
Under review as a conference paper at ICLR 2020

PRETRAINING BOOSTS OUT-OF-DOMAIN
ROBUSTNESS FOR POSE ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are highly effective tools for human and animal pose esti-
mation. However, robustness to out-of-domain data remains a challenge. Here,
we probe the transfer and generalization ability for pose estimation with two ar-
chitecture classes (MobileNetV2s and ResNets) pretrained on ImageNet. We gen-
erated a novel dataset of 30 horses that allowed for both within-domain and out-
of-domain (unseen horse) testing. We find that pretraining on ImageNet strongly
improves out-of-domain performance. Moreover, we show that for both pretrained
and networks trained from scratch, better ImageNet-performing architectures per-
form better for pose estimation, with a substantial improvement on out-of-domain
data when pretrained. Collectively, our results demonstrate that transfer learning
is particularly beneficial for out-of-domain robustness.

1 INTRODUCTION

Pose estimation is an important tool for understanding behavior, as it belies analysis of movement
kinematics, action recognition, and ethology (Mason & Lott, 1976; Heinroth & Heinroth, 1966;
Ijspeert, 2014; Anderson & Perona, 2014). Pose estimation on humans has reached remarkable
capabilities due to innovations in both algorithms (Insafutdinov et al., 2017; Cao et al., 2017; He
et al., 2017; Alp Güler et al., 2018; Xiao et al., 2018; Kreiss et al., 2019; Sun et al., 2019) and large-
scale datasets (Lin et al., 2014; Andriluka et al., 2014; 2018). However, it is a challenging problem
due to small joints, occlusions, clothing, and changes in background and scene statistics. Thus, many
networks suffer when applied to out-of-domain data, i.e. images that are sufficiently different from
the training set. For instance, they fail on very articulated human movements like skiing, or other
‘rare poses’, if not in the training set (Rhodin et al., 2018; Dang et al., 2019). Moreover, animal pose
estimation has additional challenges. Not all animals share the same keypoints, therefore a universal
“animal pose detector” is not feasible. Even building animal-specific networks would require a lot of
data, due to the large variability in body shapes, colors, and the number of species as well as breeds
of a type of animal. Therefore, the question of how one can robustly learn from limited annotated
datasets is of particular importance, and animal pose estimation datasets allow for generalization to
be systematically tested (Novotny et al., 2017).

How can robustness be achieved? Transfer learning, or the transferability of pretrained features from
one task to another, is a powerful approach that has been well studied in computer vision (Donahue
et al., 2014; Yosinski et al., 2014; Kümmerer et al., 2016; Huh et al., 2016; He et al., 2018). It
has been shown to improve performance on some human pose estimation tasks (Mehta et al., 2016;
Mueller et al., 2017; Xiao et al., 2018; Insafutdinov et al., 2017), yet is not universally used in the
top-performing networks on the human 2D/3D pose estimation benchmarks (Doersch & Zisserman,
2019). For keypoint detection, He et al. recently showed that pretraining on ImageNet did not result
in overall performance improvements if randomly initialized models were allowed to train for much
longer than usual, therefore suggesting that (given enough task-data) the main benefit of transfer
learning is shorter training time, rather than performance (He et al., 2018). However, it has not been
tested whether pretraining on ImageNet offers advantages in robustness, for instance as measured
by any performance advantage on out-of-domain data.

We address this by building a new pose estimation task of 8, 114 labeled video frames from 30
Thoroughbred horses. We focus on horses as their diversity readily allows us to assess out-of-domain
generalization, i.e. the ability to generalize to the different, unseen horses in different contexts. We
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Figure 1: Horse Dataset: Example frames for each young Thoroughbred horse in the dataset. In
each video the horse walks from left to right. The videos vary in horse color, the appearance of
sunlight and shadow, and relative horse size as well as background. This makes the data set ideal
for tests in robustness and generalization. To illustrate the horse-10 task we arranged the horses
according to one split: the ten leftmost horses were used for train/test within-domain, and the rest
are the out-of-domain held out horses.

created a task, called Horse-10, that uses only 10 horses for the test/train splits, and uses the other
20 horses to test out-of-domain performance (Figure 1). The data will be made available at TBA.

Here we report two key insights: (1) higher ImageNet performance leads to better generalization
for both within domain and on out-of-domain data for pose estimation but with a stronger effect on
out-of-domain data (see Figure 2B); (2) transfer learning improves robustness again most strongly
for out-of-domain data, and yields up to 3 times more accurate results than training from scratch (see
Figure 4D,E). Thus, while it has been previously shown that training from scratch can match perfor-
mance on in-domain data for sufficiently large amount of training data and training times (He et al.,
2018), we show it clearly cannot match performance of pretrained networks on out-of-domain data
(see Figure 5). Collectively, this sheds a new light on the inductive biases of “better ImageNet ar-
chitectures” for visual tasks to be particularly beneficial for robustness, even beyond within domain
data accuracy, on out-of-domain datasets.

2 RESULTS

To test within and out-of-domain performance we created a new dataset of 30 different walking
horses (Thoroughbreds that are led by different humans), resulting in a dataset of 8, 114 images
with 22 labeled body parts each. Horses have various coat colors and the “in-the-wild” aspect of
the collected data at various Thoroughbred yearling sales and farms added additional complexity.
The sunlight variation between each video added to the complexity of the learning challenge, as
well as the handlers often wearing horse-leg-colored clothing. Some horses were in direct sunlight
while others had the light behind them, and others were walking into and out of shadows, which
was particularly problematic with a dataset dominated by dark colored coats (Figure 1). Thus, this
dataset is ideal for testing robustness and out-of-sample generalization.

2.1 IMAGENET ACCURACY PREDICTS ANIMAL POSE ESTIMATION ACCURACY

To probe the role of different ImageNet pretrained architectures, we compared four variants of Mo-
bileNetV2 with varying expansion ratios, as the width multiplier parameterizes ImageNet perfor-
mance over a wide range (see Methods), and two variants of ResNets (50 and 101 layers deep). We
utilized a ‘simple’ yet competitive pose estimation architecture (Insafutdinov et al., 2016; Mathis
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Figure 2: Transfer Learning boosts performance, especially on out-of-domain data. A: Illus-
tration of the normalized error metric. B: Normalized Error vs. Network performance as ranked
by the Top 1% accuracy on ImageNet (order by increasing ImageNet performance: MobileNetV2-
0.35, MobileNetV2-0.5, MobileNetV2-0.75, MobileNetV2-1, ResNet-50, ResNet-101). The pose
estimation performance is for 50% training set fraction. The faint lines indicate data for the three
splits. LEFT: Test data is in red, train is blue. RIGHT: additionally, pink is out-of-domain data;
dashed lines indicate networks trained from scratch. Better ImageNet networks perform better on
Horse-10; this relationship is even stronger for out-of-domain data. C: Example frames with human
annotated body parts vs. predicted body parts for MobileNetV2-0.35 and ResNet-50 architectures
with ImageNet pretraining on out-of-domain horses. D: Normalized Error vs. Training Set Frac-
tion of Horse-10. For reference, 5% training data is ≈ 160 frames. Darker to light red shades are
test results for pretrained networks on within-domain data. Shades of pink show the test on out-of-
domain data (order according to ImageNet performance: ResNet-101, ResNet-50, MobileNetV2-1,
MobileNetV2-0.75, MobileNetV2-0.5, MobileNetV2-0.35). E: Same as C but for training from
scratch. F: Same as D but for training from scratch. All lines are averages of 3 splits (see Methods).
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Figure 3: Fraction of correctly identified bodyparts improves with transfer learning A: Per-
cent Correct Keypoint (PCK) vs. Training Set Fraction shows high performance for all pretrained
networks on Horse-10. B: Same as A, but training from scratch. The performance drops strongly,
especially for out-of-domain data C: Performance gain when using transfer learning. All lines are
averages of 3 splits, individual splits are shown as faint lines.

et al., 2018) embedded in DeepLabCut, a toolbox for data-set generation, training, and evaluation
(see Methods). The architectures then consisted of either MobileNetV2s (Sandler et al., 2018) or
ResNets (He et al., 2016), where a single deconvolution layer is connected to the final convolutional
layer to predict poses via body-part specific scoremaps as well as location refinement maps (Insafut-
dinov et al., 2016; Mathis et al., 2018). We created 3 splits containing 10 random horses each, and
then varied the amount of training data from these 10 horses (referred to as Horse-10, see Methods).
As the horses could vary dramatically in size across frames, due to the “in-the-wild” variation in
distance from the camera, we used a normalized pixel error; i.e. we normalized the raw pixel errors
by the eye-to-nose distance and report the fraction within this distance (Figure 2A). In total, we
found that all pretrained-ImageNet networks showed great performance on Horse-10 within domain
(Figures 2B, 7).

To further assess the errors we computed the percent correct keypoints (PCK; defined as within 30%
of the distance from nose-to-eye, see Methods) and found that performance was nearly 97% for
ResNets (with at least 20% training data) and only fell to ≈ 93% on MobileNetV2-based models
(Figure 8A). Even with very small datasets (5%, i.e. around 160 training images) performance was
80% to 85% on MobileNetV2 and ResNets, respectively (Figure 8A).

Next, we directly compare the ImageNet performance to their respective performance on this pose
estimation task. We find Top-1% accuracy on ImageNet, correlates with pose estimation error (linear
fit: slope −0.33%, R2 = 0.95, p = 0.001; Figures 2B). This linear relationship is consistent with a
recently reported correlation of ImageNet accuracy and performance for various object recognition
tasks (Kornblith et al., 2019).

2.2 USING PRETRAINED-IMAGENET NETWORKS SIGNIFICANTLY BOOSTS OUT-OF-DOMAIN
PERFORMANCE

The larger challenge is posed by the out-of-domain horses, rather than on different frames for same
horses as used for training. Thus, we evaluated the performance of the networks that had been
trained for various fractions of the training data and found that both MobileNetV2s and ResNets
were robust (Figures 2B-D).

Most strikingly, on out-of-domain horses, the relationship between ImageNet performance and per-
formance on Horse-10 was even stronger. This can be quantified by comparing the linear regression
slope for out-of-domain test data: −1.6% pose-estimation improvement per percentage point of Im-
ageNet performance, R2 = 0.95, p = 0.0008 vs. within-domain test data −0.33%, R2 = 0.95,
p = 0.0010 (Figures 2B-F). In other words, less powerful models (MobileNetV2s) seem to overfit
more on the training data. We mused that this improved generalization could be a consequence of the
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Figure 4: Up to a 3X gain with transfer learning on out-of-domain data. A: Transfer learning
gain vs. architectures with 50% of the data used for training (comparing pretrained networks to
from-scratch from Figure 2B). B: Same as in A, but for varying levels of input data (5 to 90%), light
to dark, respectively. All lines are averages of 3 splits.

ImageNet pretraining or the architectures themselves. Thus, we trained the different architectures
only on the task itself.

2.3 TASK-BASED TRAINING FROM SCRATCH

To assess the impact of ImageNet pretraining we also trained all architectures from scratch. Thereby
we could directly test if the increased slope for out-of-domain performance across networks was
merely a result of more powerful network architectures.

When training from scratch directly on the task for the same amount of iterations (see Methods),
we found that all networks performed well on within domain data, given enough training data.
The ResNets once again showed an advantage over the MobileNetV2 variants. All the networks
performed worse on within domain compared to pretrained-ImageNet networks, and strikingly 2X
worse on out-of-domain data (Figures 2E,F).

The PCK for all networks as a fraction of the training set size also reflected this decrease in perfor-
mance compared to pretraining (Figures 8A-C). For example, while PCK with pretrained ResNet
network was nearly 97% (with 20% of the training data), without pretraining this falls to around
80%. Out-of-domain performance drops substantially (pretrained vs. randomized initial weights;
comparing Figure 8B to Figure 8C).

Without pretraining we find that the Top-1% accuracy on ImageNet ranking of models only weakly
correlates with pose estimation error (linear fit: slope −0.26%, R2 = 0.53, p = 0.166; Figures 2B
and 9B). On out-of-domain horses the slope was similar (slope −0.21%, R2 = 0.54,p = 0.098),
unlike when training from pretrained checkpoints. Taken together, our results suggests that Ima-
geNet pretraining significantly boosts generalization (vs. just being a feature of the architectures
themselves).

Next we quantified the amount of performance gain across all networks (with vs. without pre-
training). We found an up to 2X gain in performance (increase in PCK) with transfer learning
(Figure 3A-C). Remarkably, for both ResNets and MobileNetV2s, pretraining on ImageNet boosts
within domain and out-of-domain reduction in pixel-errors (Figure 4A,B), with the largest gains on
out-of-domain data - with 90% of the training data there was a gain of up to a 3X (Figure 4B).

2.4 FROM SCRATCH NETWORKS CANNOT MATCH THE PERFORMANCE OF
PRETRAINED-IMAGENET NETWORKS ON OUT-OF-DOMAIN DATA

He et al. (2018) recently showed that training ResNets directly on COCO data for object detection,
instance segmentation and key point detection, catches-up with pretrained network accuracy when

5



Under review as a conference paper at ICLR 2020

5% of the training dataset

Train
Test (within domain)
Test (out of domain)

50% of the training datasetBA

from scratch

Figure 5: Training randomly initialized networks longer cannot rescue out-of-domain per-
formance. A: Normalized error vs. training iterations for ResNet 50 using 5% of the training data.
Training from scratch for 600, 000 iterations does not match the performance of pretrained condition
after 100, 000 iterations. Out-of-domain testing does not approach pretrained levels of performance.
Faint, dashed lines are backwards projecting from lowest from scratch performance to aid in visu-
alization. B: Same as A but using 50% of the training data. Test errors when training from scratch
closely match the transfer learning performance after many iterations. Crucially, out-of-domain
testing does not approach performance for pretrained network.

training for 6X more iterations as typical training schedules. However, due to the nature of the
task, they did not test this relationship on out-of-domain data. Given that we see the largest gains
of transfer learning on out-of-domain data, we asked if the randomly initialized networks could also
catch-up on that metric.

For all the network analysis so far, we trained for 100, 000 iterations (as the loss had relatively
flattened), therefore we trained 6X longer to see if test/training errors would decrease. Indeed,
consistent with He et al. 2018, we found that randomly initialized networks could closely match the
performance of pretrained networks, given enough data and time (Figure 5A, B); for smaller datasets
(5% training data), this was not the case (Figure 5A), again suggesting that pretrained-networks offer
an advantage for small datasets, which is particularly important for applications in biology (Mathis
et al., 2018).

Crucially, and most strikingly, for out-of-domain data this was not the case: the from-scratch trained
networks never caught up (and indeed plateaued early; Figure 5A, B). Thus, transfer learning of-
fers multiple advantages. Not only does pretraining networks on ImageNet allow for using smaller
datasets and shorter training time, it also significantly improves robustness.

3 DISCUSSION

Here we report two key findings: (1) pretrained-ImageNet networks offer an advantage: shorter
training times, less data requirements, and robustness on out-of-domain data, and (2) networks that
have higher ImageNet performance lead to better generalization, especially on out-of-domain data.
Recently, it was shown that for many object recognition datasets the transfer ability is improved
when fine-tuning architectures with better ImageNet performance (Kornblith et al., 2019; Huh et al.,
2016). In fact, Kornblith et al. (2019) find high correlation between between ImageNet and transfer
accuracy for other recognition tasks (r > 0.95). In contrast to the exhaustive study by Kornblith
et al., we only focused on two architecture types: ResNets (He et al., 2016) and MobileNetV2s
(Sandler et al., 2018). However, we vary parameters of those networks to also span a broad range of
ImageNet accuracies. Consistent with Kornblith et al, we find that ImageNet accuracy is weakly cor-
related with performance on pose estimation when trained from scratch (R2 = 0.53), and strongly
when fine-tuning (R2 = 0.95). We also find that “better” ImageNet networks transfer better. More-
over, we show that transfer learning significantly improves performance on out-of-domain data.
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Figure 6: Summary of Findings: We present a new horse dataset for testing within and out-of-
domain performance for pose estimation. We tested two classes of models, MobileNetV2s and
ResNets, which span a wide range of performance on ImageNet. We find that networks that perform
better on ImageNet are better for pose estimation. We also find that pretrained-ImageNet models
strongly improve out-of-domain robustness.

3.1 TRANSFER LEARNING

We show that for both within and out-of-domain pose estimation tasks, transfer learning improves
performance. Most notably, transfer learning boosts out-of-domain generalization, improving up to
3X compared to networks without pretraining, and even when training for much longer, as suggested
in He et al. (2018), this gap cannot be closed.

Another important insight is that for small amounts of data, pretrained networks offer a large ad-
vantage (Figures 4 & 5). Corroborating He et al. (2018) we find that given enough training data,
training from scratch, with purely task-driven training can match the performance of of transfer
learning; however, we also found that for out-of-domain data, pretraining helps significantly, boost-
ing performance up to 3 times (Figure 4).

3.2 ON THE IMPORTANCE OF DATA

Looking forward, this suggests that collecting annotations of task data (instead of pretraining data)
is more useful. We think that benchmarks with different contexts, like Horse-10, are important
to improve pose estimation algorithms for biological applications (i.e. for small-scale lab-based
experiments). A future goal will be to limit, or remove, training altogether. However, in order to
create networks that generalize across laboratories and setups, transfer learning will be important
for robustness. Yet, more work needs to be done to close the gap between within domain and out-
of-domain generalization.

What is the limit of transfer learning? Would ever larger data sets give better generalization? In-
terestingly, it appears to strongly depend on what task the network was pretrained on. Recent work
by Mahajan et al. (2018) showed that pretraining for large-scale hashtag predictions on Instagram
data (3.5 billion images) improves classification, while at the same time possibly harming local-
ization performance for tasks like object detection, instance segmentation, and keypoint detection.
This highlights the importance of the task, rather then the sheer size as a crucial factor. Further
corroborating this insight, Li et al. showed that pretraining on large-scale object detection task can
improve performance for tasks that require fine, spatial information like segmentation (Li et al.,
2019). Thus, one interesting future direction to boost robustness could be to utilize networks pre-
trained on OpenImages, which contains bounding boxes for 15 million instances and close to 2
million images (Kuznetsova et al., 2018).

3.3 MOBILENETV2 FOR FAST POSE ESTIMATION

Here, we introduce using MobileNetV2 variants for animal pose estimation that can achieve high ac-
curacy but with 2.5X the speed as a ResNet backbone (Figure 10), making pretrained-MobileNetV2
an excellent option for real-time applications in the wild (on mobile-phones) and in the laboratory.

7



Under review as a conference paper at ICLR 2020

If an end-user utilizes small training sets, ResNets offer an advantage, yet MobileNetV2s are signifi-
cantly faster (Figure 10) and performs reasonably well, within domain; i.e. to match the ResNet-101
performance with 10% of the training set one needs about 50% for the best MobileNetV2. Poten-
tially, the few pixels lost in accuracy is worth the significant speed improvement (twice as fast) for
high-throughput experiments and for real-time applications. MobileNetV2 can run batch inference
of (> 2, 500FPS) on a GPU. Using MobileNetV2 also has other advantages: one, MobileNetV2
has low memory demands, and even runs on mobile phones, as the name suggests; two: on CPUs
one gets even more speed improvements (Figure 10).

What are the trade-offs? With more data for training the MobileNetV2 match the performance
of ResNets trained with less labeling data (Figure 2B). However, the ResNets still perform best
with matched amounts of data. Thus, to close this gap “Student-Teacher networks” could be used.
For example, one could build a larger and more robust ResNet-101 network, then run inference to
generate a larger dataset to train the MobileNetV2 variant for fast inference on within domain data.

4 CONCLUSIONS

We found a significant advantage of using pretrained networks for out-of-domain robustness. While
there is still a gap to close, we believe this work demonstrates that transfer learning approaches are
powerful to build robust architectures. We also demonstrate that ImageNet performance correlates
with animal pose estimation accuracy on a challenging “in-the-wild” new horse dataset (Figure 6).
Moreover, we aim to add a new variant of networks to the open-source DeepLabCut project, Mo-
bileNetV2s, that pave the way for fast and accurate pose estimation. Collectively, our work high-
lights that pretrained networks require less training data, and allow for faster training, and boost
robustness, especially for out-of-domain data.

5 METHODS

5.1 HORSE DATASET

Here we developed a novel horse data set comprising 30 different horses captured for 4−10 seconds
with a GoPro camera (Resolution: 1920× 1080, Frame Rate: 60 FPS), which we call Horse-30. We
used the DeepLabCut2.0 toolbox (Nath et al., 2019) for labeling. We downsampled the frames by a
factor of 15% to speed-up the benchmarking process (288×162 pixels; one video was downsampled
to 30%).

Using previously established anatomical landmarks for equine biomechanical evaluation (Magnus-
son & Thafvellin, 1990; Anderson & McIlwraith, 2004), the following 22 body parts were labeled by
an expert in Thoroughbred horses [BR] across 8, 114 frames: Nose, Eye, Nearknee, Nearfrontfet-
lock, Nearfrontfoot, Offknee, Offfrontfetlock, Offfrontfoot, Shoulder, Midshoulder, Elbow, Girth,
Wither, Nearhindhock, Nearhindfetlock, Nearhindfoot, Hip, Stifle, Offhindhock, Offhindfetlock,
Offhindfoot, Ischium.

We created 3 splits that contain 10 randomly selected training horses each (referred to as Horse-10).
For each training set we took a subset of 5% (≈ 160 frames), 10% (≈ 300 frames), 20% (≈ 560
frames), 50% (≈ 1470 frames), and 90% (≈ 2580 frames) of the frames for training, and then
evaluated the performance on the training, test, and unseen (“out-of-domain”) horses (i.e. the other
horses that are in Horse-30, but were not in the given split of Horse-10). As metric we used mean
average Euclidean error, which is computed by comparing the inferred poses for each body parts
against the human prediction as well as percent correct key-point (PCK) values; i.e. what fraction of
machine-applied points fall within a specific range of human-labeled ground-truth labels; although
we use a matching threshold of 30% of the head segment length (nose to eye for horse, which was
computed by taking the median for all annotated images per horse) rather than 50% as for MPII
pose (Andriluka et al., 2014).

5.2 NETWORK VARIANTS

For this study we utilized a recently introduced an animal pose estimation toolbox called DeepLab-
Cut (Mathis et al., 2018; Mathis & Warren, 2018; Nath et al., 2019). The TensorFlow-based network
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architectures could be easily exchanged while keeping data loading, training, and evaluation consis-
tent.

DeepLabCut (Mathis et al., 2018; Nath et al., 2019) is built on a subset of the deep feature detectors
in DeeperCut (Insafutdinov et al., 2016). The feature detectors in DeepLabCut consist of residual
networks (ResNets) (He et al., 2016) followed by deconvolutional layers to predict pose scoremaps
and location refinement maps, which can then be used for predicting the pose while also proving a
confidence score (Insafutdinov et al., 2016; Mathis et al., 2018). We utilize an output stride of 16 for
the ResNets (achieved by atrous convolution) and then upsample the filter banks with deconvolutions
by a factor of two to predict the heatmaps and location-refinement at 1/8th of the original image size
scale. This gives a good balance of feature-map size and accuracy. However, the ratio can, of course,
be changed and this affects speed, while still being relatively robust (Insafutdinov et al., 2016).

Here we also introduce a MobileNetV2 architecture that could be used within DeepLabCut (Sandler
et al., 2018). MobileNetV2 utilizes depth-wise separable convolutions, inverted residual bottlenecks
to significantly decrease the number of operations and memory needed while retaining high accu-
racy for ImageNet, object detection and image segmentation accuracy (Sandler et al., 2018). We
configured the output-stride as 16 (by changing the (otherwise) last stride 2 convolution to stride
1). We utilized four variants of MobileNetV2 with different expansion ratios (0.35, 0.5, 0.75 and
1) as this ratio modulates the ImageNet accuracy from 60.3% to 71.8%, and pretrained models on
ImageNet are available from TensorFlow (Abadi et al., 2016).

5.3 NETWORK TRAINING PARAMETERS

Most training parameters used here are consistent with the ones reported in DeepLabCut-2.0. (Nath
et al., 2019). The training loss is defined as the cross entropy loss for the scoremaps and the location
refinement error via a Huber loss with weight 0.05; it is minimized via stochastic gradient descent
with batch size 1 (Insafutdinov et al., 2016; Mathis et al., 2018). We use the following training
schedule: 0.005 for the first 10k iterations then 0.02 onwards. For training from scratch, we had
to start with a lower learning rate to avoid divergence of the loss and used 10−6 for the first 5, 000
steps, then 10−4 for the next 20k, followed by 0.02. We always trained for 100k iterations, unless
noted. When training up to 600k iterations, we changed to 0.002 after 430k iterations (as it is default
for DeepLabCut).

Speed Benchmarking

Using an example from the horse dataset we evaluated one video with 11, 178 frames at resolutions
512 × 512, 256 × 256 and 128 × 128. We used batch sizes: [1, 2, 4, 16, 32, 128, 256, 512], and ran
all models for all 3 (training set shuffles) trained with 50% of the data in a pseudo random order on
an NVIDIA Titan RTX. For the benchmarking on a CPU we used shortened videos with merely 728
frames; the CPU was an Intel Xeon CPU E5-2603 v4 @ 1.70GHz with 6 cores. We also changed
the inference code from its numpy implementation (Mathis & Warren, 2018) to TensorFlow, which
brings a 2− 10% gain in speed.
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A APPENDIX

Training Samples Test - within domain

Test - out-of-domain

human applied        ResNet-50         MobileNetV2-0.35

Figure 7: Example frames with human and pretrained network annotations. Here we show
the smallest networks, namely ResNet-50 and the ultra-lightweight MobileNetV2-0.35, trained for
100, 000 iterations. Top Left set: example training images. Top Right: within domain test image
results. Bottom: out-of-domain horses. Examples illustrate the challenges: varying coat colors,
size changes, background, human legs, various postures, background horses, and partially occluded
horses while they walk in and out of the video frames.
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Figure 8: Transfer Learning boosts accuracy (PCK). A: Percent Correct Keypoint (PCK) vs.
Training Set Fraction shows high performance for all networks on Horse-10. Darker to light
red shades are test results for pretrained networks: ResNet-101, ResNet-50, MobileNetV2-1,
MobileNetV2-0.75, MobileNetV2-0.5, MobileNetV2-0.35. Darker to lighter blue is for training,
the same ordering as in test. All lines are averages of 3 splits (see Methods). B: Same as in A, plus
the out-of-domain data (pink is for out-of-domain data on 20 unseen horses). C: Same as in B, but
without pretraining on ImageNet.

B MobileNets ResNets
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Test (within domain)

A
Without Transfer Learning: within domain 

MobileNets
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Figure 9: Test and training performance when training from scratch.) A: Normalized Error
vs. Training Set Fraction of Horse-10. 5% is ≈ 160 frames. Darker to light red shades are
test results for ResNet-101, ResNet-50, MobileNetV2-1, MobileNetV2-0.75, MobileNetV2-0.5,
MobileNetV2-0.35. Darker to lighter blue is for training, same ordering as in test. B: Normal-
ized Error vs. Network performance as ranked by the Top 1% accuracy on ImageNet, but here
on Horse-10; namely, MobileNetV2-0.35, MobileNetV2-0.5, MobileNetV2-.75, MobileNetV2-1,
ResNet-50, ResNet-101. Test data is in red, train is blue. This data is for 50% training set fraction.
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B CA Video frame size: 512 x 512 Video frame size: 256 x 256 Video frame size: 128 x 128

MobileNets
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Figure 10: Speed Benchmarking for ResNets and MobileNetV2s: Inference speed for videos of
different dimensions for all the architectures. A-C: FPS vs. batchsize, with video frame sizes as
stated in the title. Three splits are shown for each network. MobileNetV2 gives a more than 2X
speed improvement (over ResNet-50) for offline processing and about 40% for batchsize=1 on a
Titan RTX GPU. On CPU we found even larger gains.

Table 1: Batch size 1 (FPS): Mean inference speed for batchsize=1 and batchsize=256 (Table 2) for
there different video frame sizes on a Titan RTX GPU. Video was ≈ 11, 000 frames long of a horse,
with 22 bodyparts to be identified. See Methods for further details.

128x128 256x256 512x512
MobileNetV2-0.35 195 132 65
MobileNetV2-0.50 185 131 61
MobileNetV2-0.75 185 129 55
MobileNetV2-1 190 132 53
ResNet-50 146 99 45
ResNet-101 93 69 34

Table 2: Batch size 256 (FPS)

128x128 256x256 512x512
MobileNetV2-0.35 2557 784 176
MobileNetV2-0.50 2338 711 161
MobileNetV2-0.75 2008 568 128
MobileNetV2-1 1834 523 118
ResNet-50 1208 339 84
ResNet-101 902 249 62
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