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Abstract

Knowledge graphs are structured representations
of real world facts. However, they typically con-
tain only a small subset of all possible facts. Link
prediction is the task of inferring missing facts
based on existing ones. We propose TuckER, a
relatively simple yet powerful linear model based
on Tucker decomposition of the binary tensor
representation of knowledge graph triples. By
using this particular decomposition, parameters
are shared between relations, enabling multi-task
learning. TuckER outperforms previous state-of-
the-art models across several standard link predic-
tion datasets.

1. Introduction

Vast amounts of information available in the world can
be represented succinctly as entities and relations be-
tween them. Knowledge graphs are large, graph-structured
databases which store facts in triple form (e, 7, €,), with
es and e, representing subject and object entities and r a re-
lation. However, far from all available information is stored
in existing knowledge graphs, which creates the need for al-
gorithms that automatically infer missing facts. Knowledge
graphs can be represented by a third-order binary tensor,
where each element corresponds to a triple, 1 indicating a
true fact and O indicating the unknown (either a false or a
missing fact). The task of link prediction is to infer which
of the 0 entries in the tensor are indeed false, and which are
missing but actually true.

A large number of approaches to link prediction so far have
been linear, based on various methods of factorizing the
third-order binary tensor (Nickel et al., 2011; Yang et al.,
2015; Trouillon et al., 2016; Kazemi & Poole, 2018). Re-
cently, state-of-the-art results have been achieved using
non-linear convolutional models (Dettmers et al., 2018;
Balazevi¢ et al., 2019). Despite achieving very good per-
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formance, the fundamental problem with deep, non-linear
models is that they are non-transparent and poorly under-
stood, as opposed to more mathematically principled and
widely studied tensor decomposition models.

In this paper, we introduce TuckER (E stands for entities, R
for relations), a simple linear model for link prediction in
knowledge graphs, based on Tucker decomposition (Tucker,
1966) of the binary tensor of triples. Tucker decomposition
factorizes a tensor into a core tensor multiplied by a matrix
along each mode. In our case, rows of the matrices contain
entity and relation embeddings, while entries of the core
tensor determine the level of interaction between them. Due
to having the core tensor, unlike simpler models, such as
RESCAL, DistMult and ComplEx, where parameters for
each relation are often learned separately, TuckER makes
use of multi-task learning between different relations (Yang
& Hospedales, 2017). Subject and object entity embedding
matrices are assumed equivalent, i.e. we make no distinction
between the embeddings of an entity depending on whether
it appears as a subject or as an object in a particular triple.
Our experiments show that TuckER achieves state-of-the-art
results across all standard link prediction datasets.

2. Related Work

Several linear models for link prediction have previously
been proposed. An early linear model, RESCAL (Nickel
et al., 2011), optimizes a scoring function containing a bi-
linear product between subject and object entity vectors and
a full rank matrix for each relation. RESCAL is prone to
overfitting due to its large number of parameters, which in-
creases quadratically in the embedding dimension with the
number of relations in a knowledge graph. DistMult (Yang
etal., 2015) is a special case of RESCAL with a diagonal
matrix per relation, which reduces overfitting. However,
DistMult cannot model asymmetric relations. ComplEx
(Trouillon et al., 2016) extends DistMult to the complex
domain. Subject and object entity embeddings for the same
entity are complex conjugates, which enables ComplEx to
model asymmetric relations. SimplE (Kazemi & Poole,
2018) is a model based on Canonical Polyadic (CP) decom-
position (Hitchcock, 1927).

Scoring functions of all models described above and
TuckER are summarized in Table 1.
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Table 1. Scoring functions of state-of-the-art link prediction models, the dimensionality of their relation parameters, and significant terms
of their space complexity. d. and d, are the dimensionalities of entity and relation embeddings, while n. and n, denote the number of
entities and relations respectively. €, € C% is the complex conjugate of e,, he, , t., € R% are the head and tail entity embedding of
entity es, and w,—1 € R%" is the embedding of relation 7~* which is the inverse of relation 7. (-) denotes the dot product and x,, denotes

the tensor product along the n-th mode, f is a non-linear function, and W € R%

*dexdr js the core tensor of a Tucker decomposition.

Model Scoring Function Relation Parameters Space Complexity
RESCAL (Nickel et al., 2011) e]W.e, W, € R’ O(ned, + n.d?)
DistMult (Yang et al., 2015) (es, W, €5) w, € Rde O(nede + nypde)
ComplEx (Trouillon et al., 2016) Re((es, W, €,)) w, € Cle O(nede + npde)
SimplE (Kazemi & Poole, 2018) 1 ((h.,, Wy, te,) + (he,, W,—1,t..)) w, € Rée O(nede +npde)
TuckER (ours) W X1 €5 Xo W, X3€, w, € R O(nede + nypdy)
3. Background R™*de and relation embedding matrix R = B € R *4r,

Let £ denote the set of all entities and R the set of all rela-
tions present in a knowledge graph. A triple is represented
as (es, 1, €,), With e, e, € € denoting subject and object
entities respectively and r € R the relation between them.

3.1. Link Prediction

In link prediction, we are given a subset of all true triples
and the aim is to learn a scoring function ¢ that assigns a
score s = ¢(eg, T, €,) € R which indicates whether a triple
is true, with the ultimate goal of being able to correctly score
all missing triples. The scoring function is either a specific
form of tensor factorization in the case of linear models or a
more complex (deep) neural network architecture for non-
linear models. Typically, a positive score for a particular
triple indicates a true fact predicted by the model, while a
negative score indicates a false one.

3.2. Tucker Decomposition

Tucker decomposition, named after Ledyard R. Tucker
(Tucker, 1964), decomposes a tensor into a set of matrices
and a smaller core tensor. In a three-mode case, given the
original tensor X € RI*/*K Tucker decomposition out-
puts a tensor Z € RP*@*E and three matrices A € R/* P,
B c R/*€9, C e REXE;

X~ Zx1A x9B x3C, (D
with x,, indicating the tensor product along the n-th mode.
Elements of the core tensor Z show the level of interaction
between the different components. Typically, P, @), R are
smaller than I, J, K respectively, so Z can be thought of
as a compressed version of X' (Kolda & Bader, 2009).

4. Tucker Decomposition for Link Prediction

We propose a model that uses Tucker decomposition for link
prediction on the binary tensor representation of a knowl-
edge graph, with entity embedding matrix E that is equiv-
alent for subject and object entities, i.e. E = A = C ¢

where n, and n, represent the number of entities and rela-
tions and d. and d, the dimensionality of entity and relation
embedding vectors respectively.

w
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Figure 1. Visualization of the TuckER scoring function for a par-
ticular (es, 7, €,) triple.

We define the scoring function for TuckER as:

(15(65,7',60) =W X1 €5 Xa W, X3€, )
where e,,e, € R% are the rows of E representing the
subject and object entity embedding vectors, w, € R4
the rows of R representing the relation embedding vector
and W € Rdxdrxde g the core tensor. We apply logistic
sigmoid to each score ¢(eg, 1, €,) to obtain the predicted
probability p of a triple being true. Visualization of the
TuckER model architecture can be seen in Figure 1. The
number of parameters of TuckER increases linearly with
respect to entity and relation embedding dimensionality d.
and d,., as the number of entities and relations increases,
since the number of parameters of YV depends only on the
entity and relation embedding dimensionality and not on the
number of entities or relations. By having the core tensor
W, unlike simpler models such as DistMult, ComplEx and
SimplE, TuckER does not encode all the learned knowledge
into the embeddings; some is stored in the core tensor and
shared between all entities and relations through multi-task
learning (Yang & Hospedales, 2017).
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4.1. Training

Following the training procedure introduced by Dettmers
et al. (2018), we use I-N scoring, i.e. we simultaneously
score a pair (e, r) with all entities e, € &, in contrast to -1
scoring, where individual triples (e, , e,) are trained one
at a time. We assume that a knowledge graph is only locally
complete by including only the non-existing triples (e, r, -)
and (-, e,) of the observed pairs (es,r) and (r,e,) as
negative samples and all observed triples as positive samples.
We train our model to minimize the Bernoulli negative log-
likelihood loss function. A component of the loss for one
subject entity and all the object entities is defined as:

L=—L% (y®log(p™) + (1 — y)log(1 — pt*)),
1=1
(3)

where p € R« is the vector of predicted probabilities and
y € R is the binary label vector.

5. Experiments and Results
5.1. Datasets

We evaluate TuckER using standard link prediction datasets.
FB15k (Bordes et al., 2013) is a subset of Freebase, a large
database of real world facts. FB15k-237 (Toutanova et al.,
2015) was created from FB15k by removing the inverse
of many relations that are present in the training set from
validation and test sets. WN18 (Bordes et al., 2013) is a
subset of WordNet, containing lexical relations between
words. WN18RR (Dettmers et al., 2018) is a subset of
WNI18, created by removing the inverse relations.

5.2. Implementation and Experiments

We implement TuckER in PyTorch (Paszke et al., 2017)
and make our code available on Github !. We choose all
hyper-parameters by random search based on validation set
performance. For FB15k and FB15k-237, we set entity and
relation embedding dimensionality to d. = d,- = 200. For
WN18 and WN18RR, which both contain a significantly
smaller number of relations relative to the number of entities
as well as a small number of relations compared to FB15k
and FB15k-237, we set d, = 200 and d,, = 30. We use
batch normalization (Ioffe & Szegedy, 2015) and dropout
(Srivastava et al., 2014) to speed up training. We choose
the learning rate from {0.01,0.005,0.003,0.001, 0.0005}
and learning rate decay from {1, 0.995,0.99}. We find the
following combinations of learning rate and learning rate
decay to give the best results: (0.003,0.99) for FB15k,
(0.0005, 1.0) for FB15k-237, (0.005,0.995) for WN18 and
(0.01, 1.0) for WN18RR. We train the model using Adam
(Kingma & Ba, 2015) with the batch size 128.

1https ://github.com/ibalazevic/TuckER

We evaluate each triple from the test set as in (Bordes et al.,
2013): for a given triple, we generate 2n, test triples by
keeping the subject entity e, and relation r fixed and re-
placing the object entity e, with all possible entities £ and
vice versa. We then rank the scores obtained. We use the
filtered setting, i.e. we remove all true triples apart from the
currently observed test triple. For evaluation, we use the
evaluation metrics used across the link prediction literature:
mean reciprocal rank (MRR) and hits@k, k € {1,3,10}.
Mean reciprocal rank is the average of the inverse of a mean
rank assigned to the true triple over all n, generated triples.
Hits @k measures the percentage of times the true triple is
ranked in the top £ of the n, generated triples.

5.3. Link Prediction Results

Link prediction results on all datasets are shown in Tables
2 and 3. Overall, TuckER outperforms previous state-of-
the-art models on all metrics across all datasets (apart from
hits@10 on WN18). Results achieved by TuckER are not
only better than those of other linear models, such as Dist-
Mult, ComplEx and SimplE, but also better than those of
many more complex deep neural network and reinforcement
learning architectures, e.g. MINERVA, ConvE and HypER,
demonstrating the expressive power of linear models.

Even though at entity embedding dimensionality d. =
200 and relation embedding dimensionality d,, = 30 on
WNI18RR TuckER has fewer parameters (~9.4 million)
than ComplEx and SimplE (~16.4 million), it consistently
obtains better results than any of those models. We believe
this is achieved by exploiting knowledge sharing between
relations through the core tensor. We find that lower dropout
values (0.1, 0.2) are required for datasets with a higher num-
ber of training triples per relation and thus less risk of over-
fitting (WN18 and WN18RR) and higher dropout values
(0.3,0.4,0.5) are required for FB15k and FB15k-237. We
further note that TuckER improves the results of all other
linear models by a larger margin on datasets with a large
number of relations (e.g. +14% improvement on FB15k
results over ComplEx, +8% improvement over SimplE on
the toughest hits@ 1 metric), which supports our belief that
TuckER makes use of the parameters shared between similar
relations to improve predictions by multi-task learning.

5.4. Influence of Decomposition Rank

The presence of the core tensor which allows for knowledge
sharing between relations suggests that TuckER should need
a lower number of parameters for obtaining good results
than ComplEx or SimplE. To test this, we re-implement
ComplEx and SimplE with 1-N scoring, batch normal-
ization and dropout for fair comparison, perform random
search to choose best hyper-parameters and train all three
models on FB15k-237 with embedding sizes d. = d, €
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Table 2. Link prediction results on WN18RR and FB15k-237. We report results for ComplEx-N3 (Lacroix et al., 2018) at d. = 115 for
WN18RR and d. = 400 for FB15k-237 to ensure comparability with TuckER in terms of the overall number of parameters (original
paper reports results at de = 2000). The RotatE (Sun et al., 2019) results are reported without their self-adversarial negative sampling (see
Appendix H in the original paper) for fair comparison, given that it improves the results by ~ 4% and it is not specific to that model only.

WNISRR FB15k-237
Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1
DistMult (Yang et al., 2015) yes 430 490 .440 .390 241 419 .263 .155
ComplEx (Trouillon et al., 2016) yes .440 .510 .460 410 247 428 275 .158
Neural LP (Yang et al., 2017) no — — — — .250 .408 — —
R-GCN (Schlichtkrull et al., 2018) no — — — — .248 A17 .264 151
MINERVA (Das et al., 2018) no - - - - - 456 - -
ConvE (Dettmers et al., 2018) no 430 520 .440 400 325 501 .356 237
HypER (Balazevié et al., 2019) no 465 522 ATT 436 341 520 376 252
ComplEx-N3 (Lacroix et al., 2018) yes 462 523 476 .430 .354 .543 .389 .262
M-Walk (Shen et al., 2018) no 437 - 445 414 - - - -
RotatE (Sun et al., 2019) no — — — — 297 .480 328 205
TuckER (ours) yes 470  .526 482 443 358 544 .394 266
Table 3. Link prediction results on WN18 and FB15k.
WN18 FB15k
Linear MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1
TransE (Bordes et al., 2013) no — .892 — — — AT71 — —
DistMult (Yang et al., 2015) yes .822 .936 914 728 .654 .824 733 .546
ComplEx (Trouillon et al., 2016) yes 941 .947 .936 936 .692 .840 759 599
ANALOGY (Liu et al., 2017) yes .942 947 944 939 725 .854 .785 .646
Neural LP (Yang et al., 2017) no .940 945 — — 760 .837 — —
R-GCN (Schlichtkrull et al., 2018) no .819 .964 929 697 .696 .842 .760 .601
TorusE (Ebisu & Ichise, 2018) no .947 954 .950 943 733 .832 71 674
ConvE (Dettmers et al., 2018) no 943 .956 .946 935 657 .831 723 .b58
HypER (Balazevi¢ et al., 2019) no 951 958 .955 947 .790 .885 .829 734
SimplE (Kazemi & Poole, 2018) yes 942 947 944 939 127 .838 173 .660
TuckER (ours) yes 953 .958 955 949 795 .892 .833 741
040 embedding sizes 100 and 200. However, for lower em-
oo L, bedding sizes, the difference between MRRs increases e.g.
/ - by 4.2% for embedding size 20 for ComplEx and by 9.9%
030 A= - for embedding size 20 for SimplE. At embedding size 20
g (~300k parameters), the performance of TuckER is almost
025 as good as the performance of ComplEx and SimplE at em-
oo / e CompiEx bedc.hr.lg size 200 (tv6 million parameters), which supports
e— SimplE our initial assumption.
/ o—e TuckER
015 50 100 150 200

Embedding Dimensionality / Rank

Figure 2. MRR for ComplEx, SimplE and TuckER for different
embeddings sizes on FB15k-237.

{20, 50,100, 200}. Figure 2 shows the obtained MRR on
the test set for each model. It is important to note that at
embedding dimensionalities 20, 50 and 100, TuckER has
fewer parameters than ComplEx and SimplE (e.g. ComplEx
and SimplE have ~3 million and TuckER has ~2.5 million
parameters for embedding dimensionality 100).

We can see that the difference between the MRRs of Com-
plEx, SimplE and TuckER is approximately constant for

6. Conclusion

In this work, we introduce TuckER, a relatively simple yet
highly flexible linear model for link prediction in knowledge
graphs based on the Tucker decomposition of a binary tensor
of training set triples, which achieves state-of-the-art results
on several standard link prediction datasets. TuckER’s num-
ber of parameters grows linearly with respect to embedding
dimension as the number of entities or relations in a knowl-
edge graph increases, which makes it easily scalable to large
knowledge graphs. Future work might include exploring
how to incorporate background knowledge on individual
relation properties into the existing model.
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