
Under review as a conference paper at ICLR 2020

LEARNING WORLD GRAPH DECOMPOSITIONS
TO ACCELERATE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently learning to solve tasks in complex environments is a key challenge
for reinforcement learning (RL) agents. We propose to decompose a complex
environment using a task-agnostic world graphs, an abstraction that accelerates
learning by enabling agents to focus exploration on a subspace of the environment.
The nodes of a world graph are important waypoint states and edges represent
feasible traversals between them. Our framework has two learning phases: 1)
identifying world graph nodes and edges by training a binary recurrent variational
autoencoder (VAE) on trajectory data and 2) a hierarchical RL framework that
leverages structural and connectivity knowledge from the learned world graph
to bias exploration towards task-relevant waypoints and regions. We thoroughly
evaluate our approach on a suite of challenging maze tasks and show that using
world graphs significantly accelerates RL, achieving higher reward and faster
learning.

1 INTRODUCTION

Many real-world applications, e.g., self-driving cars and in-home robotics, require an autonomous
agent to execute different tasks within a single environment that features, e.g. high-dimensional state
space, complex world dynamics or structured layouts. In these settings, model-free reinforcement
learning (RL) agents often struggle to learn efficiently, requiring a large amount of experience
collections to converge to optimal behaviors. Intuitively, an agent could learn more efficiently by
focusing its exploration in task-relevant regions, if it has knowledge of the high-level structure of the
environment.

We propose a method to 1) learn and 2) use an environment decomposition in the form of a world
graph, a task-agnostic abstraction. World graph nodes are waypoint states, a set of salient states
that can summarize agent trajectories and provide meaningful starting points for efficient explo-
ration (Chatzigiorgaki & Skodras, 2009; Jayaraman et al., 2018; Ghosh et al., 2018). The directed and
weighted world graph edges characterize feasible traversals among the waypoints. To leverage the
world graph, we model hierarchical RL (HRL) agents where a high-level policy chooses a waypoint
state as a goal to guide exploration towards task-relevant regions, and a low-level policy strives to
reach the chosen goals.

Our framework consists of two phases. In the task-agnostic phase, we obtain world graphs by training
a recurrent variational auto-encoder (VAE) (Chung et al., 2015; Gregor et al., 2015; Kingma &
Welling, 2013) with binary latent variables (Nalisnick & Smyth, 2016) over trajectories collected
using a random walk policy (Ha & Schmidhuber, 2018) and a curiosity-driven goal-conditioned
policy (Ghosh et al., 2018; Nair et al., 2018). World graph nodes are states that are most frequently
selected by the binary latent variables, while edges are inferred from empirical transition statistics
between neighboring waypoints. In the task-specific phase, taking advantage of the learned world
graph for structured exploration, we efficiently train an HRL model (Taylor & Stone, 2009).

In summary, our main contributions are:

• A task-agnostic unsupervised approach to learn world graphs, using a recurrent VAE with
binary latent variables and a curiosity-driven goal-conditioned policy.

• An HRL scheme for the task-specific phase that features multi-goal selection (Wide-then-
Narrow) and navigation via world graph traversal.

1

Under review as a conference paper at ICLR 2020

Waypoint State
Inference

Trajectory Collection:

Random Walk + Goal-Conditioned Policy

Weighted Edge
Formation Manager

Worker

Agent

World Graph Discovery

2
1

3
4

1

2

3
4

Hierarchical Reinforcement Learning

1. Agent hits (1, 2) and then
traverses to wide goal (7,6), picks
up the key, reaches narrow goal.

2. Door blocks traversal path to
wide goal, agent navigates on
its own and opens the door.

3. Manager goal expires and gets
updated, agent moves towards
new Manager goal and hits (4,14).

4. On its traversal course to wide
goal, agent hits final target and
exits.

: waypoints selected by the manager : waypoints initiates traversal

: trajectories directly from worker actions: exit point

: agent

: final goal from manager close to selected waypoints

: trajectories from world graph traversal

Proposed Framework

Figure 1: Top Left: overall pipeline of our 2-phase framework. Top Right (world graph discovery): a subgraph
exemplifies traversal between waypoint states (in blue), see Section 3 for more details. Bottom (Hierarhical
RL): an example rollout from our proposed HRL policy with Wide-then-Narrow Manager instructions and world
graph traversals, solving a challenging Door-Key task, see Section 4 for more details.

• Empirical evaluations on multiple tasks in complex 2D grid worlds to validate that our
framework produces descriptive world graphs and significantly improves both sample
efficiency and final performance on these tasks over baselines, especially thanks to transfer
learning from the unsupervised phase and world graph traversal.

2 RELATED WORK

An understanding of the environment and its dynamics is essential for effective planning and control
in model-based RL. For example, a robotics agent often locates or navigates by interpreting a
map (Lowry et al., 2015; Thrun, 1998; Angeli et al., 2008). Our exploration strategy draws inspiration
from active localization, where robots are actively guided to investigate unfamiliar regions (Fox
et al., 1998; Li et al., 2016). Besides mapping, recent works (Azar et al., 2019; Ha & Schmidhuber,
2018; Guo et al., 2018) learn to represent the world with generative latent states (Tian & Gong, 2017;
Haarnoja et al., 2018; Racanière et al., 2017). If the latent dynamics are also extrapolated, the latent
states can assist planning (Mnih et al., 2016a; Hafner et al., 2018) or model-based RL (Gregor &
Besse, 2018; Kaiser et al., 2019).

While also aiming to model the world, we approach this as abstracting both the structure and dynamics
of the environment in a graph representation, where nodes are states from the environment and edges
encode actionable efficient transitions between nodes. Existing works (Metzen, 2013; Mannor et al.,
2004; Eysenbach et al., 2019; Entezari et al., 2010) have shown benefits of such graph abstractions
but typically select nodes only subject to a good coverage the observed state space. Instead, we
identify a parsimonious subset of states that can summarize trajectories and provide more useful
intermediate landmarks, i.e. waypoints, for navigating complex environments.

Our method for estimating waypoint states can be viewed as performing automatic (sub)goal discovery.
Subgoal and subpolicy learning are two major approaches to identify a set of temporally-extended
actions, “skills”, that allow agents to efficiently learn to solve complex tasks. Subpolicy learning
identifies policies useful to solve RL tasks, such as option-based methods (Daniel et al., 2016; Bacon
et al., 2017) and subtask segmentations (Pertsch et al., 2019; Kipf et al., 2018). Subgoal learning, on
the other hand, identifies “important states” to reach (Şimşek et al., 2005).

Previous works consider various definitions of “important” states: frequently visited states during
successful task completions (Digney, 1998; McGovern & Barto, 2001), states introducing the most
novel information (Goyal et al., 2019), bottleneck states connecting densely-populated regions (Chen

2

Under review as a conference paper at ICLR 2020

= 1 = 0 Differentiable Binary Units with Beta Prior, Hard Kumaraswamy (HK) Approximated Posterior

...
BiLSTM BiLSTM BiLSTM BiLSTM BiLSTMBiLSTM

z s

a

Inference

Generation

s a

z

Prior Network

Beta

...
BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

-HK(,1) ~HK(,1) ~HK(,1)

BiLSTM

~HK(,1)

Figure 2: Our recurrent latent model with differentiable binary latent units to identify waypoint states. A prior
network (left) learns the state-conditioned prior in Beta distribution, pψ(zt|st)=Beta(αt, βt). An inference
encoder learns an approximate posterior in HardKuma distribution inferred from the state-action sequence input,
qφ(zt|a,z)=HardKuma(α̃t, 1). A generation network pθ reconstructs a from {st|zt=1}.

et al., 2007; Şimşek et al., 2005), or environment-specific heuristics (Ecoffet et al., 2019). Our
work draws intuition from unsupervised temporal segmentation (Chatzigiorgaki & Skodras, 2009;
Jayaraman et al., 2018) and imitation learning (Abbeel & Ng, 2004; Hussein et al., 2017). We define
“important” states (waypoints) as the most critical states in recovering action sequences generated
by some agent, which indicates that these states contain the richest information about the executed
policy (Azar et al., 2019).

3 LEARNING WORLD GRAPHS

We propose a method for learning a world graph Gw, a task-agnostic abstraction of an environment
that captures its high-level structure and dynamics. In this work, the primary use of world graphs
is to accelerate reinforcement learning of downstream tasks. The nodes of Gw, denoted by a set of
waypoints states sp ∈ Vp, are generically “important” for accomplishing tasks within the environment,
and therefore useful as starting points for exploration. Our method identifies such waypoint states
from interactions with the environment. In addition, we embed feasible transitions between nearby
waypoint states as the edges of Gw.

In this work, we define important states in the context of learning Gw (see Section 2 for alternative
definitions). That is, we wish to discover a small set of states that, when used as world graph nodes,
concisely summarize the structure and dynamics of the environment. Below, we describe 1) how to
collect state-action trajectories and an unsupervised learning objective to identify world graph nodes,
and 2) how the graph’s edges (i.e., how to transition between nodes) are formed from trajectories.

3.1 WAYPOINT STATE IDENTIFICATION

The structure and dynamics of an environment are implicit in the state-action trajectories observed
during exploration. To identify world graph nodes from such data, we train a recurrent variational
autoencoder (VAE) that, given a sequence of state-action pairs, identifies a subset of the states in
the sequence from which the full action sequence can be reconstructed (Figure 2). In particular, the
VAE infers binary latent variables that controls whether each state in the sequence is used by the
generative decoder, i.e., whether a state is “important” or not.

Binary Latent VAE The VAE consists of an inference, a generative and a prior network. These
are structured as follows: the input to the inference network qφ is a trajectory of state-action pairs
observed from the environment τ={(st, at)}Tt=0, with s={st}Tt=0 and a={at}Tt=0 denoting the state
and action sequences respectively. The output of the inference network is the approximated posterior
over a sequence z={zt}Tt=0 of binary latent variables, denoted as qφ(z|a, s). The generative network
pθ computes a distribution over the full action sequence a using the masked state sequence, where st
is masked if zt=0 (we fix z0=zT=1 during training), denoted as pθ(a|s, z).

Finally, a state-conditioned pψ(zt|st) given by the prior network pψ for each st encodes the empirical
average probability that state st is activated for reconstruction. This choice encourages inference to
select within a consistent subset of states for use in action reconstruction. In particular, the waypoint

3

Under review as a conference paper at ICLR 2020

Algorithm 1: Identifying waypoint states Vp and learning a goal-conditioned policy πg
Result: Waypoint states Vp and a goal-conditioned policy πg
Initialize network parameters for the recurrent variational inference model V
Initialize network parameters for the goal-conditioned policy πg
Initialize Vp with the initial position of the agent, i.e. Vp = {s0 = (1, 1)}
while VAE reconstruction error has not converged do

for n← 1 to N do
Sample random waypoint sp ∈ Vp
Navigate agent to sp and perform T -step rollout using a randow walk policy:
τ rn ← {(s0 = sp, a0), ..., (sT , aT)}
gn ← sT
Navigate agent to sp and perform T -step rollout using πg with goal gn:
τπn ← {(s0 = sp, a0), ..., (sT , aT)}at∼πg(·|st,gn)
Re-label πg rewards with action reconstruction error as curiosity bonus:
rπn ← {1st+1=gn − λ · pθ(at|s, z)}Tt=0

end
Perform policy gradient update of πg using τπ and rπ
Update V using τ r and τπ
Update Vp as set of states with largest prior mean αs

αs+βs
.

end

states Vp are chosen as the states with the largest prior means and during training, once every few
iterations, Vp is updated based on the current prior network.

Objective Formally, we optimize the VAE using the following evidence lower bound (ELBO):

ELBO = Eqφ(z|a,s) [log pθ(a|s, z)]−DKL (qφ(z|a, s)|pψ(z|s)) . (1)

To ensure differentiablity, we apply a continuous relaxation over the discrete zt. We use the
Beta distribution pψ(zt) = Beta(αt, βt) for the prior and the Hard Kumaraswamy distribution
qψ(zt|a, z) = HardKuma(α̃t, β̃t) for the approximate posterior, which resembles the Beta dis-
tribution but is outside the exponential family (Bastings et al., 2019). This choice allows us to
sample 0s and 1s without sacrificing differentiability, accomplished via the stretch-and-rectify proce-
dure (Bastings et al., 2019; Louizos et al., 2017) and the reparametrization trick (Kingma & Welling,
2013). Lastly, to prevent the trivial solution of using all states for reconstruction, we use a secondary
objective L0 to regularize the L0 norm of z at a targeted value µ0 (Louizos et al., 2017; Bastings
et al., 2019), the desired number of selected states out of T steps, e.g. for when T = 25, we set
µ0 = 5, meaning ideally 5 out of 25 states are activated for action reconstruction. Another term LT
to encourage temporal separation between selected states by targeting the number of 0/1 switches
among z at 2µ0:

L0 =
∥∥Eqφ(z|s,a)[‖z‖0]− µ0

∥∥2 , LT =

∥∥∥∥∥Eqφ(z|s,a)

[
T∑
t=0

1[zt 6= zt+1]

]
− 2µ0

∥∥∥∥∥
2

. (2)

See Appendix A for details on training the VAE with binary zt, including integration of the Hard
Kumaraswamy distribution and how to regularize the statistics of z.

3.2 EXPLORATION FOR WORLD GRAPH DISCOVERY

Naturally, the latent structure learned by the VAE depends on the trajectories used to train it. Hence,
collecting a rich set of trajectories is crucial. Here, we propose a strategy to bootstrap a useful set of
trajectories by alternately exploring the environment based on the current iteration’s Vp and updating
the VAE and Vp, repeating this cycle until the action reconstruction accuracy plateaus (Algorithm 1).

During exploration, we use action replay to navigate the agent to a state drawn from the current
iteration’s Vp. Although resetting via action replay assumes our underneath environment to be
deterministic, in cases where this resetting strategy is infeasible, it may be modified so long as to
allow the exploration starting points to expand as the agent discovers more of its environment. For

4

Under review as a conference paper at ICLR 2020

LSTM...

LSTM LSTM ... LSTM

 Termination
Condition Met

LSTM ...

LSTM

I. Wide Goal

Ii. Narrow Goal

Figure 3: Left: a standard Feudal Network. Right: using Wide-then-Narrow goals. The Manager first outputs a
waypoint state as the wide goal gw, then attends to a closer-up area around gw to narrow down the final goal gn.

each such starting point, we collect two rollouts. In the first rollout, we perform a random walk to
explore the nearby region. In the second rollout, we perform actions using a goal-conditioned policy
πg (GCP), setting the final state reached by the random walk as the goal. Both rollouts are used for
trianing the VAE and the latter is also used for training πg .

GCP provides a venue to integrate intrinsic motivation, such as curiosity (Burda et al., 2018; Achiam
& Sastry, 2017; Pathak et al., 2017; Azar et al., 2019) to generate more diverse rollouts. Specifically,
we use the action reconstruction error of the VAE as an intrinsic reward signal when training πg . This
choice of curioisty also prevents the VAE from collapsing to the simple behaviors of a vanilla πg .

3.3 EDGE FORMATION

The final stage is to construct the edges of Gw, which should ideally capture the environment
dynamics, i.e. how to transition between waypoint states. Once VAE training is complete and Vp is
fixed, we collect random walk rollouts from each of the waypoints sp ∈ Vp to estimate the underlying
adjacency matrix (Biggs, 1993). More precisely, we claim a directed edge sp → sq if there exists
a random walk trajectory from sp to sq that does not intersect a third waypoint. We also consider
paths taken by πg (starting at sp and setting sq as the goal) and keep the shortest observed path from
sp to sq as a world graph edge transition. We use the action sequence length of the edge transition
between adjacent waypoints as the weight of the edge. As shown experimentally, a key benefit of
our approach is the ability to plan over Gw. To navigate from one waypoint to another, we can use
dynamic programming (Sutton, 1998; Feng et al., 2004) to output the optimal traversal of the graph.

4 ACCELERATING REINFORCEMENT LEARNING WITH WORLD GRAPHS

World graphs present a high-level, task-agnostic abstraction of the environment through waypoints
and feasible transition routes between them. A key example of world graph applications for task-
specific RL is structured exploration: instead of exploring the entire environment, RL agents can use
world graphs to quickly identify task-relevant regions and bias low-level exploration to these regions.
Our framework to leverage world graphs for structured exploration consists of two parts:

1. Hierarchical RL wherein the high-level policy selects subgoals from Vp.

2. Traversals using world graph edges.

4.1 HIERARCHICAL RL OVER WORLD GRAPHS

Formally, an RL agent learning to solve a task is formulated as a Markov Decision Process: at time t,
the agent is in a state st, executes an action at via a policy π(at|st) and receives a rewards rt. The
agent’s goal is to maximize its cumulative expected return R = E(st,at)∼π,p,p0

[∑
t≥0 γ

trt

]
, where

p(st+1|st, at), p0(s0) are the transition and initial state distributions.

To incorporate world graphs with RL, we use a hierarchical approach based on the Feudal Network
(FN) (Dayan & Hinton, 1993; Vezhnevets et al., 2017), depicted in Figure 3. A standard FN

5

Under review as a conference paper at ICLR 2020

Task Task Description Environment Characteristics
MultiGoal Collect randomly spawned balls, each ball gives +1 reward.

To end an episode, the agent has to exit at a designated point.
Balls are located randomly, dense reward.

MultiGoal-Sparse Agents receive a single reward r ≤ 1 proportional to the
number of balls collected upon exiting.

Balls are located randomly, sparse reward.

MultiGoal-
Stochastic

Spawn lava blocks at random locations each time step that
immediately terminates the episode if stepped on.

Stochastic environment. Multiple objects: lava and balls are
randomly located, dense reward.

Door-Key Agent has to pick up a key to open a door (reward +1) and
reach the exit point on the other side (reward +1).

Walls, door and key are located randomly. Agents have
additional actions: pick and toggle.

Table 1: An overview of tasks used to evaluate the benefit of using world graphs. Visualizations can
be found in Appendix D.

decomposes the policy of the agent into two separate policies that receive distinct streams of reward:
a high-level policy (“Manager”) learns to propose subgoals; a low-level policy (“Worker”) receives
subgoals from the Manager as inputs and is rewarded for taking actions in the environment that reach
the subgoals. The Manager receives the environment reward defined by the task and therefore must
learn to emit subgoals that lead to task completion. The Manager and Worker do not share weights
and operate at different temporal resolutions: the Manager only outputs a new subgoal if either the
Worker reaches the chosen one or a subgoal horizon c is exceeded.

For all our experiments, policies are trained using advantage actor-critic (A2C), an on-policy RL
algorithm (Wu & Tian, 2016; Pane et al., 2016; Mnih et al., 2016b). To ease optimization, the feature
extraction layers of the Manager and Worker that encode st are initialized with the corresponding
layers from πg , the GCP learned during world graph discovery phase. More details are in Appendix B.

4.2 WIDE-THEN-NARROW GOALS AND WORLD GRAPHS

To incorporate the world graph, we introduce a Manager policy that factorizes subgoal selection as fol-
lows: a wide policy πw(gwt |st) selects a waypoint state as the wide goal gw ∈ Vp, and a narrow policy
πn(gnt |st, gwt) selects a state within a local neighborhood of gwt , i.e. its ε-net (Mahadevan & Mag-
gioni, 2007), as the narrow goal gn ∈ {s : D(s, gwt) ≤ ε}. The Worker policy πworker(at|st, gnt , gwt)
chooses the action taken by the agent given the current state and the wide and narrow goals from the
Manager. A visual illustration is in Figure 4 and training details in Appendix C.2.

4.3 WORLD GRAPH TRAVERSAL

The wide-then-narrow subgoal format simplifies the search space for the Manager policy. Using
waypoints as wide goals also makes it possible to leverage the edges of the world graph for planning
and executing the planned traversals. This process breaks down as follows:

1. When to Traverse: When the agent encounters a waypoint state st ∈ Vp, a “traversal” is
initiated if st has a feasible connection in Gw to the active wide goal gwt .

2. Planning: Upon triggering a traversal, the optimal traversal route from the initiating state
to gwt is estimated from the Gw edge weights using classic dynamic programming planning
(Sutton, 1998; Feng et al., 2004). This yields a sequence of intermediate waypoint states.

3. Execution: Execution of graph traversals depends on the nature of the environment. If
deterministic, the agent simply follows the action sequences given by the edges of the
traversal. Otherwise, the agent uses the pretrained GCP πg to sequentially reach each of
the intermediate waypoint states along the traversal (we fine-tune πg in parallel where
applicable). If the agent fails to reach the next waypoint state within a certain time limit, it
stops its current pursuit and a new (gw, gn) pair is received from the Manager.

World graph traversal allows the Manager to assign task-relevant wide goals gw that can be far away
from the agent yet still reachable, which consequentially accelerates learning by focusing exploration
around the task-relevant region near gw.

5 EXPERIMENTAL VALIDATION

We now assess each component of our framework on a set of challenging 2D grid worlds. Our
ablation studies demonstrate the following benefits of our framework:

6

Under review as a conference paper at ICLR 2020

Task Size A2C FN +πg init Ours
+πg-init + Gw-traversal + πg-init + Gw-traversal

MultiGoal Small 2.04±0.05 2.93±0.74 5.25±0.13 3.92±0.22 5.05±0.03
Medium - - 5.15±0.11 2.56±0.09 3.00±0.90
Larger - - - 2.18±0.12 2.72±0.59

MultiGoal-Sparse Small - - 0.39±0.09 0.24±0.04 0.42±0.07
Medium - - - 0.20±0.04 0.25±0.03
Larger - - - 0.16±0.22 0.26±0.11

MultiGoal-Stochastic Small 1.38±1.20 1.93±0.16 3.06±0.31 - 2.92±0.45
Medium - - 2.99±0.12 2.42±0.24 2.64±0.14
Larger - - - - 0.60±0.12

Door-Key Small - - 0.99±0.00 0.37±0.15 0.92±0.02
Medium - - 0.56±0.02 - 0.76±0.06
Larger - - - - 0.26±0.19

Table 2: On a variety of tasks and environment setups, we evaluate RL models trained with GCP πg
initialization, with Gw world graph travresal, and with both. All models on the right are equipped
with WN. Left are baselines for additional comparison. We report final rewards for MultiGoal tasks
and success rates for Door-Key are reported. If no result reported, the agent failed to solve the task.

Waypoint type MultiGoal MultiGoal-Sparse MultiGoal-Stochastic Door-Key
Learned 2.72±0.59 0.26±0.11 0.60±0.12 0.26±0.19
Random 2.30±0.49 0.19±0.11 0.41±0.25 0.27±0.40

Table 3: Comparing learned Vp versus random Vrand as wide subgoals on large mazes, all trained with πg
initialization and graph traversal. Vp generally is superior in terms of performance and consistency. We report
final rewards for MultiGoal tasks and success rates for Door-Key are reported.

• It improves sample efficiency and performance over the baseline HRL model.
• It benefits tasks varying in envirionment scale, task type, reward structure, and stochasticity.
• The identified waypoints provide superior world representations for solving downstream

tasks, as compared to graphs using randomly selected states as nodes.

Implementation details, snippets of the tasks and mazes are in Appendix C-D.

5.1 ABLATION STUDIES ON 2D GRID WORLDS

For our ablation studies, we construct 2D grid worlds of increasing sizes (small, medium and
large) along with challenging tasks with different reward structures, levels of stochasticity and logic
(summarized in Table 1). In all tasks, every action taken by the agent receives a negative reward
penalty. We follow a rigorous evaluation protocol (Wu et al., 2017; Ostrovski et al., 2017; Henderson
et al., 2018): each experiment is repeated with 3 training seeds. 10 additional validation seeds are
used to pick the model with the best reward performance. This model is then tested on 100 testing
seeds. We report mean reward and standard deviation.

We ablate each of the following components in our framework and compare against non-hierarchical
(A2C) and hierarchical baselines (FN):

1. initializing the feature extraction layers of the Manager and Worker from πg ,
2. applying Wide-then-Narrow Manager (WN) goal instruction, and
3. allowing the Worker to traverse along Gw.

Results are shown in Table 2. In sum, each component improves performance over the baselines.

Wide and narrow goals Using two goal types is a highly effective way to structure the Manager
instructions and enables the Worker to differentiate the transition and local task-solving phases. We
note that for small MultiGoal, agents do not benefit much from Gw traversal: it can rely solely on
the guidance from WN goals to master both phases. However with increasing maze size, the Worker
struggles to master traversals on its own and thus fails solving the tasks.

World Graph Traversal As conjectured in Section 4.3, the performance gain of our framework
can be explained by the larger range and more targeted exploration strategy. In addition, the Worker

7

Under review as a conference paper at ICLR 2020

random
waypoint

waypoint+traversal
random +traversal

waypoint +πg + traversal
waypoint + traversal
waypoint +πg
waypoint

Figure 4: Validation performance during training (mean and standard-deviation of reward, 3 seeds) for
MultiGoal. Left: Comparing Vp and Vrand, with or without traversal, all models use WN and πg initialization.
We see that 1) traversal speeds up convergence, 2) Vrand gives higher variance and slightly worse performance
than Vp. Right: comparing with or without πg initialization on Vp, all models use WN. We see that initializing
the task-specific phase with the task-agnostic goal-conditioned policy significantly boosts learning.

does not have to learn long distance transitions with the aid of Gw traversals. Figure 4 confirms that
Gw traversal speeds up convergence and its effect becomes more evident with larger mazes. Note that
the graph learning stage only need 2.4K iterations to converge. Even when taking these additional
environment interactions into account, Gw traversal still exhibits superior sample efficiency, not to
mention that the graph is shared among all tasks. Moreover, solving Door-Key involves a complex
combination of sub-tasks: find and pick up the key, reach and open the door and finally exit. With
limited reward feedback, this is particularly difficult to learn. The ability to traverse along Gw enables
longer-horizon planning on top of the waypoints, thanks to which the agents boost the success rate on
medium Door-Key from 0.56±0.02 to 0.75±0.06.

Benefits of Learned Waypoints To highlight the benefit of establishing the waypoints learned
by the VAE as nodes for Gw, we compare against results using a Gw constructed around randomly
selected states (Vrand). The edges of the random-node graph are formed in the same way as described
in Section 3.3 and its feature extractor is also initialized from πg. Although granting knowledge
acquired during the unsupervised phase to Vrand is unfair to Vp, deploying both initialization and
traversal while only varying Vrand and Vp isolates the effect from the nodes to the best extent. The
comparative results (in Table 3, learning curves for MultiGoal in Figure 4) suggest Vp generally
outperforms Vrand. Door-Key is the only task in which the two matches. However, Vrand exhibits
a large variance, implying that certain sets of random states can be suitable for this task, but using
learned waypoints gives strong performance more consistently.

Initialization with GCP Initializing the weights of the Worker and Manager feature extractors
from πg (learned during the task-agnostic phase) consistently benefits learning.In fact, we observe that
models starting from scratch fail on almost all tasks within the maximal number of training iterations,
unless coupled with Gw traversal, which is still inferior to using πg-initialization. Particularly, for the
small MultiGoal-Stochastic environment, there is a high chance that a lava square blocks traversal;
therefore, without the environment knowledge from πg transferred by weight initialization, the
interference created by the episode-terminating lava prevents the agent from learning the task.

6 CONCLUSION

We have shown that world graphs are powerful environment abstractions, which, in particular, are
capable of accelerating reinforcement learning. Future works may extend their applications to more
challenging RL setups, such as real-world multi-task learning and navigation. It is also interesting to
generalize the proposed framework to learn dynamic world graphs for evolving environments, and
applying world graphs to multi-agent problems, where agents become part of the world graphs of
other agents.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1. ACM, 2004.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732, 2017.

Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer. A fast and incremental
method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, pp.
1027–1037, 2008.

Mohammad Gheshlaghi Azar, Biala Piot, Bernardo Avila Pires, Jean-Bastien Gril, Florent Altche,
and Remi Munos. World discovery model. arXiv, 2019.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017.

Joost Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 2019 Conference of the Association for Computational
Linguistics, Volume 1 (Long Papers). Association for Computational Linguistics, 2019.

Dimitri P Bertsekas. Nonlinear Programming. 1999.

Norman Biggs. Algebraic Graph Theory. 1993.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Maria Chatzigiorgaki and Athanassios N Skodras. Real-time keyframe extraction towards video
content identification. In 2009 16th International conference on digital signal processing, pp. 1–6.
IEEE, 2009.

Fei Chen, Yang Gao, Shifu Chen, and Zhenduo Ma. Connect-based subgoal discovery for options in
hierarchical reinforcement learning. In Third International Conference on Natural Computation
(ICNC 2007), volume 4, pp. 698–702. IEEE, 2007.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey
Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory
embeddings. arXiv preprint arXiv:1806.02813, 2018.

Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 104(2-3):337–357, 2016.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271–278, 1993.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv, 2018.

Bruce L Digney. Learning hierarchical control structures for multiple tasks and changing environ-
ments. 1998.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pp. 647–655, 2014.

9

Under review as a conference paper at ICLR 2020

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Negin Entezari, Mohammad Ebrahim Shiri, and Parham Moradi. A local graph clustering algo-
rithm for discovering subgoals in reinforcement learning. In International Conference on Future
Generation Communication and Networking, pp. 41–50. Springer, 2010.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. arXiv preprint arXiv:1903.00606, 2019.

Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dynamic program-
ming for structured continuous markov decision problems. In Proceedings of the 20th conference
on Uncertainty in artificial intelligence, pp. 154–161. AUAI Press, 2004.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Active markov localization for mobile robots.
Robotics and Autonomous Systems, 25(3-4):195–207, 1998.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-
conditioned policies. arXiv preprint arXiv:1811.07819, 2018.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo Larochelle,
Sergey Levine, and Yoshua Bengio. Infobot: Transfer and exploration via the information
bottleneck. arXiv preprint arXiv:1901.10902, 2019.

Karol Gregor and Frederic Besse. Temporal difference variational auto-encoder. arXiv preprint
arXiv:1806.03107, 2018.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw: A
recurrent neural network for image generation. In ICML, 2015.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, Toby Pohlen, and
Rémi Munos. Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies for
hierarchical reinforcement learning. arXiv preprint arXiv:1804.02808, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In ICLR), 2017.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):21, 2017.

Dinesh Jayaraman, Frederik Ebert, Alexei A Efros, and Sergey Levine. Time-agnostic prediction:
Predicting predictable video frames. arXiv preprint arXiv:1808.07784, 2018.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2013.

10

Under review as a conference paper at ICLR 2020

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Edward Grefenstette, Pushmeet Kohli, and
Peter Battaglia. Compositional imitation learning: Explaining and executing one task at a time.
arXiv preprint arXiv:1812.01483, 2018.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Alberto Quattrini Li, Marios Xanthidis, Jason M O’Kane, and Ioannis Rekleitis. Active localization
with dynamic obstacles. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1902–1909. IEEE, 2016.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J Leonard, David Cox, Peter Corke, and
Michael J Milford. Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1):
1–19, 2015.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research,
8(Oct):2169–2231, 2007.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 71. ACM, 2004.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. 2001.

Jan Hendrik Metzen. Learning graph-based representations for continuous reinforcement learning
domains. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 81–96. Springer, 2013.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422, 2015.

Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol Vinyals, Koray Kavukcuoglu,
et al. Strategic attentive writer for learning macro-actions. arXiv preprint arXiv:1606.04695,
2016a.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016b.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018.

Eric Nalisnick and Padhraic Smyth. Stick-breaking variational autoencoders. arXiv preprint
arXiv:1605.06197, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. ICML, 2017.

Yudha P Pane, Subramanya P Nageshrao, and Robert Babuška. Actor-critic reinforcement learning
for tracking control in robotics. In Decision and Control (CDC), 2016 IEEE 55th Conference on,
pp. 5819–5826. IEEE, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

11

Under review as a conference paper at ICLR 2020

Karl Pertsch, Oleh Rybkin, Jingyun Yang, Kost Derpanis, Joseph Lim, Kostas Daniilidis, and Andrew
Jeable. Keyin: Discovering subgoal structure with keyframe-based video prediction. arXiv, 2019.

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez
Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Advances in neural information processing
systems, pp. 5690–5701, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Wenling Shang, Herk van Hoof, and Max Welling. Stochastic activation actor-critic methods. In
ECML-PKDD, 2019.

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd international conference on
Machine learning, pp. 816–823. ACM, 2005.

Richard S Sutton. Introduction to reinforcement learning, volume 135. 1998.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial
Intelligence, 99(1):21–71, 1998.

Yuandong Tian and Qucheng Gong. Latent forward model for real-time strategy game planning with
incomplete information. In NIPS Symposium, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3540–3549.
JMLR. org, 2017.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In NIPS, 2017.

Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. 2016.

12

Under review as a conference paper at ICLR 2020

A RECURRENT VAE WITH DIFFERENTIABLE BINARY LATENT VARIABLES

As illustrated in the main text, the main objective for the recurrent VAE is the following evidence
lower bound with derivation:

log p(a|s) = log

∫
p(a|s, z)dz

= log

∫
p(a|s, z)p(z|s)q(z|a, s)

q(z|a, s)
dz

= log

∫
p(a|s, z) p(z|s)

q(z|a, s)
q(z|a, s)dz

≥ Eq(z|a,s)[log p(a|s, z)− log
q(z|a, s)
p(z|s)

]

= Eq(z|a,s)[log p(a|s, z)]−DKL(q(z|a, s)||p(z|s))

The inference network qψ takes in the trajectories of state-action pairs τ and at each time step
approximates the posterior of the corresponding latent variable zt. The prior network pψ takes the
state st at each time step and outputs the state-conditioned prior pψ(st). We choose Beta as the prior
distribution and the Hard Kuma as the approximated posterior to relax the discrete latent variables to
continuous surrogates.

The Kuma distribution Kuma(α, β) highly resembles the Beta Distribution in shape but does not
come from the exponential family. Similar to Beta, the Kuma distribution also ranges from bi-
modal (when α ≈ β) to unimodal (α/β → 0 or α/β → ∞). Also, when α = 1 or β = 1,
Kuma(α, β) = Beta(α, β). We observe empirically better performance when we fix β = 1 for the
Kuma approximated posterior. One major advantage of the Kuma distribution is its simple Cumulative
Distribution Function (CDF):

FKuma(x, α, β) = (1− (1− xα))β . (3)

It is therefore amendable to the reparametrization trick (Kingma & Welling, 2013; Rezende et al.,
2014; Maddison et al., 2016) by sampling from uniform distribution u ∼ U(0, 1):

z = F−1Kuma(u;α, β) ∼ Kuma(α, β). (4)

Lastly, the KL-divergence between the Kuma and Beta distributions can be approximated in closed
form (Nalisnick & Smyth, 2016):

DKL(Kuma(a, b)|Beta(α, β)) =
a− α
a

(
−γ −Ψ(b)− 1

b

)
+ log(ab) + log Beta(α, β)− b− 1

b
+ (β − 1)b

∞∑
m=1

1

m+ ab
Beta

(m
a
, b
)
, (5)

where Ψ is the Digamma function, γ the Euler constant, and the approximation uses the first few
terms of the Taylor series expansion. We take the first 5 terms here.

Next, we make the Kuma distribution “hard” by following the steps in Bastings et al. (2019). First
stretch the support to (r = 0− ε1, l = 1 + ε2), ε1, ε2 > 0, and the resulting CDF distribution takes
the form:

FS(z) = FKuma

(
z − l
r − l

;α, β

)
. (6)

Then, the non-eligible probabilities for 0’s and 1’s are attained by rectifying all samples below 0 to 0
and above 1 to 1, and other value as it is, that is

P (z = 0) = FKuma

(
−l
r − l

;α, β

)
, P (z = 1) = 1− FKuma

(
1− l
r − l

;α, β

)
. (7)

Lastly, we impose two additional regularization terms L′ and LT on the approximated posteriors. As
described in the main text, L′ prevents the model from selecting all states to reconstruct {at}T−10

13

Under review as a conference paper at ICLR 2020

by restraining the expected L0 norm of z = (z1 · · · zT−1) to approximately be at a targeted value
µ0 (Louizos et al., 2017; Bastings et al., 2019). In other words, this objective adds the constraint that
there should be µ0 of activated zt = 1 given a sequence of length T . The other term LT encourages
temporally isolated activation of zt, meaning the number of transition between 0 and 1 among zt’s
should roughly be 2µ0. Note that both expectations in Equation 2 have closed forms for HardKuma.

L0 =
∥∥Eq(z|s,a) [‖z‖0]− µ0

∥∥2 , where (8)

Eq(z|s,a) [‖z‖0] =

T∑
t=1

Eq(zt|s,a) [1zt 6=0]

=

T∑
t=1

1− p (zt = 0) =

T∑
t=1

1− FKuma

(
−l
r − l

;αt, βt

)
, (9)

LT = ‖Eq(z|s,a)
T−1∑
t=1

1zt 6=zt+1
− 2µ0‖2, where (10)

Eq(z|s,a)[
T−1∑
t=1

1zt 6=zt+1
] =

T−1∑
t=1

p (zt = 0) (1− p (zt+1 = 0)) + (1− p (zt = 0)) p (zt+1 = 0) .

(11)

Lagrangian Relaxation. The overall optimization objective consists of action sequence reconstruc-
tion, KL-divergence between the posterior and prior, L0 and LT (Equation 12). We tune the objective
weights λi using Lagrangian relaxation (Higgins et al., 2017; Bastings et al., 2019; Bertsekas, 1999),
treating λi’s as learnable parameters and performing alternative optimization between λi’s and the
model parameters. We observe that as long as their initialization is within a reasonable range, λi’s
converge to a local optimum:

max
{λ1,2,3}

min
{θ,φ,ψ}

−Eqψ(z|a,s) [log pθ(a|s, z)] +λ1DKL (qφ(z|a, s)|pψ(z|s)) +λ2L0+λ3LT . (12)

We observe this approach to produce efficient and stable mini-batch training.

B GOAL-CONDITIONED POLICY INITIALIZATION FOR HRL

Optimizing composite neural networks like HRL (Co-Reyes et al., 2018) is sensitive to weight
initialization (Mishkin & Matas, 2015; Le et al., 2015), due to its complexity and lack of clear
supervision at various levels. Therefore, taking inspiration from prevailing pre-training procedures
in computer vision (Russakovsky et al., 2015; Donahue et al., 2014) and NLP (Devlin et al., 2018;
Radford et al., 2019), we take advantage of the weights learned by πg during world graph discovery
when initializing the Worker and Manager policies for downstream HRL, as πg has already implicitly
embodied much environment dynamics information.

More specifically, we extract the weights of the feature extractor, i.e. the state encoder, and use
them as the initial weights for the state encoders of the HRL policies. Our empirical results demon-
strate that such weight initialization consistently improves performance and validates the value of
skill/knowledge transfer from GCP (Taylor & Stone, 2009; Barreto et al., 2017).

C ADDITIONAL IMPLEMENTATION DETAILS

Model code folder including all architecture details is shared in comment.

C.1 HYPERPARAMETERS FOR VAE TRAINING

Our models are optimized with Adam (Kingma & Ba, 2014) using mini-batches of size 128, thus
spawning 128 asynchronous agents to explore. We use an initial learning rate of 0.0001, with
ε = 0.001, β1 = 0.9, β2 = 0.999; gradients are clipped to 40 for inference and generation nets. For
HardKuma, we set l = −0.1 and r = 1.1. The maximum sequence length for BiLSTM is 25. The

14

Under review as a conference paper at ICLR 2020

total number of training iterations is 3600 and model usually converges around 2400 iterations. We
train the prior, inference, and generation networks end-to-end.

We initialize λi’s (see Lagrangian Relaxation) to be λ1 = 0.01 (KL-divergence),λ2 = 0.06 (L0),
λ3 = 0.02 (LT). After each update of the latent model, we update λi’s, whose initial learning rate is
0.0005, by maximizing the original objective in a similar way as using Lagrangian Multiplier. At the
end of optimization, λi’s converge to locally optimal values. For example, with the medium maze,
λ1 = 0.067 for the KL-term, λ2 = 0.070 for the L0 and λ3 = 0.051 for the LT term. The total
number of waypoints |Vp| is set to be 20% of the size of the full state space.

C.2 TRAINING HRL MODELS

The procedure of the Manager and the Worker in sending/receiving orders using either traversal paths
among Vp from replay buffer for deterministic environments or with πg for stochastic ones follows:

1. The Manager gives a wide-narrow subgoal pair (gw, gn).
2. The agent takes action based on the Worker policy πω conditioned on (gw, gn) and reaches

a new state s′. If s′ ∈ Vp, gw has not yet met, and there exists a valid path basing on the
edge paths from the world graph s′ → gw, agent then either follows replay actions or πg to
reach gw. If πg still does not reach desired destination in a certain steps, then stop the agent
wherever it stands; also πg can be finetuned here.

3. The Worker receives positive reward for reaching gw for the first time.
4. If agent reaches gn, the Worker also receives positive rewards and terminates this horizon.
5. The Worker receives negative for every action taken except for during traversal; the Manager

receives negative reward for every action taken including traversal.
6. When either gn is reached or the maximum time step for this horizon is met, the Manager

renews its subgoal pair.

The training of the Worker policy πω follows the same A2C algorithm as πg .

The training of the Manager policy πm also follows a similar procedure but as it operates at a lower
temporal resolution, its value function regresses against the tm-step discounted reward where tm
covers all actions and rewards generated from the Worker.

When using the Wide-then-Narrow instruction, the policy gradient for the Manager policy πm
becomes:

E(st,at)∼π,p,p0 [Am,t∇ log (πω (gw,t|st)πn (gn,t|st, gw,t, sw,t))] +∇ [H (πω) +H (πn(·|gw,t))] ,
where Am,t is the Manager’s advantage at time t. Also, for Manager, as the size of the action space
scales linearly with |S|, the exact entropy for the πm can easily become intractable. Essentially there
are O

(
|V| × (N2)

)
possible actions. To calculate the entropy exactly, all of them has to be summed,

making it easily computationally intractable:

H =
∑
w∈V

∑
wn∈sw

πn(wn|sw, st)πω(w|st) log∇πn(wn|sw, st)πω(w|st).

Thus in practice we resort to an effective alternativeH (πω) +H (πn(·|gw,t)).

Psuedo-code for Manager training is in Algorithm 2.

C.3 HYPERPARAMETERS FOR HRL

For training the HRL policies, we inherit most hyperparameters from those used when training πg , as
the Manager and the Worker both share similar architectures with πg . The hyperparameters used when
training πg follow those from Shang et al. (2019). Because the tasks used in HRL experiments are
more difficult than the generic goal-reaching task, we set the maximal number of training iterations
to 100K abd training is stopped early if model performance reaches a plateau. The rollout steps for
each iteration is 60. Hyperparameters specific to HRL are the horizon c = 20 and the size of the
Manager’s local attention range (that is, the neighborhood around gw within which gn is selected),
which are N = 5 for small and medium mazes, and N = 7 for the large maze.

15

Under review as a conference paper at ICLR 2020

Algorithm 2: Training of πm for HRL models
Initialize network parameters θ for πm, here πm,t refers to the policy at time rollout time step t;
Given a map of V , sV ;
for iter = 0, 1, 2, · · · do

Clear gradients dθ ← 0;
Reset the set of time steps where πm,t omits a new subgoal Sm = {} and tm = 0.;
while t <= tmax or episode not terminated do

Simulate under current policy πm,t−1, πw,t−1;
if the Worker has met the previous subgoal or exceeded the horizon c then

Sample a new subgoal gm,t from πm,t;
zm,t = fLSTM(CNN(sm,t, sV), hm,tm), Vm,t = fv(zm,t), πt = fp(zm,t) ;

end
Sm = Sm ∪ {tm} and tm = t;

end

R =

{
0, if terminal
Vtmax+1, otherwise

;

for t = tmax, · · · 1 do
R← rt + γR;
if t ∈ Sm then

Am,t ← R− Vm,t;
Accumulate gradients from value loss: dθ ← dθ + λ

∂A2
m,t

∂θ ;
Accumulate policy gradients with entropy regularization:
dθ ← dθ +∇ log πm,t(gm,t)Am,t + β∇H(πm,t);

end
end

end

D 2D GRID WORLD VISUALIZATIONS

Initial (Iteration 100) Intermediate (Iteration 1200)

Small Medium
Large

Figure 5: Visualization of the 2D grid environments in our experiments, along with the learned
waypoints in blue.

MultiGoal MultiGoal-Stochastic Door-Key

Initial (Iteration 100)Intermediate (Iteration 1200)

Figure 6: Visualization of tasks in our experiments.

16

	Introduction
	Related Work
	Learning World Graphs
	Waypoint State Identification
	Exploration for World Graph Discovery
	Edge Formation

	Accelerating Reinforcement Learning with World Graphs
	Hierarchical RL over World Graphs
	Wide-then-Narrow Goals and World Graphs
	World Graph Traversal

	Experimental Validation
	Ablation Studies on 2D Grid Worlds

	Conclusion
	Recurrent VAE with Differentiable Binary Latent Variables
	Goal-Conditioned Policy Initialization for HRL
	Additional Implementation Details
	Hyperparameters for VAE training
	Training HRL models
	Hyperparameters for HRL

	2D Grid World Visualizations

