
CARN-M (Ahn et al., 2018) 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
blrn-e(r=2)[rb](ours) 683 108.3 32.10/0.8938 28.51/0.7795 27.51/0.7340 25.95/0.7808
blm1-e[rb](ours) 511 98.4 31.98/0.8921 28.45/0.7778 27.47/0.7328 25.80/0.7754
blrn-e(r=2)[rg+u](ours) 424 50 31.84/0.8898 28.34/0.7750 27.38/0.7295 25.52/0.7673

Table 4: Quantitative results of applying 8-bit integer quantization in TF-Lite.

Scale Model Params
(K)

Mult-Adds
(G)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

2× bl 961 231.2 37.82/0.9599 33.36/0.9160 32.05/0.8981 31.67/0.9237
bl q 37.68/0.9582 33.34/0.9146 32.01/0.8966 31.64/0.9226

3× bl 1191 122.4 34.20/0.9257 30.15/0.8392 29.01/0.8028 27.91/0.8467
bl q 34.17/0.9259 30.13/0.8393 29.00/0.8030 27.92/0.8474

4× bl 1154 93 32.01/0.8927 28.41/0.7793 27.49/0.7337 25.87/0.7792
bl q 31.99/0.8922 28.43/0.7794 27.51/0.7337 25.88/0.7790

5.2 TERNARY PRECISION

Motivation: The success of using binarized (Courbariaux & Bengio, 2016; Rastegari et al., 2016;
Lin et al., 2017) and ternarized neural networks (Li & Liu, 2016; Tschannen et al., 2017) to approx-
imate the full-precision convolutions in image discriminative tasks motivates us to experiment the
effectiveness of these techniques in SR.

Approach: We adapt the baseline SR architecture used in prior experiments in section 4.1 but
modify it structurally by replacing every convolution layer with sum-product convolution layers
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proposed in StrassenNets (Tschannen et al., 2017). These sum-product convolution layers represent
a sum-product network (SPN) that is used to approximate a matrix multiplication. Specifically,
each convolution layer is replaced with a convolution layer that outputs r feature maps, followed
by a element-wise multiplication and a transpose convolution layer. As both the convolution layers
hold ternary weights, the number of multiply operations required is determined by the number of
element-wise multiplication which is controlled by r. Besides outlining the trade-off of tuning r, we
aggressively use group convolutions.

Results: Similar to section 5.1, the results in Table 5 are similar to that of image discriminative
tasks. Specifically, the higher the width of the hidden layer of the SPN, r, the better the performance
at a cost of additional multiplications and additions. When r = 6c out, we achieve an evaluation
score that is close to the uncompressed model for 2x scales and suffer a slight drop for 3x and 4x
scales. Any further attempts to increase r do not improve evaluation metric.

As proposed by Tschannen et al. (2017), we use group convolutions to reduce the number of addi-
tions. We take a step further and experiment with a wide range of groups as well. We found that the
reduced number of additions do not justify the evaluation drop; the use of a lower r is better than the
use of groups. Additionally, since multipliers are more costly and take up more area on chip than
adders, we suggest lowering r instead of using grouped convolutions.

Table 5: Quantitative results of applying ternary-weighted SP convolutions. We omit the use of
group convolutions as it leads to worse results. c out refers to the number of output channels in each
SP convolution layer.

Scale Model r Reduction
in Mult (%)

Reduction
in Add (%)

Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

2×

bl - - - 37.86/0.9600 33.39/0.9159 32.06/0.8982 31.74/0.9248

ST-bl

c out 99.82 -15.96 37.59/0.9588 33.14/0.9138 31.88/0.8959 31.02/0.9171
2c out 99.64 -132.1 37.73/0.9595 33.30/0.9152 31.98/0.8973 31.37/0.9210
4c out 99.28 -364.38 37.81/0.9598 33.31/0.9151 32.03/0.8978 31.59/0.9229
6c out 98.92 -596.65 37.85/0.9600 33.41/0.9162 32.06/0.8981 31.68/0.9240

3×

bl - - - 34.24/0.9260 30.26/0.8405 29.03/0.8033 27.96/0.8479

ST-bl

c out 99.81 -35.58 33.79/0.9215 29.92/0.8340 28.82/0.7983 27.25/0.8318
2c out 99.64 -171.33 33.99/0.9236 30.07/0.8365 28.91/0.8005 27.54/0.8389
4c out 99.28 -442.83 34.16/0.9250 30.11/0.8380 28.97/0.8021 27.73/0.8435
6c out 98.92 -714.33 34.17/0.9253 30.15/0.8383 28.99/0.8023 27.83/0.8454

4×

bl - - - 32.06/0.8930 28.49/0.7787 27.50/0.7337 25.87/0.7788

ST-bl

c out 99.81 -26.04 31.46/0.8829 28.15/0.7709 27.27/0.7265 25.24/0.7566
2c out 99.64 -152.24 31.72/0.8871 28.31/0.7743 27.37/0.7296 25.49/0.7662
4c out 99.28 -404.65 31.90/0.8901 28.40/0.7770 27.45/0.7319 25.67/0.7723
6c out 98.93 -657.06 31.95/0.8907 28.43/0.7777 27.46/0.7324 25.77/0.7752

6 BEST PRACTICES FOR EFFICIENT SUPER-RESOLUTION

Through an extensive set of experiments, we show that some of the previous efficiency techniques
that are successful in image discriminative tasks can be successfully applied to SR. Although these
techniques are comparable in the former tasks, we highlight their varying effectiveness in SR and
derive a list of best practices to construct or reduce any model that are designed to reduce image
distortion:

• The sole use of low rank tensor decomposition (bottleneck design) results in the best trade-
offs between performance and efficiency. If further compression of memory and/or com-
pute is needed, separable/grouped convolution is recommended. If efficiency on conven-
tional hardware is the topmost priority, we recommend reducing the number of layers or
adopting the use of both channel splitting and shuffling (Ma et al., 2018).

• The fewer resource-efficient architecture changes applied, the better the trade-off. There-
fore, we recommend a mixture of convolution and resource-efficient units unless further
compression is needed.

• Avoid architecture changes on the first and last convolution layers.

• We strongly recommend using any form of quantization if the hardware supports it.
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A VISUAL COMPARISON ON X4 SCALE BENCHMARKS

HR (PSNR/SSIM) RCAN (29.35/0.9342) VDSR (26.92/0.8956)

LapSRN (25.84/0.8722) blm1-e [rb] (28.29/0.9214) blrn-e[rb] (28.64/0.9255)

HR (PSNR/SSIM) RCAN (27.95/0.7910) VDSR (26.50/0.7525)

LapSRN (26.28/0.7562) blm1-e [rb] (27.19/0.7796) blrn-e[rb] (27.23/0.7802)

Figure 2: Visual comparisons with state-of-the-art models on Set5 and Set14. VSDR and LapSRN
are comparable to our models with regards to model size and/or number of operations and RCAN is
x22.8-x30.5 larger and has x8.4-x9.3 more operations.
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HR (PSNR/SSIM) RCAN (24.11/0.6444) VDSR (23.35/0.5810)

LapSRN (23.30/0.5885) blm1-e [rb] (23.73/0.6199) blrn-e[rb] (23.81/0.6251)

HR (PSNR/SSIM) RCAN (32.33/0.8433) VDSR (31.56/0.8220)

LapSRN (31.22/0.8225) blm1-e [rb] (32.14/0.8401) blrn-e[rb] (32.19/0.8411)

Figure 3: Visual comparisons with state-of-the-art models on B100.
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HR (PSNR/SSIM) RCAN (27.95/0.8570) VDSR (25.61/0.7623)

LapSRN (25.76/0.7810) blm1-e [rb] (26.55/0.8124) blrn-e[rb] (26.70/0.8167)

HR (PSNR/SSIM) RCAN (28.02/0.8907) VDSR (24.93/0.7952)

LapSRN (25.17/0.8078) blm1-e [rb] (27.10/0.8680) blrn-e[rb] (27.14/0.8704)

Figure 4: Visual comparisons with state-of-the-art models on Urban100.
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HR (PSNR/SSIM) RCAN (23.45/0.6040) VDSR (22.49/0.5454)

LapSRN (22.35/0.5494) blm1-e [rb] (22.94/0.5790) blrn-e[rb] (23.02/0.5836)

HR (PSNR/SSIM) RCAN (27.96/0.8661) VDSR (26.33/0.8045)

LapSRN (26.37/0.8166) blm1-e [rb] (27.12/0.8395) blrn-e[rb] (27.30/0.8444)

Figure 5: More x4 scale visual comparisons on Urban100

16


	Introduction
	Related work
	Systematic study of low-resource super resolution networks
	Efficient network architectures for super resolution
	Effects of various resource-efficient techniques
	Effects of architectural layers between the input and output layer
	Comparisons with previous sr models

	Quantization and low-precision under super resolution
	Integer quantization
	Ternary precision

	Best practices for efficient super-resolution
	Visual comparison on x4 scale benchmarks

