
Extreme Classification in Log Memory using
Count-Min Sketch: A Case Study of Amazon Search

with 50M Products

Tharun Medini∗
Electrical and Computer Engineering

Rice University
Houston, TX 77005

tharun.medini@rice.edu

Qixuan Huang
Computer Science

Rice University
Houston, TX 77005
qh5@rice.edu

Yiqiu Wang
Computer Science

MIT
Cambridge, MA 02139
yiqiuw@mit.edu

Vijai Mohan
Amazon Search

Palo Alto, CA 94301
vijaim@amazon.com

Anshumali Shrivastava
Computer Science

Rice University
Houston, TX 77005

anshumali@rice.edu

Abstract
In the last decade, it has been shown that many hard AI tasks, especially in NLP,
can be naturally modeled as extreme classification problems leading to improved
precision. However, such models are prohibitively expensive to train due to the
memory blow-up in the last layer. For example, a reasonable softmax layer for
the dataset of interest in this paper can easily reach well beyond 100 billion
parameters (> 400 GB memory). To alleviate this problem, we present Merged-
Average Classifiers via Hashing (MACH), a generic K-classification algorithm
where memory provably scales at O(logK) without any strong assumption on
the classes. MACH is subtly a count-min sketch structure in disguise, which
uses universal hashing to reduce classification with a large number of classes
to few embarrassingly parallel and independent classification tasks with a small
(constant) number of classes. MACH naturally provides a technique for zero
communication model parallelism. We experiment with 6 datasets; some multiclass
and some multilabel, and show consistent improvement over respective state-of-
the-art baselines. In particular, we train an end-to-end deep classifier on a private
product search dataset sampled from Amazon Search Engine with 70 million
queries and 49.46 million products. MACH outperforms, by a significant margin,
the state-of-the-art extreme classification models deployed on commercial search
engines: Parabel and dense embedding models. Our largest model has 6.4 billion
parameters and trains in less than 35 hours on a single p3.16x machine. Our training
times are 7-10x faster, and our memory footprints are 2-4x smaller than the best
baselines. This training time is also significantly lower than the one reported by
Google’s mixture of experts (MoE) language model on a comparable model size
and hardware.

1 Introduction
The area of extreme classification has gained significant interest in recent years [8, 20, 2]. In the
last decade, it has been shown that many hard AI problems can be naturally modeled as massive
multiclass or multilabel problems leading to a drastic improvement over prior work. For example,
popular NLP models predict the best word, given the full context observed so far. Such models are
becoming the state-of-the-art in machine translation [24], word embeddings [17], question answering,
etc. For a large dataset, the vocabulary size can quickly run into billions [17]. Similarly, Information

∗Part of this work done while interning at Amazon Search, Palo Alto, CA

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Retrieval, the backbone of modern Search Engines, has increasingly seen Deep Learning models
being deployed in real Recommender Systems [19, 28].

However, the scale of models required by above tasks makes it practically impossible to train
a straightforward classification model, forcing us to use embedding based solutions [18, 25, 4].
Embedding models project the inputs and the classes onto a small dimensional subspace (thereby
removing the intractable last layer). But they have two main bottlenecks: 1) the optimization is done
on a pairwise loss function leading to a huge number of training instances (each input-class pair is a
training instance) and so negative sampling [17] adds to the problem, 2) The loss functions are based
on handcrafted similarity thresholds which are not well understood. Using a standard cross-entropy
based classifier instead intrinsically solves these two issues while introducing new challenges.

One of the datasets used in this paper is an aggregated and sampled product search dataset from
Amazon search engine which consists of 70 million queries and around 50 million products. Consider
the popular and powerful p3.16x machine that has 8 V-100 GPUs each with 16GB memory. Even
for this machine, the maximum number of 32-bit floating point parameters that we can have is 32
billion. If we use momentum based optimizers like Adam [15], we would need 3x parameters for
training because Adam requires 2 auxiliary variables per parameter. That would technically limit
our network parameter space to ≈ 10 billion. A simplest fully connected network with a single
hidden layer of 2000 nodes (needed for good accuracy) and an output space of 50 million would
require 2000× 50× 106 = 100 billion parameters without accounting for the input-to-hidden layer
weights and the data batches required for training. Such model will need > 1.2 TB of memory for
the parameter only with Adam Optimizer.

Model-Parallelism requires communication: The above requirements are unreasonable to train
an end-to-end classification model even on a powerful and expensive p3.16x machine. We will
need sophisticated clusters and distributed training like [22]. Training large models in distributed
computing environments is a sought after topic in large scale learning. The parameters of giant models
are required to be split across multiple nodes. However, this setup requires costly communication and
synchronization between the parameter server and processing nodes in order to transfer the gradient
and parameter updates. The sequential nature of gradient updates prohibits efficient sharding of the
parameters across computer nodes. Ad-hoc model breaking is known to hurt accuracy.

Contrast with Google’s MoE model: A notable work in large scale distributed deep learning with
model parallelism is Google’s ‘Sparsely-Gated Mixture of Experts’ [23]. Here, the authors mix smart
data and model parallelism techniques to achieve fast training times for super-huge networks (with up
to 137 billion parameters). One of their tasks uses the 1 billion word language modelling dataset
that has ≈ 30million unique sentences with a total of 793K words which is much smaller than our
product search dataset. One of the configurations of ‘MoE’ has around 4.37 billion parameters which
is smaller than our proposed model size (we use a total of 6.4 billion, as we will see in section 4.2).
Using 32 k40 GPUs, they train 10 epochs in 47 hrs. Our model trains 10 epochs on 8 V100 GPUs
(roughly similar computing power) in just 34.2 hrs. This signifies the impact of zero-communication
distributed parallelism for training outrageously large networks, which to the best of our knowledge
is only achieved by MACH.

Our Contributions: We propose a simple hashing based divide-and-conquer algorithm MACH
(Merged-Average Classification via Hashing) for K-class classification, which only requires
O(d logK) model size (memory) instead of O(Kd) required by traditional linear classifiers (d
id the dimension of the penultimate layer). MACH also provides computational savings by requiring
only O(Bd logK +K logK) (B is a constant that we’ll see later) multiplications during inference
instead of O(Kd) for the last layer.

Furthermore, the training process of MACH is embarrassingly parallelizable obviating the need of
any sophisticated model parallelism. We provide strong theoretical guarantees (section C in appendix)
quantifying the trade-offs between computations, accuracy and memory. In particular, we show that
in log K√

δ
d memory, MACH can discriminate between any two pair of classes with probability 1− δ.

Our analysis provides a novel treatment for approximation in classification via a distinguishability
property between any pair of classes.

We do not make any strong assumptions on the classes. Our results are for any generic K-class
classification without any relations, whatsoever, between the classes. Our idea takes the existing
connections between extreme classification (sparse output) and compressed sensing, pointed out

2

in [13], to an another level in order to avoid storing costly sensing matrix. We comment about this in
detail in section 3. Our formalism of approximate multiclass classification and its strong connections
with count-min sketches [9] could be of independent interest in itself.

We experiment with multiclass datasets ODP-105K and fine-grained ImageNet-22K; multilabel
datasets Wiki10-31K , Delicious-200K and Amazon-670K; and an Amazon Search Dataset with 70M
queries and 50M products. MACH achieves 19.28% accuracy on the ODP dataset with 105K classes
which is the best reported so far on this dataset, previous best being only 9% [10]. To achieve around
15% accuracy, the model size with MACH is merely 1.2GB compared to around 160GB with the
one-vs-all classifier that gets 9% and requires high-memory servers to process heavy models. On the
50M Search dataset, MACH outperforms the best extreme multilabel classification technique Parabel
by 6% on weighted recall and Deep Semantic Search Model (DSSM, a dense embedding model
tested online on Amazon Search) by 21% (details mentioned in section 4.2.2). We corroborate the
generalization of MACH by matching the best algorithms like Parabel and DisMEC on P@1, P@3
and P@5 on popular extreme classification datasets Amazon-670K, Delicious-200K and Wiki10-31K.

2 Background
We will use the standard [] for integer range, i.e., [l] denotes the integer set from 1 to l: [l] =
{1, 2, · · · , l}. We will use the standard logistic regression settings for analysis. The data D is given
by D = (xi, yi)

N
i=1. xi ∈ Rd will be d dimensional features and yi ∈ {1, 2, · · · , K}, where K

denotes the number of classes. We will drop the subscript i for simplicity whenever we are talking
about a generic data point and only use (x, y). Given an x, we will denote the probability of y (label)
taking the value i, under the given classifier model, as pi = Pr(y = i|x).
2-Universal Hashing: A randomized function h : [l]→ [B] is 2-universal if for all, i, j ∈ [l] with
i 6= j, we have the following property for any z1, z2 ∈ [k]

Pr(h(i) = z1 and h(j) = z2) =
1

B2
(1)

As shown in [6], the simplest way to create a 2-universal hashing scheme is to pick a prime number
p ≥ B, sample two random numbers a, b uniformly in the range [0, p] and compute h(x) =
((ax+ b) mod p) mod B.

Count-Min Sketch: Count-Min Sketch is a widely used approximate counting algorithm to identify
the most frequent elements in a huge stream that we do not want to store in memory.

Assume that we have a stream a1, a2, a3..... where there could be repetition of elements. We
would like to estimate how many times each distinct element has appeared in the stream. The
stream could be very long and the number of distinct elements K could be large. In Count-Min
Sketch [9], we basically assign O(logK) ‘signatures’ to each class using 2-universal hash functions.
We use O(logK) different hash functions H1, H2, H3, ...,HO(logK), each mapping any class i to
a small range of buckets B << K, i.e., Hj(i) ∈ [B]. We maintain a counting-matrix C of order
O(logK) ∗ B. If we encounter class i in the stream of classes, we increment the counts in cells
H1(i), H2(i)....., HO(logK)(i). It is easy to notice that there will be collisions of classes into these
counting cells. Hence, the counts for a class in respective cells could be over-estimates.

During inference, we want to know the frequency of a particular element say a1. We sim-
ply go to all the cells where a1 is mapped to. Each cell gives and over-estimated value
of the original frequency of a1. To reduce the offset of estimation, the algorithm proposes
to take the minimum of all the estimates as the approximate frequency, i.e., napprox(a1) =
min(C[1, H1(i)], C[2, H2(i),, C[logK,HlogK]). An example illustration of Count-Min Sketch
is given in figure 4 in appendix.

3 Our Proposal: Merged-Averaged Classifiers via Hashing (MACH)
MACH randomly mergesK classes intoB random-meta-classes or buckets (B is a small, manageable
number). We then run any off-the-shelf classifier, such as logistic regression or a deep network, on
this meta-class classification problem. We then repeat the process independently R = O(logK)
times each time using an independent 2-universal hashing scheme. During prediction, we aggregate
the output from each of the R classifiers to obtain the predicted class. We show that this simple
scheme is theoretically sound and only needs logK memory in Theorem 2. We present Information
theoretic connections of our scheme with compressed sensing and heavy hitters. Figure 1 broadly
explains our idea.

3

Formally, we use R, independently chosen, 2-universal hash functions hi : [K] → [B], i =
{1, 2, · · · , R}. Each hi uniformly maps the K classes into one of the B buckets. B and R are our
parameters that we can tune to trade accuracy with both computations and memory. B is usually a
small constant like 10 or 50. Given the data {xi, yi}Ni=1, it is convenient to visualize that each hash
function hj , transforms the data D into Dj = {xi, hj(yi)}Ni=1. We do not have to materialize the
hashed class values for all small classifiers, we can simply access the class values through hj . We
then train R classifiers, one on each of these Dj’s to get R models Mjs. This concludes our training
process. Note that each hj is independent. Training R classifiers is trivially parallelizable across R
machines or GPUs.

We need a few more notations. Each meta-classifier can only classify among the merged meta-classes.
Let us denote the probability of the meta-class b ∈ [B], with the jth classifier with capitalized P jb . If
the meta-class contains the class i, i.e. hj(i) = b, then we can also write it as P jhj(i).

Before we describe the prediction phase, we have following theorem (proved in Section C in appendix).

Theorem 1

E
[

B

B − 1

[
1

R

R∑
j=1

P jhj(i)(x)−
1

B

]]
= Pr

(
y = i

∣∣∣∣x) = pi (2)

Figure 1: Outline of MACH. We hash each class
into B bins using a 2-universal hash function. We
use R different hash functions and assign different
signatures to each of the K classes. We then train
R independent B class classifiers (B << K)

In theorem 1, P jhj(i)(x) is the predicted proba-
bility of meta-class hj(i) under the jth model
(Mj), for given x. It’s easy to observe
that the true probability of a class grows lin-
early with the sum of individual meta-class
probabilities (with multiplier of B

R∗(B−1) and
a shift of −1

B−1). Thus, our classification
rule is given by argmaxi Pr(y = i|x) =

argmaxi
∑R
j=1 P

j
hj(i)

(x). The pseudocode for
both training and prediction phases is given in
Algorithms 1 and 2 in appendix.

Clearly, the total model size of MACH is
O(RBd) to store R models of size Bd each.
The prediction cost requires RBd multiplica-
tions to get meta probabilities, followed by KR
to compute equation 1 for each of the classes.
The argmax can be calculated on the fly. Thus,
the total cost of prediction isRBd+KR. Since
R models are independent, both the training and
prediction phases are conducive to trivial par-
allellization. Hence, the overall inference time
can be brought down to Bd+KR.

To obtain significant savings on both model size
and computation, we want BR� K. The sub-
sequent discussion shows that BR ≈ O(logK)
is sufficient for identifying the final class with
high probability.

Definition 1 Indistinguishable Class Pairs: Given any two classes c1 and c2 ∈ [K], they are
indistinguishable under MACH if they fall in the same meta-class for all the R hash functions, i.e.,
hj(c1) = hj(c2) for all j ∈ [R].

Otherwise, there is at least one classifier which provides discriminating information between them.
Given that the only sources of randomness are the independent 2-universal hash functions, we can
have the following lemma:

4

Lemma 1 Using MACH with R independent B-class classifier models, any two original classes c1
and c2 ∈ [K] will be indistinguishable with probability at most

Pr(classes i and j are indistinguishable) ≤
(

1

B

)R
(3)

There are total K(K−1)
2 ≤ K2 possible pairs, and therefore, the probability that there exist at least

one pair of classes, which is indistinguishable under MACH is given by the union bound as

Pr(∃ an indistinguishable pair) ≤ K2

(
1

B

)R
(4)

Thus, all we need is K2

(
1
B

)R
≤ δ to ensure that there is no indistinguishable pair with probability

≥ 1− δ. Overall, we get the following theorem:

Theorem 2 For any B, R =
2 log K√

δ

logB guarantees that all pairs of classes ci and cj are distinguishable
(not indistinguishable) from each other with probability greater than 1 − δ.

The extension of MACH to multilabel setting is quite straightforward as all that we need is to change
softmax cross-entropy loss to binary cross-entropy loss. The training and evaluation is similar to the
multiclass classification.

Connections with Count-Min Sketch: Given a data instance x, a vanilla classifier outputs the
probabilities pi, i ∈ {1, 2, ..., K}. We want to essentially compress the information of these K
numbers to logK measurements. In classification, the most informative quantity is the identity
of argmax pi. If we can identify a compression scheme that can recover the high probability
classes from smaller measurement vector, we can train a small-classifier to map an input to these
measurements instead of the big classifier.

The foremost class of models to accomplish this task are Encoder and Decoder based models like
Compressive Sensing [3]. The connection between compressed sensing and extreme classification
was identified in prior works [13, 11]. In [13], the idea was to use a compressed sensing matrix to
compress the K dimensional binary indicator vector of the class yi to a real number and solve a
regression problem. While Compressive Sensing is theoretically very compelling, recovering the
original predictions is done through iterative algorithms like Iteratively Re-weighted Least Squares
(IRLS)[12] which are prohibitive for low-latency systems like online predictions. Moreover, the
objective function to minimize in each iteration involves the measurement matrix A which is by itself
a huge bottleneck to have in memory and perform computations. This defeats the whole purpose of
our problem since we cannot afford O(K ∗ logK) matrix.

Why only Count-Min Sketch? : Imagine a set of classes {cats, dogs, cars, trucks}. Suppose
we want to train a classifier that predicts a given compressed measurement of classes: {0.6 ∗ pcars +
0.4 ∗ p(cats), 0.5 ∗ p(dogs) + 0.5 ∗ p(trucks)}, where p(class) denotes the probability value of
class. There is no easy way to predict this without training a regression model. Prior works attempt
to minimize the norm between the projections of true (0/1) K-vector and the predicted logK-vectors
(like in the case of [13]). For a large K, errors in regression is likely to be very large.

On the other hand, imagine two meta classes {[cars & trucks], [cats & dogs]}. It is easier for a
model to learn how to predict whether a data point belongs to ‘cars& trucks’ because the probability
assigned to this meta-class is the sum of original probabilities assigned to cars and trucks. By virtue
of being a union of classes, a softmax-loss function works very well. Thus, a subtle insight is that
only (0/1) design matrix for compressed sensing can be made to work here. This is precisely why a
CM sketch is ideal.

It should be noted that another similar alternative Count-Sketch [7] uses [−1, 0, 1] design matrix. This
formulation creates meta-classes of the type [cars & not trucks] which cannot be easily estimated.
4 Experiments
We experiment with 6 datasets whose description and statistics are shown in table 5 in appendix. The
training details and P@1,3,5 on 3 multilabel datasets Wiki10-31K, Delicious-200K and Amazon-
670K are also discussed in section D.3 in appendix. The brief summary of multilabel results is that

5

Dataset (B, R) Model size
Reduction

Training Time Prediction Time per
Query

Accuracy

ODP (32, 25) 125x 7.2hrs 2.85ms 15.446%
Imagenet (512, 20) 2x 23hrs 8.5ms 10.675%

Table 1: Wall Clock Execution Times and accuracies for two runs of MACH on a single Titan X.

MACH consistently outperforms tree-based methods like FastXML [20] and PfastreXML [14] by
noticeable margin. It mostly preserves the precision achieved by the best performing algorithms like
Parabel [19] and DisMEC [2] and even outperforms them on half the occasions.
4.1 Multiclass Classification
We use the two large public benchmark datasets ODP and ImageNet from [10].

All our multiclass experiments were performed on the same server with Geforce GTX TITAN X,
Intel(R) Core(TM) i7-5960X 8-core CPU @ 3.00GHz and 64GB memory. We used Tensorflow [1]
to train each individual model Mi and obtain the probability matrix Pi from model Mi. We use
OpenCL to compute the global score matrix that encodes the score for all classes [1,K] in testing
data and perform argmax to find the predicted class. Our codes and scripts are hosted at the repository
https://github.com/Tharun24/MACH/.

Figure 2: Accuracy Resource tradeoff with MACH (bold lines) for various settings of R and B. The
number of parameters are BRd while the prediction time requires KR+BRd operations. All the
runs of MACH requires less memory than OAA. The straight line are accuracies of OAA, LOMTree
and Recall Tree (dotted lines) on the same partition taken from [10]. LOMTree and Recall Tree uses
more (around twice) the memory required by OAA. Left: ODP Dataset. Right: Imagenet Dataset
4.1.1 Accuracy Baselines
On these large benchmarks, there are three published methods that have reported successful evalua-
tions – 1) OAA, traditional one-vs-all classifiers, 2) LOMTree and 3) Recall Tree. The results of
all these methods are taken from [10]. OAA is the standard one-vs-all classifiers whereas LOMTree
and Recall Tree are tree-based methods to reduce the computational cost of prediction at the cost of
increased model size. Recall Tree uses twice as much model size compared to OAA. Even LOMtree
has significantly more parameters than OAA. Thus, our proposal MACH is the only method that
reduces the model size compared to OAA.
4.1.2 Results and Discussions
We run MACH on these two datasets varying B and R. We used plain cross entropy loss without any
regularization. We plot the accuracy as a function of different values of B and R in Figure 2. We use
the unbiased estimator given by Equation 1 for inference as it is superior to other estimators (See
section D.2 in appendix for comparison with min and median estimators).

The plots show that for ODP dataset MACH can even surpass OAA achieving 18% accuracy while
the best-known accuracy on this partition is only 9%. LOMtree and Recall Tree can only achieve
6-6.5% accuracy. It should be noted that with 100,000 classes, a random accuracy is 10−5. Thus,
the improvements are staggering with MACH. Even with B = 32 and R = 25, we can obtain more
than 15% accuracy with 105,000

32×25 = 120 times reduction in the model size. Thus, OAA needs 160GB
model size, while we only need around 1.2GB. To get the same accuracy as OAA, we only need
R = 50 and B = 4, which is a 480x reduction in model size requiring mere 0.3GB model file.

On ImageNet dataset, MACH can achieve around 11% which is roughly the same accuracy of
LOMTree and Recall Tree while using R = 20 and B = 512. With R = 20 and B = 512, the

6

https://github.com/Tharun24/MACH/

memory requirement is 21841
512×20 = 2 times less than that of OAA. On the contrary, Recall Tree and

LOMTree use 2x more memory than OAA. OAA achieves the best result of 17%. With MACH, we
can run at any memory budget.

In table 1, we have compiled the running time of some of the reasonable combination and have shown
the training and prediction time. The prediction time includes the work of computing probabilities of
meta-classes followed by sequential aggregation of probabilities and finding the class with the max
probability. The wall clock times are significantly faster than the one reported by RecallTree, which
is optimized for inference.
4.2 Information Retrieval with 50 million Products
After corroborating MACH’s applicability on large public extreme classification datasets, we move
on to the much more challenging real Information Retrieval dataset with 50M classes to showcase
the power of MACH at scale. As mentioned earlier, we use an aggregated and sub-sampled search
dataset mapping queries to product purchases. Sampling statistics are hidden to respect Amazon’s
disclosure policies.

The dataset has 70.3 M unique queries and 49.46 M products. For every query, there is atleast one
purchase from the set of products. Purchases have been amalgamated from multiple categories and
then uniformly sampled. The average number of products purchased per query is 2.1 and the average
number of unique queries per product is 14.69.

For evaluation, we curate another 20000 unique queries with atleast one purchase among the afore-
mentioned product set. These transactions sampled for evaluation come from a time-period that
succeeds the duration of the training data. Hence, there is no temporal overlap between the transac-
tions. Our goal is to measure whether our top predictions contain the true purchased products, i.e.,
we are interested in measuring the purchase recall.

For measuring the performance on Ranking, for each of the 20000 queries, we append ‘seen but not
purchased’ products along with purchased products. To be precise, every query in the evaluation
dataset has a list of products few of which have been purchased and few others that were clicked but
not purchased (called ‘seen negatives’). On an average, each of the 20000 queries has 14 products of
which ≈ 2 are purchased and the rest are ‘seen negatives’. Since products that are only ‘seen’ are
also relevant to the query, it becomes challenging for a model to selectively rank purchases higher
than another related products that were not purchased. A good model should be able to identify these
subtle nuances and rank purchases higher than just ‘seen’ ones.

Each query in the dataset has sparse feature representation of 715K comprising of 125K frequent word
unigrams, 20K frequent bigrams and 70K character trigrams and 500K reserved slots for hashing
out-of-vocabulary tokens.

Architecture Since MACH fundamentally trains many small models, an input dimension of 715K is
too large. Hence, we use sklearn’s murmurhash3_32 package and perform feature hashing [27]
to reduce the input dimension to 80K (empirically observed to have less information loss). We use
a feed forward neural network with the architecture 80K-2K-2K-B for each of R classifiers. 2000
is the embedding dimension for a query, another 2000 is the hidden layer dimension and the final
output layer is B dimensional where we report the metrics with B = 10000 and B = 20000. For
each B, we train a maximum of 32 repetitions ,i.e., R = 32. We show the performance trend as R
goes from 2,4,8,16,32.

Metrics Although we pose the Search problem as a multilabel classification model, the usual precision
metric is not enough to have a clear picture. In product retrieval, we have a multitude of metrics in
consideration (all metrics of interest are explained in section E in appendix). Our primary metric is
weighted Recall@100 (we get the top 100 predictions from our model and measure the recall) where
the weights come from number of sessions. To be precise, if a query appeared in a lot of sessions,
we prioritize the recall on those queries as opposed to queries that are infrequent/unpopular. For
example, if we only have 2 queries q1 and q2 which appeared in n1 and n2 sessions respectively. The
wRecall@100 is given by (recall@100(q1) ∗ n1 + recall@100(q2) ∗ n2)/(n1 + n2). Un-weighted
recall is the simple mean of Recall@100 of all the queries.
4.2.1 Baselines
Parabel: A natural comparison would arise with the recent algorithm ‘Parabel’ [19] as it has been
used in Bing Search Engine to solve a 7M class challenge. We compare our approach with the publicly
available code of Parabel. We vary the number of trees among 2,4,8,16 and chose the maximum

7

number of products per leaf node to vary among 100, 1000 and 8000. We have experimented with a
few configurations of Parabel and figured out that the configuration with 16 trees each with 16300
nodes (setting the maximum number of classes in each leaf node to 8000) gives the best performance.
In principle, number of trees in Parabel can be perceived as number of repetitions in MACH. Similarly,
number of nodes in each tree in Parabel is equivalent to number of buckets B in MACH. We could
not go beyond 16 trees in Parabel as the memory consumption was beyond limits (see Table 2).

Deep Semantic Search Model (DSSM): We tried running the publicly available C++ code of
AnnexML [25] (graph embedding based model) by varying embedding dimension and number of
learners. But none of the configurations could show any progress even after 5 days of training. The
next best embedding model SLEEC [4] has a public MATLAB code but it doesn’t scale beyond 1
million classes (as shown in extreme classification repository [16]).

In the wake of these scalability challenges, we chose to compare against a dense embedding model
DSSM [18] that was A/B tested online on Amazon Search Engine. This custom model learns an
embedding matrix that has a 256 dimensional dense vectors for each token (tokenized into word
unigrams, word bigrams, character trigrams as mentioned earlier). This embedding matrix is shared
across both queries and products. Given a query, we first tokenize it, perform a sparse embedding
lookup from the embedding matrix and average the vectors to yield a vector representation. Similarly,
given a product (in our case, we use the title of a product), we tokenize it and perform sparse
embedding lookup and average the retrieved vectors to get a dense representation. For every query,
purchased products are deemed to be highly relevant. These product vectors are supposed to be
‘close’ to the corresponding query vectors (imposed by a loss function). In addition to purchased
products, 6x number of random products are sampled per query. These random products are deemed
irrelevant by a suitable loss function.

Objective Function: All the vectors are unit normalized and the cosine similarity between two
vectors is optimized. For a query-product pair that is purchased, the objective function enforces the
cosine similarity to be > θp (p for purchased). For a query-product pair that’s deemed to be irrelevant,
the cosine similarity is enforced to be < θr (r for random).

Given the cosine similarity s between a query-document pair and a label l (indicating p, r), the overall
loss function is given as loss(s, l) = Ip(l) ∗min2(0, s − θp) + Ir(l) ∗max2(0, s − θr) for the
embedding model. The thresholds used during online testing were θp = 0.9 and θr = 0.1.

4.2.2 Results

Figure 3: Comparison of our proposal MACH to
Parabel and Embedding model.

Figure 3 shows the recall@100 for
R=2,4,8,16,32 after 1,5 and 10 epochs re-
spectively. The dotted red/blue/green lines
correspond to MACH with B = 20K and
the solid red/blue/green lines correspond to
B = 10K. The cyan and magenta lines
correspond to Parabel algorithm with the
number of trees being 2,4,8,16 end epochs
being 1 and 5 respectively. We couldn’t go
beyond 16 trees for Parabel because the peak
memory consumption during both training and
testing was reaching the limits of the AWS
p3.16x machine that we used (64 vcpus, 8
V-100 NVIDIA Tesla GPUs, 480 GB Memory).
The yellow line corresponds to the dense
embedding based model. The training time and
memory consumption is given in table 2.

Since calculating all Matching and Ranking met-
rics with the entire product set of size 49.46 M is cumbersome, we come up with a representative
comparison by limiting the products to just 1 M. Across all the 20000 queries in the evaluation dataset,
there are 32977 unique purchases. We first retain these products and then sample the remaining
967023 products randomly from the 49.46 M products. Then we use our model and the baseline
models to obtain a 20K*1 M score matrix. We then evaluate all the metrics on this sub-sampled
representative score matrix. Tables 3 and 4 show the comparison of various metrics for MACH vs
Parabel vs Embedding model.

8

Model epochs wRecall Total training time Memory(Train) Memory (Eval) #Params
DSSM, 256
dim

5 0.441 316.6 hrs 40 GB 286 GB 200 M

Parabel,
num_trees=16

5 0.5810 232.4 hrs (all 16 trees
in parallel)

350 GB 426 GB -

MACH,
B=10K, R=32

10 0.6419 31.8 hrs (all 32 repe-
titions in parallel)

150 GB 80 GB 5.77 B

MACH,
B=20K, R=32

10 0.6541 34.2 hrs (all 32 repe-
titions in parallel)

180 GB 90 GB 6.4 B

Table 2: Comparison of the primary metric weighted_Recall@100, training time and peak memory
consumption of MACH vs Parabel vs Embedding Model. We could only train 16 trees for Parabel as
we reached our memory limits

Metric Embedding Parabel MACH, B=10K, R=32 MACH, B=20K, R=32
map_weighted 0.6419 0.6335 0.6864 0.7081
map_unweighted 0.4802 0.5210 0.4913 0.5182
mrr_weighted 0.4439 0.5596 0.5393 0.5307
mrr_unweighted 0.4658 0.5066 0.4765 0.5015
ndcg_weighted 0.7792 0.7567 0.7211 0.7830
ndcg_unweighted 0.5925 0.6058 0.5828 0.6081
recall_weighted 0.8391 0.7509 0.8344 0.8486
recall_unweighted 0.8968 0.7717 0.7883 0.8206

Table 3: Comparison of Matching metrics for MACH vs Parabel vs Embedding Model. These metrics
are for representative 1M products as explained.

Metric Embedding Parabel MACH, B=10K, R=32 MACH, B=20K, R=32
ndcg_weighted 0.7456 0.7374 0.7769 0.7749
ndcg_unweighted 0.6076 0.6167 0.6072 0.6144
mrr_weighted 0.9196 0.9180 0.9414 0.9419
mrr_unweighted 0.516 0.5200 0.5200 0.5293
mrr_most_rel_weighted 0.5091 0.5037 0.5146 0.5108
mrr_most_rel_unweighted 0.4671 0.4693 0.4681 0.4767
prec@1_weighted 0.8744 0.8788 0.9109 0.9102
prec@1_unweighted 0.3521 0.3573 0.3667 0.3702
prec@1_most_rel_weighted 0.3776 0.3741 0.3989 0.3989
prec@1_most_rel_unweighted0.3246 0.3221 0.3365 0.3460

Table 4: Comparison of Ranking metrics. These metrics are for curated dataset where each query has
purchases and ‘seen negatives’ as explained in 4.2. We rank purchases higher than ‘seen negatives’.

4.2.3 Analysis
MACH achieves considerably superior wRecall@100 compared to Parabel and the embedding model
(table 2). MACH’s training time is 7x smaller than Parabel and 10x smaller than embedding model
for the same number of epochs. This is expected because Parabel has a partial tree structure which
cannot make use of GPUs like MACH. And the embedding model trains point wise loss for every
query-product pair unlike MACH which trains a multilabel cross-entropy loss per query. Since the
query-product pairs are huge, the training time is very high. Memory footprint while training is
considerably low for embedding model because its training just an embedding matrix. But during
evaluation, the same embedding model has to load all 256 dimensional vectors for products in
memory for a nearest neighbour based lookup. This causes the memory consumption to grow a lot
(this is more concerning if we have limited GPUs). Parabel has high memory consumption both while
training and evaluation.

We also note that MACH consistently outperforms other two algorithms on Matching and Ranking
metrics (tables 3 and 4). Parabel seems to be better on MRR for matching but the all important recall
is much lower than MACH.

9

Acknowledgments

The work was supported by NSF-1652131, NSF-BIGDATA 1838177, AFOSR-YIPFA9550-18-1-
0152, Amazon Research Award, and ONR BRC grant for Randomized Numerical Linear Algebra.

We thank Priyanka Nigam from Amazon Search for help with data pre-processing, running the
embedding model baseline and getting Matching and Ranking Metrics. We also thank Choon-Hui Teo
and SVN Vishwanathan for insightful discussions about MACH’s connections to different Extreme
Classification paradigms.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[2] Rohit Babbar and Bernhard Schölkopf. Dismec: distributed sparse machines for extreme
multi-label classification. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, pages 721–729. ACM, 2017.

[3] Richard G Baraniuk. Compressive sensing [lecture notes]. IEEE signal processing magazine,
24(4):118–121, 2007.

[4] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse
local embeddings for extreme multi-label classification. In Advances in Neural Information
Processing Systems, pages 730–738, 2015.

[5] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,
2006.

[6] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings
of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pages 693–703.
Springer, 2002.

[8] Anna E Choromanska and John Langford. Logarithmic time online multiclass prediction. In
Advances in Neural Information Processing Systems, pages 55–63, 2015.

[9] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[10] Hal Daume III, Nikos Karampatziakis, John Langford, and Paul Mineiro. Logarithmic time
one-against-some. arXiv preprint arXiv:1606.04988, 2016.

[11] Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of artificial intelligence research, 2:263–286, 1995.

[12] Peter J Green. Iteratively reweighted least squares for maximum likelihood estimation, and
some robust and resistant alternatives. Journal of the Royal Statistical Society. Series B
(Methodological), pages 149–192, 1984.

[13] Daniel J Hsu, Sham M Kakade, John Langford, and Tong Zhang. Multi-label prediction via
compressed sensing. In Advances in neural information processing systems, pages 772–780,
2009.

[14] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for
recommendation, tagging, ranking & other missing label applications. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 935–944. ACM, 2016.

10

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Himanshu Jain Yashoteja Prabhu Manik Varma Kush Bhatia, Kunal Dahiya. The extreme
classification repository: Multi-label datasets code. http://manikvarma.org/downloads/
XC/XMLRepository.html#Prabhu14.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[18] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitan Ding, Ankit Shingavi,
Choon Hui Teo, Hao Gu, and Bing Yin. Semantic product search. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
2876–2885. ACM, 2019.

[19] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel:
Partitioned label trees for extreme classification with application to dynamic search advertising.
In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pages 993–1002.
International World Wide Web Conferences Steering Committee, 2018.

[20] Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 263–272. ACM, 2014.

[21] Tim Roughgarden and Gregory Valiant. Approximate heavy hitters and the count-min sketch.
http://theory.stanford.edu/~tim/s17/l/l2.pdf. Accessed: 2016-03-30.

[22] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow:
Deep learning for supercomputers. In Advances in Neural Information Processing Systems,
pages 10435–10444, 2018.

[23] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[25] Yukihiro Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label clas-
sification. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 455–464. ACM, 2017.

[26] Manik Varma. Extreme Classification Repository. http://manikvarma.org/downloads/
XC/XMLRepository.html.

[27] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1113–1120. ACM, 2009.

[28] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983. ACM, 2018.

Appendix:MACH
A Count-Min Sketch

Count-Min Sketch is a widely used approximate counting algorithm to identify the most frequent
elements in a huge stream that we do not want to store in memory. An example illustration of
Count-Min Sketch is given in figure 4.

11

http://manikvarma.org/downloads/XC/XMLRepository.html#Prabhu14
http://manikvarma.org/downloads/XC/XMLRepository.html#Prabhu14
http://theory.stanford.edu/~tim/s17/l/l2.pdf
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

Figure 4: Illustration of count-min sketch for a stream of letters ABCAACD. The hash codes for each
letter for 4 different hash functions is shown on the left and the accumulated counts for each of the
letter in the stream is shown on the right

B Pseudocode

Algorithm 1 Train
1: Data: D = (X,Y) =

(xi, yi)
N
i=1. xi ∈ Rd yi ∈

{1, 2, · · · , K}
2: Input: B,R
3: Output: R trained classifiers
4: initialize R 2-universal hash

functions h1, h2, ...hR
5: initialize result as an empty list

6: for i = 1 : R do
7: Yhi ← hi(Y)
8: Mi =

trainClassifier(X,Yhi)
9: Append Mi to result

10: end for
11: Return result

Algorithm 2 Predict
1: Data: D = (X,Y) = (xi, yi)

N
i=1. xi ∈ Rd

yi ∈ {1, 2, · · · , K}
2: Input: M =M1,M2, ...,MR

3: Output: N predicted labels
4: load R 2-universal hash functions
h1, h2, ...hR used in training

5: initialize P as a an empty list
6: initialize G as a (|N | ∗K) matrix
7: for i = 1 : R do
8: Pi = getProbability(X,Mi)
9: Append Pi to P

10: end for
11: for j = 1 : K do
12: /* G[:, j] indicates the jth column in matrix

G */
13: G[:, j] = (

∑R
r=1 Pr[:, hr(j)])/R

14: end for
15: Return: argmax(G, axis=1)

C Theoretical Analysis

We begin with re-emphasizing that we do not make any assumption on the classes, and we do not
assume any dependencies between them. As noted before, we use R independent B-class classifiers
each. Classification algorithms such as logistic regression and deep networks models the probability
Pr(y = i|x) = pi. For example, the famous softmax or logistic modelling uses Pr(y = i|x) = eθi·x

Z ,
where Z is the partition function. With MACH, we use R 2-universal hash functions. For every hash
function j, we instead model Pr(y = b|x) = P jb , where b ∈ [B]. Since b is a meta-class, we can
also write P jb as

P jb =
∑

i:hj(i)=b

pi; 1 =

K∑
i=1

pi =
∑
b∈[B]

P jb ∀j (5)

With the above equation, given the R classifier models, an unbiased estimator of pi is:

Theorem 1:

E
[

B

B − 1

[
1

R

R∑
j=1

P jhj(i)(x)−
1

B

]]
= Pr

(
y = i

∣∣∣∣x) = pi

Proof : Since the hash function is universal, we can always write

P jh(i) = pi +
∑
k 6=i

1h(k)=h(i)pk,

where 1h(k)=h(i) is an indicator random variable with expected value of 1
B . Thus E(P jh(i)) =

pi +
1
B

∑
k 6=i pk = pi + (1 − pi)

1
B . This is because the expression

∑
k 6=i pk = 1 − pi as the

12

total probability sum up to one (assuming we are using logistic type classfiers). Simplifying,
we get pi = B

B−1 (E(P jh(i)(x) −
1
B). It is not difficult to see that this value is also equal to

E
[

B
B−1

[
1
R

∑R
j=1 P

j
hj(i)

(x) − 1
B

]]
using linearity of expectation and the fact that E(P jh(i)) =

E(P kh(i)) for any j 6= k.

Definition 1 Indistinguishable Class Pairs: Given any two classes c1 and c2 ∈ [K], they are
indistinguishable under MACH if they fall in the same meta-class for all the R hash functions, i.e.,
hj(c1) = hj(c2) for all j ∈ [R].

Otherwise, there is at least one classifier which provides discriminating information between them.
Given that the only sources of randomness are the independent 2-universal hash functions, we can
have the following lemma:

Lemma 1 MACH with R independent B-class classifier models, any two original classes c1 and c2
∈ [K] will be indistinguishable with probability at most

Pr(classes i and j are indistinguishable) ≤
(

1

B

)R
(6)

There are total K(K−1)
2 ≤ K2 possible pairs, and therefore, the probability that there exist at least

one pair of classes, which is indistinguishable under MACH is given by the union bound as

Pr(∃ an indistinguishable pair) ≤ K2

(
1

B

)R
(7)

Thus, all we need is K2

(
1
B

)R
≤ δ to ensure that there is no indistinguishable pair with probability

≥ 1− δ. Overall, we get the following theorem:

Theorem 2: For any B, R =
2 log K√

δ

logB guarantees that all pairs of classes ci and cj are distinguishable
(not indistinguishable) from each other with probability greater than 1− δ.

Our memory cost is BRd to guarantee all pair distinguishably with probability 1 − δ, which is

equal to
2 log K√

δ

logB Bd. This holds for any constant value of B ≥ 2. Thus, we bring the dependency
on memory from O(Kd) to O(logKd) in general with approximations. Our inference cost is
2 log K√

δ

logB Bd+
2 log K√

δ

logB K which is O(K logK + d logK), which for high dimensional dataset can be
significantly smaller than Kd.

C.1 Subtlety of MACH

The measurements in Compressive Sensing are not a probability distribution but rather a few linear
combinations of original probabilities. Imagine a set of classes {cats, dogs, cars, trucks}. Suppose
we want to train a classifier that predicts a compressed distribution of classes like {0.6 ∗ cars+ 0.4 ∗
cats, 0.5 ∗ dogs+ 0.5 ∗ trucks}. There is no intuitive sense to these classes and we cannot train a
model using softmax-loss which has been proven to work the best for classification. We can only
attempt to train a regression model to minimize the norm(like L1-norm or L2-norm) between the
projections of true K-vector and the predicted K-vectors(like in the case of [13]). This severely
hampers the learnability of the model as classification is more structured than regression. On the
other hand, imagine two conglomerate or meta classes {[cars and trucks], [cats and dogs]}. It is
easier for a model to learn how to predict whether a data point belongs to ‘cars and trucks’ because
the probability assigned to this meta-class is the sum of original probabilities assigned to cars and
trucks. By virtue of being a union of classes, a softmax-loss function would work very well unlike
the case of Compressive Sensing.

This motivates us to look for counting based algorithms with frequencies of grouped classes. We
can pose our problem of computing a logK-vector that has information about all K probabilities
as the challenge of computing the histogram of K-classes as if they were appearing in a stream

13

where at each time, we pick a class i independently with probability pi. This is precisely the classic
Heavy-Hitters problem[21].

If we assume that max pi ≥ 1
m , for sufficiently small m ≤ K, which should be true for any good

classifier. We want to identify argmax pi with
∑
pi = 1 and max pi ≥ 1

m

∑
pi by storing sub-linear

information.

Count-Min Sketch [9] is the most popular algorithm for solving this heavy hitters problem over
positive streams. Please refer to section 2 for an explanation of Count-Min Sketch. Our method of
using R universal hashes with B range is precisely the normalized count-min sketch measurements,
which we know preserve sufficient information to identify heavy hitters (or sparsity) under good
signal-to-noise ratio. Thus, if max pi (signal) is larger than pj , j 6= i (noise), then we should be
able to identify the heavy co-ordinates (sparsity structure) in sparsity × logK measurements (or
memory) [5].

D Experiments

D.1 Datasets

Name Type #Train #Test #Classes #Features
ODP Text 1084404 493014 105033 422713
Fine-grained Imagenet Images 12777062 1419674 21841 6144
Wiki10-31K Text 14146 6616 30938 101938
Delicious-200K Text/Social Networks 196606 100095 205443 782585
Amazon-670K Recommendations 490449 153025 670091 135909
Amazon Search
Dataset Information Retrieval 70301491 20000 49462358 715000

Table 5: Statistics of all 6 datasets. First 2 are multiclass, next 3 are multilabel and the last is a real
Search Dataset

1) ODP: ODP is a multiclass dataset extracted from Open Directory Project, the largest, most
comprehensive human-edited directory of the Web. Each sample in the dataset is a document, and the
feature representation is bag-of-words. The class label is the category associated with the document.
The dataset is obtained from [8]. The input dimension d, number of classes K, training samples and
testing samples are 422713, 105033, 1084404 and 493014 respectively.

2) Fine-Grained ImageNet: ImageNet is a dataset consisting of features extracted from an interme-
diate layer of a convolutional neural network trained on the ILVSRC2012 challenge dataset. Please
see [8] for more details. The class label is the fine-grained object category present in the image.
The input dimension d, number of classes K, training samples and testing samples are 6144, 21841,
12777062 and 1419674 respectively.

3) Delicious-200K: Delicious-200K dataset is a sub-sampled dataset generated from a vast corpus of
almost 150 million bookmarks from Social Bookmarking Systems, del.icio.us. The corpus records all
the bookmarks along with a description, provided by users (default as the title of the website), an
extended description and tags they consider related.

4) Amazon-670K: Amazon-670K dataset is a product recommendation dataset with 670K labels.
Here, each input is a vector representation of a product, and the corresponding labels are other
products (among 670K choices) that a user might be interested in purchase. This is an anonymized
and aggregated behavior data from Amazon and poses a significant challenge owing to a large number
of classes.

D.2 Effect of Different Estimators

Once we have identified that our algorithm is essentially count-min sketch in disguise, it naturally
opens up two other possible estimators, in addition to Equation 1 for pi. The popular min estimator,
which is used in traditional count-min estimator given by:

p̂i
min = min

j
P jhj(i)(x). (8)

14

Dataset Unbiased Min Median
ODP 15.446 12.212 14.434
Imagenet 10.675 9.743 10.713

Table 6: Classification accuracy with three different estimators from sketches (see section D.2 for
details). The training configuration are given in Table 2 in main paper

We can also use the median estimator used by count-median sketch [7] which is another popular
estimator from the data streams literature:

p̂i
med = median

j
P jhj(i)(x). (9)

The evaluation with these two estimators, the min and the median, is shown in table 6. We use the
same trained multiclass model from main paper and use three different estimators, the original mean
estimator in main paper along with Eqn.s 8 and 9 respectively, for estimating the probability. The
estimation is followed by argmax to infer the class label. It turns out that our unbiased estimator
shown in main paper performs overall the best. Median is slightly better on ImageNet data and poor
on ODP dataset. Min estimator leads to poor results on both of them.

D.3 Multilabel Classification

In this section, we show that MACH preserves the fundamental metrics precision@1,3,5 (denoted
hereafter by P@1, P@3 and P@5) on 3 extreme classification datasets available at XML Reposi-
tory [26]. We chose Wiki10-31K, Delicious-200K and Amazon-670K with 31K, 200K and 670K
classes respectively. This choice represents good variation in the number of classes as well as in the
sparsity of labels. This section is more of a sanity check that MACH is comparable to state-of-the-art
methodologies on public datasets, where memory is not critical.

The detailed comparison of P@k with state-of-the-art algorithms is given in the table 7. We notice
that MACH consistently outperforms tree-based methods like FastXML [20] and PfastreXML [14]
by noticeable margin. It mostly preserves the precision achieved by the best performing algorithms
like Parabel [19] and DisMEC [2] and even outperforms them on few occasions. For all the baselines,
we use the reported metrics (on XML Repository) on these datasets. We use the same train/test split
for MACH as other baseline algorithms.

We fixed R = 32 and experimented with a few limited configurations of B. The input dimension d
and classes K is given below the respective dataset name in table 7. The network architecture takes
the form d-500-500-B. B was varied among {1000, 2000} for Wiki10-31K, among 1000, 5000 for
Delicious-200K and among {5000, 10000} for Amazon-670K. The training and evaluation details
are as follows:

Wiki10-31K: The network architecture we used was 101938-500-500-B where B ∈ {1000, 2000}.
Here, 101938 is the input sparse feature dimension, and we have two hidden layers of 500 nodes
each. The reported result is for B = 2000. For B = 1000, there a marginal drop in precision (P@1
of 84.74% vs 85.44%) which is expected. We trained for a total of 60 epochs with each epoch taking
20.45 seconds. All 32 repetitions were trained in parallel. Hence, total training time is 1227s. The
evaluation time is 2.943 ms per test sample.

Delicious-200K: The network architecture we used was 782585-500-500-B where B ∈
{1000, 5000}. Here, 782585 is the input sparse feature dimension, and we have two hidden layers
of 500 nodes each. The reported result is for B = 5000. Remarkably, B = 1000 was performing
very similar to B = 5000 in terms of precision. We trained for a total of 20 epochs with each epoch
taking 187.2 seconds. 8 repetitions were trained at a time in parallel. Hence, we needed 4 rounds of
training to train R = 32 repetitions and the total training time is 4*20*187.2 = 14976 seconds (4.16
hrs). The evaluation time is 6.8 ms per test sample.

Amazon-670K: The network architecture we used was 135909-500-500-B where B ∈
{5000, 10000}. Here, 135909 is the input sparse feature dimension and we have two hidden layers
of 500 nodes each. The reported result is for B = 10000. For B = 5000, there a marginal drop in
precision (P@1 of 41.41% vs 40.64%) which is expected. We trained for a total of 40 epochs with

15

each epoch taking 132.7 seconds. All 32 repetitions were trained in parallel. Hence, total training
time is 5488s (1.524 hrs). The evaluation time is 24.8 ms per test sample.

In all the above cases, we observed the P@1,3,5 forR = 2, 4, 8, 16, 32. We noticed that the increment
in precision from R = 16 to R = 32 is very minimal. This is suggestive of saturation and hence our
choice of R = 32 is justified. From these results and impressions, it is clear that MACH is a very
viable and robust extreme classification algorithm that can scale to a large number of classes.

Dataset P@k MACH PfastreXML FastXML Parabel DisMEC
Wiki10-31K P@1 (B = 2000) 0.8544 0.8357 0.8303 0.8431 0.8520
d = 101938 P@3 (B = 2000) 0.7142 0.6861 0.6747 0.7257 0.7460
K = 30938 P@5 (B = 2000) 0.6151 0.5910 0.5776 0.6339 0.6590
Delicious-200K P@1 (B = 5000) 0.4366 0.4172 0.4307 0.4697 0.4550
d = 782585 P@3 (B = 5000) 0.4018 0.3783 0.3866 0.4008 0.3870
K = 205443 P@5 (B = 5000) 0.3816 0.3558 0.3619 0.3663 0.3550
Amazon-670K P@1(B = 10000) 0.4141 0.3946 0.3699 0.4489 0.4470
d = 135909 P@3(B = 10000) 0.3971 0.3581 0.3328 0.3980 0.3970
K = 670091 P@5(B = 10000) 0.3632 0.3305 0.3053 0.3600 0.3610

Table 7: Comparison of MACH and popular extreme classification algorithms on few public datasets.
We notice that MACH mostly preserves the precision and slightly betters the best algorithms on half
of the cases. These numbers also establish the limitations of pure tree based approaches FastXML
and PfastreXML. Every 3 rows correspond to one dataset (color coded).

E Metrics of Interest

E.1 Matching Metrics

• Recall@K: Recall is given by
|purchased_products| ∩ |topK predictions|

|purchased_products|
• MAP@k: As name suggests, Mean Average Precision(MAP) is the mean of average preci-

sion for each query where the average precision is given by
sum i = 1 : K of (P@i ∗ 1/K ifpredicitioni is a purchase)

• MRR@k: Mean Reciprocal Rank(MRR) is the mean of the rank of the most relevant
document in the predicted list, i.e.,

1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the position of the most purchased document for ith query.

• nDCG@k: Normalized Discounted Cumulative Gain(NDCG) is given by DCGK
IDCGK

where

DCGK =

K∑
i=1

2reli − 1

log2(i+ 1)

IDCGK = maxi∈{1,2,...,K}
2reli − 1

log2(i+ 1)
Here, reli is 1 if prediction i is a true purchase and 0 otherwise. log2 is sometime replaced
with natural log. Either way, the higher the metric, the better it the model.

E.2 Ranking Metrics

In addition to the above mentioned metrics, we care about Precision@1 in ranking. We want our
top prediction to actually be purchased. Hence we would like to evaluate both P@1, P@1_weighted
(weight comes from num_sessions like in the case of Matching). Further, for an ablation study,
we also want to check if our top prediction is the top purchased document for a given query (we
limit the purchases per query to just the most purchased document). Hence we additionally evaluate
P@1_most_rel and P@1_most_rel_weighted .

16

	Introduction
	Background
	Our Proposal: Merged-Averaged Classifiers via Hashing (MACH)
	Experiments
	Multiclass Classification
	Accuracy Baselines
	Results and Discussions

	Information Retrieval with 50 million Products
	Baselines
	Results
	Analysis

	Count-Min Sketch
	Pseudocode
	Theoretical Analysis
	Subtlety of MACH

	Experiments
	Datasets
	Effect of Different Estimators
	Multilabel Classification

	Metrics of Interest
	Matching Metrics
	Ranking Metrics

