
LinkedDataHub
Declarative, hypermedia-enabled Linked Data application platform

Martynas Jusevičius, ​martynas@atomgraph.com
Džiugas Tornau, ​dziugas@atomgraph.com

AtomGraph

1. Introduction
LinkedDataHub is a declarative, low code 1

Linked Data application platform. It aims to
dramatically cut application development
costs by enabling domain experts with little
to none SPARQL knowledge to configure
apps in the UI, as opposed to traditional
coding for an API (API is also supported).

LinkedDataHub builds on Linked Data
Templates (LDT) specification [​LDT​] which
enables read-write RDF Linked Data and
supports hypermedia.

We demonstrate how LinkedDataHub uses
hypermedia to drive application state in a
distributed environment and provides a
consistent user experience while doing so.

2. Architecture
LDT specifies the architecture of a
read-write Linked Data application backed
by a SPARQL service, with operations
defined declaratively in an ontology.

LinkedDataHub applies LDT not only in the
context of a single application, but also on a
higher level of abstraction: applications and
services are also defined using RDF and

1 ​https://linkeddatahub.com/docs/about

their management is also LDT-based. The
applications are divided into 3 types:

● Context​: top-level application that
provides management of
applications and services that belong
to it

● End-user application​: second-level
application that manages end-user
domain dataset

● Admin application​: attached to every
end-user application and manages
its administrative dataset which
includes user agents, access control,
ontology classes and constraints,
operations and queries etc.

The pair of end-user and admin
applications comprises a ​dataspace​. All
management actions are accessible via user
interface as well as a generic Linked Data
API.

LinkedDataHub application can connect to
any data source that supports the SPARQL
1.1 Protocol, but it also provides an option
to install a default dataset with some
built-in containers. Both approaches can be
combined using SPARQL federation.

A number of LDT ontologies for different
dataset structures are built-in, the default
one being one that supports SIOC-based
container/item hierarchy.

1

mailto:martynas@atomgraph.com
mailto:dziugas@atomgraph.com
https://atomgraph.com/
https://linkeddatahub.com/docs/about

WebID-TLS [​WebID​] is supported as the
primary authentication method. W3C ACL
ontology is used to define access control. 2

An ​authorization request mechanism lets
authenticated but unauthorized agents
request access to application resources,
which become authorizations after approval
by the application’s owner(s).

LinkedDataHub has a built-in read-write
Linked Data client with WebID delegation,
which enables indirect interactions between
applications on the platform and a seamless
user experience. For example, a user agent
authenticated with ​App1 can can navigate
to ​App2 and modify its contents (given that
access has been granted), without ever
leaving ​App1 and accessing ​App2 directly.
This also paves way for interesting features
such as copying and moving resources
between applications.

The XSLT stylesheets that render response
data as XHTML web pages belong
architecturally to the client component.
They are generic enough to render arbitrary
RDF, but include support for hypermedia
states generated by LinkedDataHub system
ontologies, providing a uniform user
experience throughout the platform.
Hypermedia responses include enough
information to render a functional UI, but
importing out-of-band metadata from
remote Linked Data resources or LDT
application ontology results in an improved
experience.

Another specification providing similar
features as LDT is Linked Data Platform
(LDP) [​LDP​]. LDP functions as a
standardized graph store over an RDF
dataset, similar to SPARQL Graph Store

2 ​https://www.w3.org/wiki/WebAccessControl

Protocol, but with different HTTP semantics
(which makes it problematic to combine the
two). However, LDP is inadequate for a
customizable declarative platform such as
LinkedDataHub, because its semantics are
predefined by the specification and do not
allow for application-scoped operation
definitions, which LDT does.

3. Hypermedia
Recent research on hypermedia provides
lots of prose with vaguely defined terms
such as “affordance” and “factor”
[​Amundsen​] as well as vocabularies
[​Lanthaler​] and data examples
[​Kjernsmo​][​Taelman​], yet offers little
semantics.

Verborgh et al. provide a much more
rigorous hypermedia definition [​Verborgh​].
It involves RDF semantics which we argue
are orthogonal to the Linked
Data/hypermedia semantics.

Linked Data Platform specification
unfortunately provides no support for
hypermedia.

Since ​hypermedia is the final and most
overlooked constraint of the REST
architectural style [​Fielding​], we use the
REST version as the canonical definition of
the term: it is the “engine of the application
state”. In other words:

[...] the model application is therefore an
engine that moves from one state to the
next by examining and choosing from
among the alternative state transitions
in the current set of representations.
Not surprisingly, this exactly matches

2

https://www.w3.org/wiki/WebAccessControl

the user interface of a hypermedia
browser.

As we can see, the essential concept in REST
hypermedia is the application ​state​:

[...] ​a given representation may indicate
the current state of the requested
resource, the desired state for the
requested resource

REST concentrates all of the control
state into the representations received in
response to interactions

The next control state of an application
resides in the representation of the first
requested resource

Given that Linked Data representations are
RDF graphs, it is pretty clear from the above
descriptions that application states need to
be part of that graph.

LDT addresses this in a straightforward
way: for each interaction, the evaluation
method augments the RDF description of
the requested Linked Data resource with an
RDF state of that interaction. The state is
generated by treating request URI query
parameters as arguments for LDT template
parameters defined in the application
ontology, and is expressed as an RDF graph
using the LDT vocabulary. For example,
given ​<container/?offset=20>
request URI, this could be the state graph
(base URI and prefixes omitted):

<container/?offset=20> c:stateOf

<container/> ;

 dh:next <container/?offset=40> ;

 ldt:arg [

 a aplt:Offset ;

 spl:predicate dh:offset ;

 ldt:paramName "offset" ;

 rdf:value 20

] .

All hypermedia states relating to the current
interaction become RDF resources in the
response graph, explicitly connected using
properties. The client agent can simply
follow them without building request URIs
or using any out-of-band information.

Clients can recognize state arguments by
their parameter types, and choose to
support parameters from system ontologies
that are imported by LinkedDataHub
applications. For example, support for
aplt:Offset (as well as ​aplt:Limit

etc.) enables container pagination.
Depending on the interaction, additional
states can be added, such as those pointing
to previous/next page, as in the example
above, or constructor states that are used to
create new resources.

In the cloud-based version of
LinkedDataHub, applications reside on the
same physical host. However, since they are
accessible under distinct base URIs and
hypermedia is used as the interaction
protocol, the communication between the
applications is no different than in a
distributed setting.

4. Conclusions
The LDT specification advances web
applications from API descriptions to ​API
definitions​. In addition to that, LDT provides
a foundation for application-defined
hypermedia protocols, with application
states as RDF resources that are globally
identifiable and have machine-readable
representations, making them available for
user agents. These unique properties of the

3

RDF data model are the key in enabling the
LDT design as well as Linked Data in
general.

LDT-based client-server architecture is
generic and flexible enough to implement
arbitrary web applications that have a
uniform API and can be used both in a
centralized and in a distributed setting. In
future work, we will continue to formalize
this architecture by extending the LDT
specification.

As we demonstrate, hypermedia
applications provide a user experience on
the level of current mainstream web
applications, and enable features that can go
far beyond what is possible with other
technologies.

LinkedDataHub platform makes
hypermedia accessible for web developers
and Linked Data accessible for
non-programmers and domain experts.

Bibliography
[LDT] Jusevičius, M., 2016. Linked Data Templates. ​XML LONDON 2016​.

[WebID] Story, H., WebID-TLS, WebID Authentication over TSL, W3C Editor's Draft, 08 July 2013.

[LDP] Speicher, S., Arwe, J. and Malhotra, A., 2015. Linked data platform 1.0. ​W3C
Recommendation, February, 26.

[Amundsen] Amundsen, M., 2011. Hypermedia types. In ​REST: From Research to Practice (pp. 93-116)​.
Springer, New York, NY.

[Lanthaler] Lanthaler, M. and Gütl, C., 2013. Hydra: A Vocabulary for Hypermedia-Driven Web
APIs. ​LDOW​, ​996​.

[Kjernsmo] Kjernsmo, K., 2012, May. The necessity of hypermedia RDF and an approach to achieve
it. In ​Proceedings of the First Linked APIs workshop at the Ninth Extended Semantic Web Conference.

[Taelman] Taelman, R. and Verborgh, R., 2017, December. Declaratively Describing Responses of
Hypermedia-Driven Web APIs. In ​Proceedings of the Knowledge Capture Conference​ (p. 34). ACM.

[Verborgh] Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T. and Gabarro, J.,
2017. The pragmatic proof: Hypermedia API composition and execution. ​Theory and Practice of Logic
Programming​, ​17​(1), pp.1-48.

[Fielding] Fielding, R.T., 2000. REST: architectural styles and the design of network-based software
architectures. ​Doctoral dissertation, University of California​.

4

https://github.com/AtomGraph/Linked-Data-Templates/blob/master/XML%20London%202016%20paper/Linked%20Data%20Templates.pdf
https://github.com/AtomGraph/Linked-Data-Templates/blob/master/XML%20London%202016%20paper/Linked%20Data%20Templates.pdf
https://github.com/AtomGraph/Linked-Data-Templates/blob/master/XML%20London%202016%20paper/Linked%20Data%20Templates.pdf
https://dvcs.w3.org/hg/WebID/raw-file/tip/spec/tls-respec.html

