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THE SURPRISING BEHAVIOR
OF CONVOLUTIONAL GRAPH NEURAL NETWORKS

ABSTRACT

We highlight a lack of understanding of the behaviour of Convolutional Graph Neu-
ral Networks (GNNs) in various topological contexts. We present 4 experimental
studies which counter-intuitively demonstrate that the performance of GNNs is
weakly dependent on the topology, sensitive to structural noise and the modality
(attributes or edges) of information, and degraded by strong coupling between nodal
attributes and structure. We draw on the empirical results to recommend reporting
of topological context in GNN evaluation and propose a simple (attribute-structure)
decoupling method to improve GNN performance.

1 INTRODUCTION

Convolutional Graph Neural Networks (GNNs) have produced state-of-the-art results in areas which
utilize graph data (Wu et al., 2019). Despite their widespread and rapid application across many
fields, little research has been conducted on understanding the effect of topology on GNN behavior,
especially in the context of attributed networks. Though GNNs use both graph modalities i.e., the
topology and nodal attributes, it is not clear whether they utilize topology to the same degree as nodal
attributes or if they generalize across topological contexts.

In this paper, we seek to underscore this lack of understanding. We present 4 empirical studies, which
characterized and compared GNNs’ utilization of topology, with surprisingly counter-intuitive results.

Topology, Does it really matter?: We empirically analyze GNN performance and show that it is,
contrary to expectation, only loosely dependent on the nodal topological characteristics of a
graph - particularly those of connectivity. The impact of connectivity is explored in the extreme case
of a disconnected graph with multiple components (Section 3).

Just Noisy Graphs: We analyze the impact of topological perturbations on the models’ performance
and dependence on topology. Given the weak dependence of GNN performance on topological
features and the neighborhood aggregation mechanisms of GNNs, one would expect the graphs to
be robust to topological noise. However, we see that GNN performance degrades considerably
with noise (Section 4).

Attributes & Topology, together or not?: We show that instead of improving performance (Fosdick
& Hoff, 2015), increased coupling between the modalities of topology and nodal attributes
hampers it. We demonstrate a simple method to decouple the topological and attribute information
which improves performance by acting as a regularization mechanism (Section 5).

Attributes vs. Topology: We then create an experiment which questions whether the information
in the graph structure and the attribute stack has any overlap and is inter-convertible by simple
means (Section 6).

The counter-intuitive results of these experiments highlight a gap in understanding of the behavior of
GNNs in various common scenarios (Du et al., 2017). This gap prohibits applying these powerful
models to sensitive and diverse areas such as medicine (Parisot et al., 2018), chemistry (De Cao &
Kipf, 2018), and governance (Li & Goldwasser, 2019). The consequent recommendations from this
study take the first step in shrinking that gap.

2 METHODS

In this work we compared the behavior of a set of GNNs across engineered graphs derived from a
basket of benchmark datasets.
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Evaluation: The models were evaluated in a transductive node classification setting that closely
follows the evaluation setup in Shchur et al. (2018). For each model, we used a fixed set of
hyperparameters reported in Shchur et al. (2018), which are the best-performing configurations
that have achieved the best average accuracy on Cora and Citeseer datasets (averaged over 100
train/validation/test splits and 20 random initializations, using only the largest-connected-component.
In reporting test accuracies, unless otherwise mentioned, we report the accuracy averaged over 20
train/validation/test splits and 2 random initializations for each model.

Models: We consider the most prolific spectral and spatial GNNs, and compare against an attention-
based GNN. In this work, we study Graph Convolutional Network (GCN) (Kipf & Welling, 2016),
GraphSAGE (GS) (Hamilton et al., 2017) and Mixture Model Network (MoNet) (Monti et al., 2017),
and Graph Attention Network (GAT) (Veličković et al., 2017) from each category respectively. We
also considered two additional non-GNN based methods: Label Propagation (LabelProp) and Label
Propagation with Normalized Laplacian (LabelProp NL). These methods only consider the graph
structure and not its node attributes.

Datasets: We use the following Citation, Co-author and Co-purchase networks (Table 2). Each
network consists of an edge set and nodes that form the underlying topology. Attached to each node
is an attribute stack (or feature vector), which describes metadata associated with the node, and a
label, which is the target of a node classification algorithm. Citation networks, used to evaluate GCNs
and GATS: Cora, Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012), have documents as
nodes, citation as edges and bag-of-words from the papers as node features. We consider a Co-author
network, Coauthor Physics, with authors as nodes, paper co-authorship as edges, and keywords of
the author’s papers as node features (Shchur et al., 2018). We also consider Co-purchase networks:
Amazon Computers and Amazon Photo (Shchur et al., 2018), with goods as nodes, co-purchase as
edges and product reviews as node features.

3 TOPOLOGY, DOES IT REALLY MATTER?

While convolutional neural networks work with highly regular neighborhood structures (4-
neighboring pixels), GNNs attempt to deal with situations where such regularity assumptions may
not apply. They characterize nodes through the composition of their neighborhood either explicitly,
as in spatial methods, or implicitly, as in approximate spectral methods. Thus, a denser neighborhood
- one with more samples - would allow a more certain characterization of a node. In the following
experiment, we investigate whether such an intuitive relationship with the underlying topological
features, which proxy topological connectivity, exists.

Question: Do topological features impact GNN performance? In other words are nodal topological
features good predictors of GNN performance?

Hypothesis/Expectation: Better connected nodes have larger neighborhoods and so should show
less variance in GNN performance. Nodal topological characteristics should significantly impact
performance.

Counter-intuitive results: Nodal topology does not appear to strongly impact the performance of
the GNN, even in the extreme case it appears to degrade performance only after a critical point.

Methods: We selected features from Table 1 that can be defined at a node granularity. For each
node, we computed these features and analyzed their correlations with the average classification
accuracy for that node across test-train and initialization splits. Subsequently, we confirmed these
results through a robust binning mechanism and a Mann-Whitney-U (MWU) test.

We then analyzed the extreme case of completely disconnected components, and measured the
impact of increasing number and size of disconnected components in the graph. For each dataset,
we considered subgraphs with different types and number of components being retained as the input
graph to a model: (1) only the largest connected component, (2) all components except isolated nodes,
and (3) all components.

Results: Surprisingly, the classification accuracy of node does not appear to depend strongly on
its topological characteristics. As Fig. 1 shows, all topological features considered showed weak
correlation (|r| < 0.2) across both models and datasets with significance (p < 0.05), with most
indicators of connectivity being mildly positive. Though all the datasets considered are relatively
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Figure 1: Accuracy and topological features show weak correlation (Pearson’s r, significance
p < 0.05) across a: Datasets b: Models. Finer granularity (per dataset per model) versions are in
Appendix C

sparse (D < 10−3), (Amazon Photograph and Computers) show slightly better connectivity properties
through long-tailed degree and coreness distributions. This increased connectivity did not affect the
performance. These are supported by a visual analysis and MWU test which shows significance
(p < 0.001) in Coauthor Physics, Pubmed, and Coauthor Computers networks. In concordance with
our intuition models that showed a positive mean-accuracy correlation with coreness, closeness and
eccentricity also displayed moderate negative correlation (0.2 < |r| < 0.4, p < 0.05) with the σ of
the accuracy.

We then drilled into the effect of extreme disconnectvity in the form of disconnected components.
We chose 4 graphs that represent scenarios which represented a range multi-component properties,
as seen in Table 2. In all scenarios, GNNs (except GCNs) are able to handle graphs with multiple
components better than Label Propagation baselines. We also observe that GNNs find multiple-
component scenario presented in Citeseer the hardest to cope with; on average, GNNs perform 20%
worse with the multi-component Citeseer.

For the other three datasets, it may seem that the overall model accuracies change negligibly despite
the addition of multiple components. However, the reported model accuracies are an average of
test nodes’ performance; since most of the randomly selected test nodes are likely from the largest
component, nodes located on the largest component would mask the poor node-level performance of
other nodes. This is supported by Figure 2b, where we observe that nodes located in components other
than the largest have a significantly worse performance than those located in the largest component.
The sole exception is the Amazon comp. dataset, which shows a non-monotic irregular behavior
amongst the smaller sized components. For GNNs across datasets, the average node accuracy on the
largest component is 26.0% higher than those on other components; for LabelProp, this is even worse
(with a 51.6% difference).

Finally, given the discrepancies between the performance of GCNs and other models in handling
multi-component graphs, we further analyzed the impact of the number of components in the graph
on the performance of GCNs and GATs. In this experiment, for each graph, we input the subgraph
retaining only the largest nc components, with nc ∈ {1, 2, 10, 100, Nc−Ni, Nc}, Nc as total number
of components and Ni as number of isolated nodes. Figure 2a reports the test accuracies achieved
at these intervals. We find that as nc increases from 1 to Nc −Ni, there is only a slight decrease in
accuracies suffered by GCNs and GATs which are within the statistical limit. Again, we see that there
is only a small divergence in performance between GCNs and other GNNs as the graph includes
isolated nodes. GATs, as well as other GCNNs, cope well with the presence of isolated nodes. A
comprehensive comparison of the effect of isolated nodes can be seen in Table 5.
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Figure 2: a: Test accuracy for GCNs and GATs for graphs with varying number of components
retained. Both models are robust upto a critical breakdown limit. b: Mean test accuracy per
component against its size. Only components other than the largest component are included in the
plot. Similar patterns are shown by all GraphSAGE models so only GraphSAGE-mean is shown.
Larger components show better performance in all datasets with the exception of Amazon computers.

4 JUST NOISY GRAPHS

Structural errors may originate during the acquisition of networks (e.g. a malfunction in a cellular
network) or during the construction of networks from underlying data, particularly in dynamic
networks where transient phenomenon are difficult to separate from noise. Thus, understanding the
robustness of GNNs to errors of a topological nature is essential to applying them successfully in real
world situations. Having established that GNNs do not strongly depend on topological features in
Section 3, it is reasonable to hypothesize that they should be robust, to all but specific, topological
noise (Zügner et al., 2018). We restrict our investigation to edge-based perturbations and measure the
performance of GNNs on introducing specific controlled perturbations to the structure, allowing us to
characterize the behavior of GNNs in noisy scenarios.

Question: How does the addition of topological noise impact GNN performance?

Hypothesis/Expectation: As GNNs do not seem to depend on the topological features, they should
remain fairly robust to noise and should continue to remain apathetic to topological features even in
noisy circumstances.

Counter-intuitive results: The addition of noise degrades performance significantly in some models
and even more surprisingly, the GNN performance becomes more dependent on the global topological
characteristics in noisy graphs.

Methods: We constructed several perturbed versions of the Cora, Citeseer, Pubmed and Coau-
thor Physics graph datasets for this experiment - these span and represent different categories of
connectivity and annotation (attribute stack) of networks. Cora has no isolated nodes and is one
the best connected graphs (Table 1). Citeseer contrasts sharply in that it has the largest number of
components.Pubmed and Coauthor Physics have the smallest and largest attribute stacks respectively.
The perturbation method is derived from an Erdos-Renyi graph-based noise model, which can be
shown to form the equivalent Gaussian noise in graphs. This allows use the equivalent of the central
limit theorem in graphs (Miettinen et al., 2018). The details of the algorithm and parameters can be
seen in Appendix E. It perturbs an edge with probability P , and thresholds the resulting edges with
respect to a parameter t. We picked a low P = 0.001 to stay true to the original graph and considered
5 perturbed versions using t ∈ {0.3, 0.45, 0.6, 0.75, 0.9} in our analysis.
We further analyzed the behavior of GNNs in the case of smaller perturbations (t ≥ 0.6). As the
perturbations are global rather than local, we used correlation analysis on the statistical characteristic
of the global performance across graphs.

Results: The noise model produced graph with comparable topological characteristics (Table 4)
which diverged from the original with increasing noise. Despite the topological similarity the addition
of edge based noise degrades performance (Figure 3a). All GNNs handled noise better than LabelProp
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Figure 3: a: Mean accuracy of perturbed graphs with varying number of edges added. Lower
thresholds imply more edges and more noise. b: Correlation between test accuracy and statistics of
topological features for each model; only correlations with r ≥ 0.40 and p < 0.05 are shown. Notice
how the dependence on global statistics of topological characteristics increases drastically.

methods. However all models, even GNNs, degrade considerably as the number of edges added
exceeds its original edge count; an exception is the performance of GraphSAGE (mean and meanpool)
model on Coauthor Physics, which only saw an accuracy drop of 0.0006 at t = 0.3, where more than
550,000 edges had been added (i.e. adding about 2× the original number of edges). This tolerance to
the addition of edges might be related to the high sparsity of the original Coauthor Physics graph,
which has an edge density of 0.0005.

To analyze the how the topology effected GNNs in noisy environments. We considered the original
and only high threshold (least noise) perturbed versions (t ∈ {0.6, 0.75, 0.9}) of 4 graph datasets.
For each graph, we used the largest connected component as input graph to all GNN and LabelProp
models. Figure 3b summarizes the significant correlations found between graph topological features
and the average test accuracy achieved across all datasets per model. In stark contrast to the original
graphs, there is a significant and strong positive correlation (mean r = 0.74, p = 0.006) with
features which indicate better connectivity such as number of triangles , clustering (max r = 0.766),
transitivity (max r = 0.578), coreness (max r = 0.804), and degree. There is also a significant
negative correlation (mean r = −0.54, p = 0.03) with the minimum values of connectivity metrics.
Correlations between these topological features with the standard deviation of accuracy across
different train/validation/test splits also indicate that a higher transitivity (r = −0.25) and clustering
(r = −0.22) correspond to a more consistent accuracy across splits.

This clearly indicates that, in the presence of noise, the performance of GNNs is more related to the
topological features as compared to baseline LabelProp methods where no significant correlations are
found. The uniform polarity of the correlations suggests that these correlations are consistent across
different models and are related to the same changes in performance (albeit to varying magnitudes).
Similar correlation patterns for validation F1-scores support this conclusion.

5 ATTRIBUTES & TOPOLOGY, TOGETHER OR NOT?

GNNs use two modalities (topology and attributes) that are often coupled to characterize nodes e.g.
high degree nodes in transport networks often correspond to interchange stations and have more
amenities. A strong coupling has significant effects on the model’s confidence and robustness (in the
previous example, one can look at either the amenities present at the station or its degree to establish if
it is an interchange) (Fosdick & Hoff, 2015). However, statistically establishing its impact is difficult
due to the lack of graphs within the same domain with varying degrees of coupling. To overcome
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this, we created variations of the graph that removed the coupling and statistically compared them to
the original.

Question: Does the degree of association (coupling) between a node’s topology and its attributes
affect a GNN’s performance?

Hypothesis/Expectation: Decoupling the modalities of topology and attributes, by shuffling nodal
attributes would degrade performance.

Counter-intuitive results: Shuffling attributes while preserving nodal labels resulted in improved
performance, whereas shuffling attributes while preserving nodal labels degrees added little improve-
ment.

Methods: To selectively study the effect of attribute-topology coupling, we permuted (shuffled) the
attribute vectors while keeping the underlying network topology constant. The shuffling mechanism
decoupled the attribute vector from the nodal topology, while ensuring the attributes themselves were
representative of the domain. Thus generating domain-faithful samples which facilitated a statistical
analysis of the effect of the coupling. The attribute vectors were shuffled subject to certain constraints
which impose a partition on the graph’s nodes:

1. Shuffled without restriction (Naive).
2. Shuffled within partitions formed by class labels (Iso-Class). This ensures that the correspondence

between both the attributes and class labels and topology and class labels is maintained.
3. Shuffled within partitions formed by class labels and node degree (Iso-Class-Deg). This addition-

ally preserves correspondences between the node degree and class labels.

The original un-shuffled graph was compared with 10 attribute-shuffled variations for each dataset.
The results were subsequently analyzed for significance using a grouped MWU test.

Results: We analyzed 4 datasets with 4 models (Figure 4). As expected, Naive shuffling led to
a large decrease in performance across all models. However, surprisingly, shuffling the attribute
vectors within Class-partitions led to an increase in mean accuracy. Statistically significant (MWU
p < 0.001) mean increases ranging from 2.7% to 6.8% were seen across datasets for each GNN with
MLPs being agnostic to the shuffle. GCN saw the largest increase (accuracy 6.8% and F1 6.5%,
MWU p ∼ e− 20)

Even more counter-intuitively the performance remained same, and even dropped slightly but not
significantly, when partitions were redefined using both the degree and Class labels. Similar results
(2.4− 6.5% MWU p ∼ e− 20) were seen for the F1 score across all GNN models and all datasets.
MLP, which does not take topology into account, showed no significant change on shuffling.

Therefore, selectively decoupling attributes from the graph structure by constricted shuffling leads to
a consistent and significant improvement in accuracy without corresponding loss in F1. Implementing
it is simple and has the potential to improve performance across models.

6 ATTRIBUTES VS. TOPOLOGY

Edges can encode information between nodal attributes that may not themselves annotate the Network.
For example, in a shipping network between cities, supply and demand are nodal attributes that often
correlate across edges (shipping routes). When using graph inference or edge prediction, we take a
set of points with attribute vectors (and potentially incomplete sets of edges) and use them to infer
the edges that should exist in a graph. Constructing graphs via this method is common in areas such
as protein or transcription networks.

Often, there is some overlap in the information used to create edges and the attributes annotating the
nodes. This begs the question, are these two modalities equivalent and can one be converted into the
other?” In the previous sections, we have demonstrated that GNNs treat the graph structure (topology)
differently, and are sensitive to perturbations to it. If information could be encoded in either modality,
because they are equivalent, it would allow for the construction of more robust networks. These
experiments therefore explore this equivalency to determine whether it is possible to encode attribute
information into the graph structure.

Question: Is it possible to convert attribute data to structural information?
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Figure 4: Accuracy for different shuffle scenarios. We see that shuffling within partitions imposed by
class labels (ISO-CL and ISO-CL-DEG) leads to better results. The grid-y-axis indicates different
datasets and the grid-x-axis different model types. The x-axis shows different constraint scenarios
and the y-axis is accuracy scaled logarithmically. The error bars indicate standard deviation across
runs.

Hypothesis/Expectation:

1. Decorrelating the nodal attributes should lead to better or constant performance at worst.
2. Increasing dimensions discarded from the nodal attribute stack would correspond to a decrease in

performance.
3. Retaining higher variance dimensions should yield better performance.
4. Adding edges in place of lost dimensions should alleviate the decrease in performance.

Counter-intuitive results: PCA decreases performance. Augmenting the edgeset with edges that
ought to be there does not alleviate the situation.

Methods: We constructed graphs such that a portion of the attribute information was embedded in
their edge set. We chose three datasets that represent attribute stacks of different dimensions with
Pubmed having the smallest (500 attributes), Amazon Photo a middling (745 attributes), and Citeseer
having the largest (3703 attributes).

Rather than randomly selecting which attributes to discard, which would be computationally pro-
hibitive for large attribute sizes, the attribute set was transformed using a PCA transform and the
k% highest variance components are retained while the remainder are discarded. The discarded
attributes are then either used to augment the edgeset or discarded out of hand. If they are used to
augment the edgeset, the cosine similarity, between the attributes to be discarded is measured and
the most similar pairs identified. An edge for each pair identified is placed in the edgeset. The two
scenarios are contrasted statistical differences measured using and MWU test. Separate graphs for
(k ∈ {99, 97, 94, 92, 90, 85, 80, 75}) were constructed to analyze the effect of number of attributes
discarded.

We also contrasted this to the opposite scenario where the k% lowest variance components are
retained and the remainder used to augment the dataset. Fig. 7 details the 4 types of graph constructed
and the difference in their edge sets and attributes stacks. We use cosine similarity due to the nature of
the attributes which are either bag-of-word, binary, TF-IDF vectors. The normalized cosine measure
allows for a more semantically accurate comparison between vectors. Despite the careful selection
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edges removes additional redundancy and decreases performance further.

of an appropriate metric, there may still be noisy pairs. To alleviate this we only selected the most
similar pairs and tried to keep the number of added edges of the same order as the parent graph.

Differences in performance across 3 initializations and 15 test-train splits were verified for significance
through MWU tests.

We drilled down into edge case where all attributes were retained with a different set of constructions.
Here, the goal was to analyze redundancy of information between modalities more explicitly. We
compared GNN performance with pairs of graphs constructed such that the edges between the most
similar nodes were used to either augment the edge set or diminish it (set difference).

Results: The PCA version of the attribute set elicited an average 50% performance drop across
all models, even with > 99% of the features retained. Increased reduction of the features did not
yield a monotonic decrease (|ρ| < 0.1; as the number of points were limited we also verified the
monotonicity visually). There was little difference between cohorts retaining high variance and low
variance attributes. The performance was also insensitive to the addition of the edges based on the
discarded features.

In the case where all attributes are retained, there is a relatively small overlap (< 10%) between the
edge set created through similarity and the original edges. While adding extraneous edges degrades
performance, removing common edges degrades it further, albeit by an insignificant amount.

The addition of edges to the graph is associated with a stronger (negative) dependence on the
topological features of individual nodes. The models show strong ( |ρ| > 0.3) statistically significant
(p < 0.05) and consistent correlation. Betweenness was one topological characteristic which showed
little correlation even on the addition of edges. We also robustly compared the set of nodes which tend
to be misclassified (accuracy < 0.4) to those that tend to be accurately (accuracy > 0.6) classified
using the MWU test. The test showed a significant (perhaps nonlinear) difference in the coreness,
closeness and degree characteristics of the two node populations. Confidence in differences was
higher in cases where a higher number of attributes were retained.

To conclude, it is clear that attribute information attributes themselves are sensitive to their represen-
tation and cannot be simply transformed into the graph structure.

7 DISCUSSION

As the experiment in Section 6 demonstrates, topology and nodal attributes are distinct modalities
that do not easily convert from one to the other. This lack of interchangeability may be due to
the inherently different descriptive capacities (an edge in an undirected, unweighted graph is only
a binary value whereas many attributes have significantly larger domains), and their differential
utilization by GNNs (network structure is primarily used to define a neighborhood). While the
experiment is restricted by the simplicity and selection of the distance function/edge prediction
mechanism, choosing a more sophisticated method would asymptotically be equivalent to solving
the original problem (presented to GNN) itself. Future work could entail exploring possible distance
metrics and their effectiveness in the pre-processing pipeline. It is also possible that a more elaborate
hyperparameter tuning may yield better results. Future work to characterize the complexity of GNN
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inference and training with respect to the topology and attribute stack would be important. This
would facilitate the selective deployment of models to situations they are best suited for.

Given this substantial difference between the modalities, the restricted decoupling (explored in
Section 5) removes any bias which would have been amplified by their association. Shuffling exposes
the model to a larger number combination of neighborhoods and attribute vectors stack. It thus acts
as a regularization mechanism and improves generalization of the models. Such a shuffling step
would positively increase standard performance across a range of models and should be included as a
standard component of GNN deployment pipelines.

The difference between modalities and their utilization does not fully explain why the weak de-
pendence on topology in Section 3 increases across experiments on the addition of edges. One
theory which may explain the empirical results presented here originates from the analysis of the
nodes influencing (nodal domains) a graph’s eigenvectors in sparse situations provides additional
insight. An eigenvector induces partitions on a graph’s nodes based on the sign (±) of its (significant)
components. Each maximally connected subgraph with a similar sign is called a nodal domain.
With increasing sparsity (worse connectivity (Albert & Barabási, 2002)), the nodal domains of the
eigenvectors tend to de-localize and increase in number (Arora & Bhaskara, 2011). This implies that
the nodes represented by the eigenvector are further away and more fragmented. Thus making the
complete characterization of a node dependent on a larger neighborhood and needing more samples
to control its variance. The relatively sparse benchmark datasets used for our experiments would
require more than the immediate neighborhoods, considered by most GNNs, to characterize each
node. This is turn would force the GNN to pay less attention to the topology. In noisy, but dense,
situations (Section 4), the GNN would pay more attention to the topology and as a result, would
imbibe its error. While these studies would benefit from exploring alternative noise (e.g. block)
models and a wider range of datasets, their findings clearly indicate that a thorough evaluation of a
model must include the dataset’s topological and noise features - features which preprocessing often
changed unrealistically (e.g. discarding all but the largest component).

8 CONCLUSION

The use of GNNs across a variety of applications is growing rapidly. However, our poor understanding
of their behaviour could seriously hinder our ability to fully utilise their potential. Our experiments
demarcate an important gap in our understanding, and that an intuitive understanding of GNN
behaviors is inaccurate. Our results show that although GNN performance is only weakly (although
positively) correlated with a graph’s topology, this changes in a number of common scenarios relevant
to their everyday application.

They also show that GNNs are sensitive to structural noise. Therefore, to ensure a more thorough and
complete benchmarking, we recommend that future models should consider and report topological and
noise characteristics of datasets in the evaluation process. We also empirically evidence the limited
inter-convertibility of attribute and topological information in a graph. Furthering this dissociation
between modalities, we demonstrate an effective method of regularization through attribute shuffling.
This study serves as a timely and important first step towards recognizing the need to address the
network topological context when operating GNNs within the graph domain.
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Table 1: Graph topological features.

Feature explanation

size and order Number of edges and nodes
degree Statistical characteristics of the distribution of degrees (across nodes) in a

graph
assortativity A measure of mixing in graphs instantiated; by the correlations between

node degrees
transitivity Fraction of all possible triangles present in a graph
coreness k-core’s are maximal subgraphs where each node has degree k. Averaged

across max. k ∀ nodes
number of triangles For each node total number of complete 3 node K3 subgraphs that node is

a part of
number of cliques Total number of complete subgraphs
clustering Clustering of a node measures the completeness of its neighbourhood;

averaged across nodes
centrality and degree centrality A (eigenvetor and degree respectively based) measure of node importance
communicability For each node it is the sum of closed walks of all lengths starting and

ending at that node
density Fraction of actual to all possible edges
diameter and radius Maximum and minimum eccentricity present in the graph
pagerank Weighted ranking of the nodes in the graph based on the structure of the

incoming links

B DATASET CHARACTERISTICS

Table 2: Dataset statistics and description

Data Component

Dataset Nodes edges Density Features/Attributes Classes Nc Ni Largest 2nd Largest

Cora 2708 5278 0.00072 1433 7 78 0 2485 26
Citeseer 3312 4660 0.000424949 3703 6 438 48 2110 18
Amazon Comp. 13752 245861 0.001300138 767 10 314 281 13381 8
Amazon Photo 7650 119082 0.002035073 745 8 136 115 7487 4
Pubmed 19717 44324 0.00011402 500 3 na na na na
Coauthor Physics 34493 247962 0.000208418 8415 5 na na na na

Table 3: Topological features for each dataset

Topological

pagerank closeness betweeness number of triangles degree coreness

Dataset mean std mean std mean std mean std mean std mean std

Cora 3.7e-4 3.7e-4 1.4e-1 4.7e-2 1.7e-3 6.9e-3 1.8e+0 4.7e+0 3.9e+0 5.2e+0 2.3e+0 8.8e-1
Citeseer 3.0e-4 2.0e-4 4.5e-2 3.5e-2 1.0e-3 3.8e-3 1.1e+0 3.8e+0 2.8e+0 3.4e+0 1.7e+0 1.0e+0
Amazon Comp. 7.3e-5 1.0e-4 2.9e-1 6.2e-2 1.6e-4 1.9e-3 3.3e+2 1.6e+3 3.6e+1 7.0e+1 1.9e+1 1.4e+1
Amazon Photo 1.3e-4 1.4e-4 2.4e-1 5.1e-2 3.8e-4 2.2e-3 2.8e+2 9.0e+2 3.1e+1 4.7e+1 1.7e+1 1.1e+1
Pubmed 5.1e-5 6.4e-5 1.6e-1 2.0e-2 2.7e-4 1.6e-3 1.9e+0 8.4e+0 4.5e+0 7.4e+0 2.4e+0 1.9e+0
Coauthor Physics 2.9e-5 1.8e-5 2.0e-1 2.4e-2 1.2e-4 3.3e-4 4.1e+1 7.9e+1 1.4e+1 1.6e+1 7.7e+0 4.3e+0

11



Under review as a conference paper at ICLR 2020

Table 4: Mean Topological characteristics for the perturbed datasets (t > 0.6) note that a threshold
of 1 represents the original dataset

assortativity num triangles mean degree clustering clique number pagerank coreness
origDataset threshold

citeseer 0.30 0.068450 1.076540 6.108696 0.053845 6.0 0.000302 3.103563
0.45 0.070607 1.081975 5.796498 0.044370 6.0 0.000302 3.175574
0.60 0.058629 1.057367 3.629227 0.103743 6.0 0.000302 2.026771
0.75 0.049872 1.054952 2.830314 0.141505 6.0 0.000302 1.737017
0.90 0.049428 1.054348 2.812198 0.142042 6.0 0.000302 1.733243
1.00 0.049337 1.056159 2.814010 0.142555 6.0 0.000302 1.735205

cora 0.30 -0.037038 1.874446 6.538405 0.088205 5.0 0.000369 3.706425
0.45 -0.043658 1.842097 6.158050 0.118800 5.0 0.000369 3.299778
0.60 -0.057992 1.811854 4.402511 0.195066 5.0 0.000369 2.515694
0.75 -0.065665 1.805207 3.905465 0.239960 5.0 0.000369 2.319239
0.90 -0.065821 1.805207 3.898080 0.240760 5.0 0.000369 2.315547
1.00 -0.065871 1.805761 3.898080 0.240673 5.0 0.000369 2.317208

Coauthor Phy 0.30 0.202883 42.606732 48.771983 0.024354 12.0 0.000029 31.750471
0.45 0.206186 42.387644 46.734468 0.026188 12.0 0.000029 29.791697
0.60 0.231953 40.806801 22.355782 0.108013 12.0 0.000029 11.729916
0.75 0.201831 40.615284 14.451628 0.368153 12.0 0.000029 7.749254
0.90 0.201097 40.613893 14.362045 0.377210 12.0 0.000029 7.708463
1.00 0.201031 40.751747 14.377526 0.377623 12.0 0.000029 7.715507

pubmed 0.30 0.104907 2.321246 24.106609 0.004180 8.0 0.000051 15.736522
0.45 0.107946 2.257646 22.597251 0.004447 8.0 0.000051 14.658264
0.60 0.091103 1.930517 8.797180 0.015779 8.0 0.000051 4.764061
0.75 -0.039705 1.899173 4.549475 0.058748 8.0 0.000051 2.429173
0.90 -0.044067 1.898869 4.491353 0.060057 8.0 0.000051 2.392758
1.00 -0.043640 1.904955 4.496019 0.060175 8.0 0.000051 2.394533
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C ACCURACY AND TOPOLOGICAL FEATURES

D MULTI COMPONENT PERFORMANCE

Table 5: Mean accuracy (%) of test nodes as input graph contains varying number of connected
components. For each graph dataset, we consider three scenarios: all components, all components
except isolated nodes (i.n.), and, only the largest component. Listed in brackets next to each dataset
name is the total number of components in each graph.

Model Cora (78) Citeseer (438) Amazon Computers (314) Amazon Photo (136)
all no I.N. largest all no I.N. largest all no I.N. largest all no I.N. largest

GCN 79.2 - 81.3 6.61 66.7 71.4 2.9 82.3 82.5 4.4 90.5 91.0
GAT 80.8 - 82.3 68.2 68.4 71.2 80.1 79.2 76.1 87.9 80.3 87.4
MoNet 80.3 - 82.0 67.7 68.1 71.1 83.2 84.5 84.5 90.2 91.2 91.3
GS-mean 79.0 - 80.6 67.6 67.8 71.6 81.0 82.3 83.4 89.9 91.1 91.4
GS-maxpool 75.9 - 77.3 63.6 64.3 67.4 - - - 89.0 90.1 90.1
GS-meanpool 76.9 - 78.8 64.4 65.4 68.5 78.1 80.2 80.3 88.8 90.4 90.6
LabelProp-NL 68.9 - 74.3 47.4 47.5 66.4 72.5 74.0 75.7 81.6 83.8 81.0
LabelProp 69.3 - 75.1 47.3 47.6 67.8 70.0 68.6 67.0 78.4 75.4 67.0

Avg. GNN 78.7 - 80.4 56.3 66.8 70.2 65.1 81.7 81.4 75.0 88.9 90.3
Avg. LabelProp 69.2 - 74.7 47.4 47.6 67.1 71.3 71.3 71.4 80.0 79.6 74.0
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Figure 6: An expanded list of all correlations datasets and models. Accuracy and topological features
show weak correlation (Pearsons r) even across these. However as the number of points decreases
with increasing granularity there is lower confidence (p) in these results.14
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E NOISE ALGORITHM

The algorithms perturbs an edge with probability P , and thresholds the resulting edges with respect
to a parameter t. By varying the threshold for an edge to exist, we created different perturbed versions
for each dataset. Note that a smaller P means a higher probability for edges in the original graph to
be retained, whereas a higher t means a smaller number of new edges are added to the graph.(For the
following algorithm p = P)

Algorithm 1: perturbation and threshold method
Input: Adjacency Matrix A, number of nodes: n, Threshold: t, an edge probability: p
Result: A adjacency matrix Apt

mx = max(A);
mn = min(A);
Amask = Erdos-Renyi(n, p).adjacencyMatrix;
Arnm = Amask �N (0, 1)[n, n]
rnmn = min(Arnm);
rnmx = max(Arnm);
Ascaled = mn + (Arnm − rnmn)/(rnmx− rnmn) ∗ (mx−mn)
for i, j : i, j ∈ I+, i, j < n do

if Amask
i,j == 0 then
A′i,j = Ai,j ;

else
A′i,j = Ascaled

i,j ;
end

end
Ap,t = A′ � heaviside(A′ − t))

F PCA EXPERIMENTAL SETUP

4 types of constructions were made. The exact configuration depended on whether the high or low
variance attributes were discarded and whether the discarded edges were used to augment the dataset:

1. high Inf: kept; Low inf: discarded [top left]
2. high Inf: kept; Low inf: edges [top right]
3. high Inf: discarded; Low inf: kept [bottom left]
4. high Inf: edges; Low inf: discarded [bottom right]

To prevent ”noisy” edges from being added only the most similar 60 ∗ densityG percentile pairs
were chosen. While this ensure the same order of edges are added, the exact number is subject to
hyperparamter tuning.
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Figure 7: Graphs constructed based on 4 possible cases arise depending on whether higher or lower
variance features are retained and whether the remainder are discarded out of hand or used to create
edges before discarding. The original graph on the left with attribute vectors next to each node.
Dashed lines between nodes depict possible edges and between parts of the attribute vector depict
high similarity. Graphs on the right show the constructed graphs.

16


	Introduction
	Methods
	Topology, Does it really matter?
	Just Noisy Graphs
	Attributes & Topology, together or not?
	Attributes vs. Topology
	Discussion
	Conclusion
	Appendices
	Topological Features
	Dataset Characteristics
	Accuracy and topological Features
	Multi component performance
	Noise Algorithm
	PCA Experimental setup

