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ABSTRACT

Adversarial attacks on convolutional neural networks (CNN) have gained signifi-
cant attention and there have been active research efforts on defense mechanisms.
Stochastic input transformation methods have been proposed, where the idea is to
recover the image from adversarial attack by random transformation, and to take
the majority vote as consensus among the random samples. However, the transfor-
mation improves the accuracy on adversarial images at the expense of the accuracy
on clean images. While it is intuitive that the accuracy on clean images would de-
teriorate, the exact mechanism in which how this occurs is unclear. In this paper,
we study the distribution of softmax induced by stochastic transformations. We
observe that with random transformations on the clean images, although the mass
of the softmax distribution could shift to the wrong class, the resulting distribution
of softmax could be used to correct the prediction. Furthermore, on the adversarial
counterparts, with the image transformation, the resulting shapes of the distribu-
tion of softmax are similar to the distributions from the clean images. With these
observations, we propose a method to improve existing transformation-based de-
fenses. We train a separate lightweight distribution classifier to recognize distinct
features in the distributions of softmax outputs of transformed images. Our em-
pirical studies show that our distribution classifier, by training on distributions
obtained from clean images only, outperforms majority voting for both clean and
adversarial images. Our method is generic and can be integrated with existing
transformation-based defenses.

1 INTRODUCTION

There has been widespread use of convolutional neural networks (CNN) in many critical real-life
applications such as facial recognition (Parkhi et al., 2015) and self-driving cars (Jung et al., 2016).
However, it has been found that CNNs could misclassify the input image when the image has been
corrupted by an imperceptible change (Szegedy et al., 2013). In other words, CNNs are not robust to
small, carefully-crafted image perturbations. Such images are called adversarial examples and there
have been active research efforts in designing attacks that show the susceptibility of CNNs. Corre-
spondingly, many defense methods that aim to increase robustness to attacks have been proposed.

Stochastic transformation-based defenses have shown considerable success in recovering from ad-
versarial attacks. Under these defenses, the input image is transformed in a certain way before
feeding into the CNN, such that the transformed adversarial image would no longer be adversarial.
As the transformation is random, by feeding in samples of the transformed image through the CNN,
we accumulate a set of CNN softmax outputs and predictions. As such, existing transformation-
based defenses take a majority vote of the CNN predictions from the randomly transformed image
(Prakash et al., 2018; Guo et al., 2017). Transformation-based defenses are desirable as there is no
need to retrain the CNN model. However, they suffer from deterioration of performance on clean
images. With increasing number of pixel deflections (Prakash et al., 2018), there is improvement on
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Figure 1: In transformation-based defenses, the image is transformed stochastically where each
sample tx is drawn from the distribution T (x) and then fed to the CNN (blue box). In our defense
method, for each input image x, we build the marginal distribution of softmax probabilities from
the transformed samples t(1)x , t

(2)
x , · · · . The distributions are fed to a separate distribution classi-

fier which performs the final classification. Note that our distribution classifier is trained only on
distributions obtained from clean images while tested on both clean and adversarial images.

the performance on adversarial images, but this comes with a rapid deterioration of performance on
clean images.

The exact mechanism of the deterioration in performance on clean images is unclear. We believe
that the softmax distribution induced by the random transformation contains rich information which
is not captured by majority vote that simply counts the final class predictions from the transformed
samples. Now, an interesting question is whether the features in the distribution of softmax could be
better utilized. In this paper, to elucidate how the deterioration in accuracy on clean images occurs,
we study the effects of the random image transformations on the distribution of the softmax outputs
and make some key observations. After the image transform, some clean images show distributions
of softmax with modes at an incorrect class, reflecting the deterioration in voting accuracy as ob-
served before. While the shifting of the distribution mode to the incorrect class is detrimental to the
voting prediction, the resulting distribution of softmax contains features that is useful for correct-
ing the prediction. In addition, we observe that the adversarial counterparts show similar shifts in
the distributions of softmax as the clean images. We also look into the distribution shapes for the
transformed clean and adversarial images and find that they are similar.

With these observations, we propose a simple method to improve existing transformation-based de-
fenses, as illustrated in Figure 1. We train a separate lightweight distribution classifier to recognize
distinct features in the distributions of softmax outputs of transformed clean images and predict
the class label. Without retraining the original CNN, our distribution classifier improves the per-
formance of transformation-based defenses on both clean and adversarial images. On the MNIST
dataset, the improvements in accuracy over majority voting are 1.7% and 5.9% on the clean and
adversarial images respectively. On CIFAR10, the improvements are 6.4% and 3.6% respectively.
Note that the distributions obtained from the adversarial images are not included in the training of
the distribution classifier. In real-world settings, the type of attack is not known beforehand. Train-
ing the distribution classifier on a specific attack may cause the classifier to overfit to that attack.
Hence, it is an advantage that our defense method is attack-agnostic. Our experimental findings
show that the features of the distribution in the softmax are useful and can be used to improve
existing transformation-based defenses. Our contributions are as follows:

1. We analyze the effects of image transformation in existing defenses on the softmax out-
puts for clean and adversarial images, with a key finding that the distributions of softmax
obtained from clean and adversarial images share similar features.

2. We propose a method that trains a distribution classifier on the distributions of the softmax
outputs of transformed clean images only, but show improvements in both clean and adver-
sarial images. This method is agnostic to the attack method, does not require retraining of
the CNN and can be integrated with existing transformation-based methods.
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2 RELATED WORK: ATTACKS AND DEFENSES

Given an image dataset {(x1, y1) · · · (xM , yM )} and a classifier Fθ that has been trained with this
dataset with parameters θ, the aim of the attack is to produce an adversarial image xadvi such that
Fθ(x

adv
i ) 6= yi, and ||xadvi − xi|| is small. We focus on four gradient-based untargeted attacks. The

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) is a single-step attack that uses the
sign of the gradient of the classification loss to perturb the image. Iterative Gradient Sign Method
(IGSM) (Kurakin et al., 2016a) is an iterative version of FGSM. In DeepFool (Moosavi-Dezfooli
et al., 2016), at each iteration, the attack approximates the classifier with a linear decision boundary
and generates the minimal perturbation to cross the boundary. Finally, the Carlini & Wagner (C&W)
(Carlini & Wagner, 2017) L2 attack jointly minimizes the perturbation L2 norm and a differentiable
loss function based on the classifier’s logit outputs. Besides gradient-based attacks, there are also
black-box attacks where the CNN model is not known and only the softmax output or final prediction
is given (Brendel et al., 2017; Ilyas et al., 2018; Cheng et al., 2018).

Defense methods have been proposed to make the classifiers more robust. In adversarial training, the
CNN model is trained on adversarial examples generated from itself (Madry et al., 2017; Kurakin
et al., 2016b) or from an ensemble of models (Tramèr et al., 2017). Other methods involve training
auxiliary neural networks on mixture of clean and adversarial images, for instance, by denoising
the inputs with a neural network before feeding into the CNN (Liao et al., 2018; Song et al., 2017;
Samangouei et al., 2018) or by training a neural network on the CNN logits (Li et al., 2019). In the
next section, we introduce another class of defense: transformation-based defenses.

2.1 TRANSFORMATION-BASED DEFENSES

Transformation-based defenses aim to recover from adversarial perturbations, that is for input trans-
formation T , we want Fθ(T (xadvi )) = yi. At the same time, the accuracy on the clean images
has to be maintained, ie. Fθ(T (xi)) = yi. Note that transformation-based defenses are imple-
mented at test time and this is different from training-time data augmentation. Here we introduce
two transformation-based defenses that we experiment on.

Pixel deflection (PD) (Prakash et al., 2018) : Pixel deflection corrupts an image by locally re-
distributing pixels. At each step, it selects a random pixel and replaces it with another randomly
selected pixel in a local neighborhood. The probability of a pixel being selected is inversely pro-
portional to the class activation map (Zhou et al., 2016). Lastly, there is a denoising step based on
wavelet transform. In our experiments, we did not use robust activation maps for our datasets as we
found that this omission did not cause significant difference in performance (see Appendix D.3).

Random resize and padding (RRP) (Xie et al., 2017) : Each image is first resized to a random
size and then padded with zeroes to a fixed size in a random manner.

In many transformation-based methods, the transformation is stochastic. Hence there can be dif-
ferent samples of the transformation of an image: tx ∼ T (x), where tx represents a transformed
sample. Existing transformation defenses benefit from improved performance by taking the major-
ity vote across samples of random transformations. The advantage of transformation-based methods
is that there is no retraining of the CNN classifier. However, a weakness, as identified by Prakash
et al. (2018), is that the transformation increases the accuracy on adversarial images at the expense
of the accuracy on clean images. The exact mechanism of the deterioration in performance on clean
images is unclear. In this paper, we elucidate how the deterioration in accuracy on clean images oc-
curs by studying the effects of the random image transformations on the distribution of the softmax
outputs.

3 ANALYSIS ON DISTRIBUTIONS OF SOFTMAX WITH RANDOM IMAGE
TRANSFORMATIONS

Due to the randomness of the transforms, samples of the transformed image will have different soft-
max outputs. With each image, we obtain a distribution over the softmax outputs accumulated from
multiple samples of the transformation. These are the steps to obtain the distribution of softmax:
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(a) (b)

Figure 2: MNIST dataset: (a) Effect of number of pixel deflections (d) on the voting predictions of
clean and adversarial images for MNIST digits 6 and 8. The numbers represent the percentage of
images predicted to the various classes, eg. for class label 8, 78% of the transformed clean images
are predicted correctly. For class label 8, with the image transformation, there is recovery on the
adversarial images (24% recovery), but on the clean images, there is a deterioration in performance
as some images are misclassified. However, it is interesting that the misclassifications have the same
voting classes as the transformed adversarial images. Similar overlap in voting classes is observed
for digit 6. (b) Effect of increasing number of pixel deflections on the distances of distributions
obtained from clean and adversarial images. The standard error bars, taken over 3 random seeds for
the transformation, are smaller than the plot points. Best viewed in color.

1. For each input image x, obtain N transformed samples: t(i)x ∼ T (x), i = 1, · · · , N

2. The transformed samples of the image (t
(1)
x , t

(2)
x , · · · , t(N)

x ) are fed into the CNN individ-
ually to obtain their softmax probabilities. Let σ(i)

x be the softmax vector derived from
t
(i)
x , and σ(i)

x,j , for j = 1, · · · , C, be the j-th component of the softmax vector. C denotes
the number of classes for the classification task. With each input image and a transforma-
tion method, there exists an underlying joint distribution of the CNN softmax probabilities,
from which we estimate with N samples.

3. The underlying joint distribution of the softmax has a dimension equal to the number of
classes (eg. 10-D for MNIST). Performing accurate density estimation in high dimensions
is challenging due to the curse of dimensionality. Here we make an approximation by com-
puting the marginal distributions over each class. When we use the term ‘distribution of
softmax’, we are referring to the marginalized distributions. We use kernel density estima-
tion with a Gaussian kernel. Let hx,j be the distribution accumulated from σ

(1)
x,j , · · · , σ

(N)
x,j :

hx,j(s) =
1

N
√
2πδ

N∑
i

exp

(
−
(s− σ(i)

x,j)
2

2δ2

)
, (1)

where δ is the kernel width and s ∈ [0, 1] is the support of the softmax output. The
distribution is then discretized into bins.

In this section, we study the effect of image transformation on the distribution of the softmax and
make several interesting observations. In the following analyses, we study a LeNet5 CNN (LeCun
et al., 1998) trained with MNIST. The adversarial images are generated using FGSM and for the
transformation defense, we use pixel deflection, with N=100 transformation samples per image.
The image transformation magnitude is controlled by the number of pixel deflections, d. In the
analysis here and in the experimental results in Section 5, when reporting the accuracies, on clean
images, we consider images that have been correctly predicted by the CNN, hence without any
transformation defense, the test accuracy is 100%. This is following the setup of Prakash et al.
(2018) where the misclassified images by CNN are excluded as it is not meaningful to evaluate
any attack (and subsequent defense) methods on these images. For adversarial images, we consider
the images that have been successfully attacked, so the test accuracy reflects the recovery rate and
without any defense the accuracy is 0%.
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In Figure 2a, we show how the image transformation affects the voting predictions on two MNIST
classes. For each MNIST class, we take all the clean and adversarial test images, perform the
transformation and then feed through the CNN to obtain the final voting prediction. We observe that
for class label 8, there is some recovery from the attack as some adversarial images are voted to the
correct class after the transformation. However, some clean images get misclassified to other classes
(eg. 2 and 3). Although this means there is a deterioration of the accuracy on clean images, it is
interesting that the misclassifications have the same voting classes as the transformed adversarial
images. A similar pattern is observed for class label 6 where the clean images are misclassified to
classes 4 and 5, which overlap with the vote predictions of some adversarial images at d = 300.

With the above analysis, we characterize the relationship between the clean and adversarial images
in terms of the JS divergence of the distributions of the softmax at increasing number of pixel
deflections. For each MNIST digit class, we quantify the (1) distance of the distributions among
the clean images (clean-clean, same class), (2) distance of the distributions among the adversarial
images (adversarial-adversarial, same class), (3) the distance of the distributions between clean and
adversarial images (clean-adversarial, same class) and (4) the distance of the distributions between
clean images of this class and all other classes (clean-clean, different class). Here we give details on
the calculation of the 4 distance measures. First, the distance between the distributions of softmax
output for two input images, x1 and x2 is given by d(hx1

, hx2
) = 1

C

∑C
j DJS(hx1,j , hx2,j), where

DJS is the Jensen-Shannon divergence. Distance measures of (1) and (2) computed by taking the
average distance of each image distribution to the centroid distribution which is computed with
µ({hx1,j , · · · ,hxM ,j}) = 1

M

∑M
i hxi,j . (3) is computed by the distance between the centroids

of the clean and adversarial distributions. Finally, (4) is computed by the distance of the centroid
distribution of the clean images of the particular class with the centroid distribution of another class,
averaged over the other 9 classes.

In Figure 2b, we show results for two MNIST classes, but similar trends are observed across all
classes (see Figure 8 in Appendix A)). The clean-clean (same-class) distance starts off low initially
as all clean samples will give high scores at the correct class. With increasing number of deflec-
tions, there is increased variability in the softmax outputs and the resulting distributions. Next, the
adversarial images of the same class are initially predicted as different incorrect classes without
any transformation, and hence the adversarial-adversarial (same-class) distance starts off high and
decreases with more transformation. The clean-adversarial (same-class) distance decreases with
increasing image transformation which shows that the distributions of softmax from the clean and
adversarial images are becoming more similar. Finally, the clean-clean (different class) distance
decreases as well, which is expected because we already know that with more transformation, the
clean image voting accuracy deteriorates. However, we observe that clean-clean (different class)
distance decreases less rapidly and remains higher than clean-clean (same-class) distance at d=300.
This means the transformation still retains information about the differences between the classes. At
d=800, all 4 distance measures converge, which suggests the number of deflections is too large and
the differences between the classes are no longer retained.

Next, we visualize the morphing of the distributions with increasing number of pixel deflections for
an example image in Figure 3. For the purpose of visualization, instead of the per-class marginal
distributions of the softmax, we perform kernel density estimation (kde) on the softmax values for
the marginals on class 5 and 6. The softmax values of the other 8 classes are not shown. We have
not excluded the areas where performing kde results in sum probability exceeding one, and our
visualization still conveys our ideas and the distribution shapes well. Without any image transfor-
mation, as expected, the softmax outputs of the clean and adversarial images are very different. As
the number of pixel deflections increases, each point evolves to a distribution due to the randomness
of the transformation. The voting mechanism is straightforward; an image is classified to the class
where the distribution mass is largest. In this example, the distribution shapes for the clean and
adversarial image become more similar, and result in the same incorrect voting prediction at d=300.
This shows the similarity of distributions obtained from clean and adversarial images after image
transformation, which was illustrated in Figure 2b.

In Figure 4, we show more examples of the distributions obtained from clean images (A-H) and
their adversarial counterparts (Ã-H̃) at d=300. For clean images A-D, voting predicts correctly
but on the adversarial counterparts Ã-D̃, voting predicts wrongly. For clean images E-H and the
adversarial counterparts Ẽ-H̃ , voting predicts wrongly. For completeness, we also show in Figure 9
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Figure 3: An example image and its adversarial counterpart (ground truth: class 6) undergoing
increasing number of pixel deflections (d). The clean image gets misclassified by voting as the
distribution mass shifts to the incorrect class. Note that for the purpose of visualization, instead
of the per-class marginal distributions of the softmax, here we show the joint distribution over the
softmax values of classes 5 and 6. The softmax values of the other 8 classes are not shown.

Figure 4: Distributions of the softmax obtained from 8 selected clean images of MNIST digit 6
(A -H) and their adversarial counterparts (Ã-H̃) at d=300. Here we show the joint distribution of
the softmax at class 5 and 6. The clean and adversarial images misclassified by voting show similar
distribution shapes, as indicated by the groupings and arrows, eg. between E and Ã, Ẽ, F̃ , between
F and B̃ and so on.
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in Appendix B examples of adversarial images where the transformation defense, coupled with vot-
ing, has successfully recovered the correct class. With the random image transformation, there are
similarities in the distribution shapes between the clean and adversarial images, as shown by the
groupings and arrows (eg. between E and Ã, Ẽ, F̃ ). This further supports our earlier observations.
After the image transformation, the voting accuracy on the clean images deteriorates, but the result-
ing distributions have similar features as the distributions from the adversarial counterparts. This
gives us an idea to enhance existing transformation-based defenses: to train a distribution classi-
fier on the distributions obtained from clean images only, while improving the performance on both
clean and adversarial images.

4 ENHANCING TRANSFORMATION-BASED DEFENSES WITH DISTRIBUTION
CLASSIFIER

Instead of voting, to reduce the drop in performance on clean images, we train a separate compact
distribution classifier to recognize patterns in the distributions of softmax probabilities of clean
images, as illustrated in Figure 1. For each clean image, the marginal distributions obtained are
inputs to the distribution classifier, which learns to associate this distribution with the correct class
label. If the individual transformed images were initially misclassified by the CNN, our distribution
classifier should learn to recover the correct class. During the test phase, for any input image, clean
or adversarial, we build the distribution of softmax from N transformed samples and feed them into
our trained distribution classifier to obtain the final prediction. Note that our defense method does
not require retraining of the original CNN, is agnostic to the attack method and can be integrated
with most existing stochastic transformation-based methods.

Distribution classifiers: We investigate three distribution classification methods. First, we adapt
a state-of-the-art distribution-to-distribution regression method, called distribution regression net-
work (DRN) (Kou et al., 2018) (details are included in Appendix C). We also experimented on
random forest (RF), which averages the outputs from multiple decision trees. Finally, we experi-
mented on multilayer perceptrons (MLP) which are fully connected neural networks, with a softmax
output layer. For this distribution classification task, we concatenate the distribution bins from the
softmax classes into a single input vector for RF and MLP. For DRN and MLP, we use the cross
entropy loss and the network architectures are chosen by cross-validation. For random forest, the
Gini impurity is used as the splitting criterion and the number of trees and maximum depth are tuned
by cross-validation. The hyperparameter values are included in Appendix D.4.

5 EXPERIMENTS AND DISCUSSION

In the following section, we describe our experimental setup to evaluate the performance on clean
and adversarial images with our distribution classifier method.

Datasets and CNN networks: We use the MNIST (LeCun et al., 1998), CIFAR10 and CIFAR100
(Krizhevsky & Hinton, 2009) datasets. For the CNN model for MNIST, we use LeNet5 (LeCun
et al., 1998) that has 98.7% test accuracy. For CIFAR10 and CIFAR100, we use wide ResNet
(Zagoruyko & Komodakis, 2016) with test accuracies of 95.7% and 78.9% respectively.

Attack methods: As introduced in Section 2, we use four adversarial attacks in the untargeted
setting. In Appendix D.1, we have included the distortion metrics, the success rates and the hyper-
parameters. The attacks are implemented using the CleverHans library (Papernot et al., 2018).

Transformation-based defenses: As a baseline, we use a random pixel noise (RPN) as a defense
method, where each pixel noise is sampled with a uniform distribution with L∞ measure. In addi-
tion, we use two existing transformation-based methods: pixel deflection (PD) (Prakash et al., 2018)
and image random resize and pad (RRP) (Xie et al., 2017). Although these two methods have not
been tested for MNIST, CIFAR10 and CIFAR100, we find that they work considerably well and
present the results here. The hyperparameter tuning for each defense is conducted on the validation
sets. We select hyperparameters that give the best recovery from adversarial attack, regardless of the
deterioration in accuracy on clean images. The hyperparameters are included in Appendix D.2.
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Figure 5: MNIST, CIFAR10 and CIFAR100 results: For each attack and transformation-based de-
fense, we compare the clean and adversarial (adv.) test accuracies with baseline majority voting and
the three distribution classifier methods. The distribution classifiers generally show improvements
over voting. Best viewed in color.

To test the effectiveness of the transformation-based defenses before integrating with our defense
method, we perform majority voting on the transformed image samples. This sets the baseline for
our distribution classifier defense method. When reporting the test accuracies, on clean images,
we consider images that have been correctly predicted by the CNN, hence without any defense
method, the test accuracy is 100%. For adversarial images, we consider the images that have been
successfully attacked, so the test accuracy reflects the recovery rate and without any defense the
accuracy is 0%.

5.1 MNIST RESULTS

For the MNIST dataset, N = 100 transformation samples were used for voting and for constructing
the distribution of softmax. We found that the distribution classifiers required only 1000 training
data, which is a small fraction out of the original 50,000 data. Figure 5 (left) shows the test accura-
cies of the three transformation-based defenses with majority voting and with the three distribution
classifiers. Table 11 in Appendix D.5 shows the numerical figures of the results. First, we observe
that the recovery on adversarial images with majority voting for the iterative methods IGSM, Deep-
Fool and C&W is much better compared to single-step FGSM. This is in line with the observations
by Xie et al. (2017) where they found their defense to be more effective for iterative attacks.

The distribution classifiers have improved accuracy over voting on the clean images, except when
the voting accuracy was already high (eg. 100% voting accuracy for PD on DeepFool). The mean
improvement of the accuracy on the clean images is 1.7% for DRN. Hence, our distribution classifier
method is stronger than voting. Voting simply takes the mode of the softmax probabilities of the
transformed image, disregarding properties such as variance across the classes. In contrast, the
distribution classifier learns from the distinctive features of the distribution of softmax.

Without training on the distributions obtained from adversarial images, our method has managed
to improve the recovery rate, with a mean improvement of 5.9% for DRN. The three distribution
classifier methods are comparable, except for some cases where DRN outperforms other classifiers
(eg. PD adv., IGSM) and where MLP and RF have lower accuracy than voting (eg. RPN adv.,
DeepFool and C&W). In Figure 4, we show that after image transformation, the distributions of
softmax between the clean and adversarial images show some similarities and distinctive features.
In fact, all of the clean (A-H) and adversarial (Ã-H̃) images (class 6) are classified correctly by the
distribution classifier. Even though the distribution classifier was only trained on distributions from
the clean images (A-H), the distribution classifier can recover the correct class for the adversarial
images where voting has failed (Ã-H̃). The distribution classifier does so by learning the distinctive
shapes of the distributions associated with the digit class from the clean images, and is able to
apply this to the adversarial images with similar distribution shapes. Furthermore, our distribution
classifier is able to pick up subtle differences in the distribution features. Figure 6a shows examples
of clean images with class label 5 that are correctly classified by our distribution classifier. It is
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(a) (b) (c)

Figure 6: MNIST dataset: (a) Example of two clean images with class label 5, where the distribution
shapes look similar to C̃ and G in Figure 4 but the distribution classifier can still discriminate be-
tween the distributions from class labels 5 and 6 and classify them correctly. (b) On the clean images,
both voting and DRN accuracies improve with more number of transformed samples. As number of
samples increases, voting saturates while DRN continues to improve. (c) On the adversarial images,
the accuracies stay more of less the same.

interesting that although the distribution shapes for adversarial images C̃ and G shown in Figure 4
look similar, our distribution classifier is able to distinguish between the shapes for class 5 and 6.

5.1.1 NUMBER OF TRANSFORMED SAMPLES REQUIRED

We used N=100 transformed samples in our experiments. Hence, the evaluation time will be 100
times longer than taking a single sample. Here we study the effect of the number of samples. Figure
6b and 6c show the classification accuracies for voting and DRN as the number of transformed sam-
ples increases. On the clean images, both voting and DRN accuracies improve with more number of
samples, with the performance of voting saturating while DRN’s performance continues to increase
with widening gap. This shows that a sufficient number of samples is required to capture the features
of the distribution of softmax. On the adversarial images, the accuracies stay more of less the same.
Although having more transformed samples is beneficial for the performance on clean images, our
distribution classifier improves the voting performance regardless of the number of samples.

5.2 CIFAR10 AND CIFAR100 RESULTS

For the CIFAR10 and CIFAR100 datasets, N = 50 image transformation samples and 10,000 train-
ing data were used. Figure 5 (middle) shows the results for CIFAR10. All three distribution clas-
sifiers gave comparable improvements over voting, except for MLP which performs worse than
voting for adversarial images with RPN on DeepFool. For CIFAR100 (Figure 5, right), the distribu-
tion classifiers mostly show improved performance over voting. There are exceptions where DRN
(eg. PD adv., FGSM) and MLP (eg. RPN adv., DeepFool) have lower accuracy than voting. This
suggests that for datasets with more classes, random forest may perform better than other classifiers.

As explained in Section 3, in the results in Figure 5, we have excluded clean images which are
misclassified by the CNN and the images where the attack has failed. To check that our method
works on these images, we evaluated these images for CIFAR100 with FGSM attack, random resize
and padding and random forest classifier. Our results in Table 14 in the Appendix show that our
distribution classifier method still outperforms majority voting.

6 END-TO-END ATTACK ON DISTRIBUTION CLASSIFIER METHOD

Here we evaluate end-to-end attacks on our distribution classifier method (with DRN) on MNIST
and CIFAR10. We use Boundary Attack (Brendel et al., 2017) which is a black-box decision-based
attack. We performed the attack on the base CNN classifier (CNN), CNN with pixel deflection
and voting (Vote), and CNN with pixel deflection and distribution classifier trained on clean images
(DRN). In addition, we trained the distribution classifier on a mixture of distributions obtained from
both clean and adversarial images obtained with IGSM on the base CNN, which can be seen as a
lightweight adversarial training (DRN LAT) except that the CNN is kept fixed. Finally, we tested
the attack on an adversarially-trained CNN (Adv trained CNN) by Madry et al. (2017) with allowed
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(a) MNIST (b) CIFAR10

Figure 7: Black-box boundary attack on MNIST and CIFAR10, with the average L2 of the attack
perturbation shown, with the bars denoting the standard error of the means. Note that the adversarial
images for vote, DRN and DRN LAT are of lower quality.

perturbations of L∞ ≤ 0.3. Since Boundary Attack uses the L2 measure, the adversarially-trained
CNN which uses the L∞ metric is not expected to perform well. For details of our implementation
of Boundary Attack, please refer to Appendix E. Figure 7 shows the mean L2 of the perturbations
over 100 test images, with a maximum of 5000 iterations for the attack. CNN and the adversarially-
trained CNN have very low perturbations. The stochastic models, Vote, DRN and DRN LAT, have
much higher perturbations with lower quality adversarial images, and the difficulty of the attack
increases in that order. This shows that the distribution classifier and the lightweight adversarial
training extension are more difficult to attack by the Boundary Attack method compared to voting.

Athalye et al. (2018) have shown that under the white-box setting where the attacker has full knowl-
edge of the CNN model and the defense, random transformation defenses are susceptible to fur-
ther attack by estimating the gradients using multiple transformation samples, in a method called
Expectation over Transformation(EOT). To employ white-box attack on our distribution classifier
method, there are a few potential challenges. First, we use 50 to 100 transformed samples per
image to accumulate the distribution of softmax. Attacking our method with EOT will be very
time-consuming as it requires taking multiple batches of transformations, each with 50-100 sam-
ples. Next, we have shown our method works with different distribution classifier models, including
the non-differentiable random forest. While there have been attacks proposed for random forests
(Kantchelian et al., 2016), it is unclear how feasible it is to combine these attacks with EOT. We
leave the evaluation of white-box attacks on our distribution classifier method for future work.

7 CONCLUSION

Adversarial attacks on convolutional neural networks have gained significant research attention and
stochastic input transformation defenses have been proposed. However, with transformation-based
defenses, the performance on clean images deteriorates and the exact mechanism in which how
this happens is unclear. In this paper, we conduct in-depth analysis on the effects of stochastic
transformation-based defenses on the softmax outputs of clean and adversarial images. We observe
that after image transformation, the distributions of softmax obtained from clean and adversarial
images share similar distinct features. Exploiting this property, we propose a method that trains a
distribution classifier on the distributions of the softmax outputs of transformed clean images only,
but show improvements in both clean and adversarial images over majority voting. In our current
work, we have considered untargeted attacks on the CNN and it is interesting to test our distribution
classifier method with targeted attacks.
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A DISTANCE BETWEEN DISTRIBUTIONS OF SOFTMAX FOR ALL MNIST
CLASSES

In Section 3, we studied the 4 distance metrics for the distribution of softmax. Figure 8 shows the
distance metrics for all ten MNIST classes with increasing number of pixel deflections.

B EXAMPLES OF VOTING RECOVERING FROM ADVERSARIAL ATTACK

In Figure 9, we show examples where pixel deflection with voting recovers from the adversarial
attack.

C ADAPTATION OF DRN FOR DISTRIBUTION CLASSIFICATION

For one of the distribution classifier methods, we adapt a state-of-the-art distribution-to-distribution
regression method, called distribution regression network (DRN) (Kou et al., 2018). DRN encodes
an entire distribution in each network node and this compact representation allows it to achieve
higher prediction accuracies for the distribution regression task compared to conventional neural
networks. Since DRN shows superior regression performance, we adapt DRN for distribution clas-
sification in this work.
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Figure 8: Effect of increasing number of pixel deflections on the distances of distributions obtained
from clean and adversarial images of the MNIST dataset. Best viewed in color.

Figure 9: Adversarial examples where pixel deflection with voting recovers from adversarial attack,
where ground truth label is 6 but CNN predicts as 0.

Our adaption of the distribution classifier is shown on the right of Figure 10. The network consists
of fully-connected layers, where each node encodes a distribution. The number of hidden layers
and nodes per hidden layer are chosen by cross validation. The number of discretization bins for
each distribution for the input layer and hidden layers is also tuned as hyperparameters. To adapt
DRN for our distribution classification task, for the final layer, we have C nodes representing each
class and we use 2 bins for each distribution to represent the logit output for the corresponding
class. The cost function for the distribution classifier is the cross entropy loss on the logits. The
distribution classifier is optimized by backpropagation using the Adam optimizer (Kingma & Ba,
2014). The weight initialization method follows Kou et al. (2018), where the weights are sampled
from a uniform random distribution.

D EXPERIMENTAL SETUP

D.1 ADVERSARIAL ATTACK HYPERPARAMETERS

Tables 1 to 3 show the hyperparameter settings used for the adversarial attacks. The attacks are
implemented using the CleverHans library (Papernot et al., 2018). For DeepFool and C&W, the
other hyperparameters used are the default values set in CleverHans. For L2 norm, we use the
root-mean-square distortion normalized by total number of pixels, following previous works.

D.2 IMAGE TRANSFORMATION DEFENSE PARAMETERS

Tables 4 to 6 show the image transformation parameters used for MNIST and CIFAR10 respectively.
The hyperparameter tuning for each defense method is conducted on the validation set for each
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Figure 10: Adaptation of DRN for the distribution classifier task.

Table 1: Hyperparameter settings for the four adversarial attack methods on the MNIST dataset.

MNIST

Distortion Attack success rate
(%) Settings

FGSM L∞ = 0.39 53.2 -

IGSM L∞ = 0.24 91.2 100 steps,
step size=0.004

DeepFool L2 = 0.06 97.6 Max iter.=30

C&W L2 = 0.142 94.9 Max iter.=500

Table 2: Hyperparameter settings for the four adversarial attack methods on the CIFAR10 dataset.

CIFAR10

Distortion Attack success rate
(%) Settings

FGSM L∞ = 0.031 58.2 -

IGSM L∞ = 0.031 100.0 20 steps,
step size=0.004

DeepFool L2 = 0.042 95.3 Max iter.=5

C&W L2 = 0.023 94.1 Max iter.=10

dataset. We select hyperparameters that give the best recovery from adversarial attack, regardless of
the deterioration in accuracy on clean images.

D.3 CLASS ACTIVATION MAPS FOR PIXEL DEFLECTION

The pixel deflection (Prakash et al., 2018) defense uses class activation maps (CAMs) (Zhou et al.,
2016) to randomly select pixels to undergo the deflection step. In our experiments, we did not
use class activation maps and instead randomly select pixels with equal probabilities. First, for the
MNIST dataset, CAMs are unsuitable because the LeNet (LeCun et al., 1998) architecture does not
have global average pooling layers which are required for CAMs. For the CIFAR10 dataset, the wide
ResNet (Zagoruyko & Komodakis, 2016) architecture uses a final layer of global average pooling
and so we tested CAMs on it. Table 7 compares the performance on clean and adversarial images
using the FGSM and IGSM attacks, with and without CAMs, which shows that using CAMs does
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Table 3: Hyperparameter settings for the four adversarial attack methods on the CIFAR100 dataset.

CIFAR100

Distortion Attack success rate
(%) Settings

FGSM L∞ = 0.031 78.5 -

IGSM L∞ = 0.031 99.9 20 steps,
step size=0.004

DeepFool L2 = 0.051 91.8 Max iter.=5

C&W L2 = 0.026 96.0 Max iter.=10

Table 4: Details of the image transformation parameters for MNIST. The three transformation-based
methods tested are random pixel noise (RPN), pixel deflection (PD) and random resize and padding
(RRP). For RPN, the noise magnitude is unnormalized (out of 255). For PD, d is the number of
deflections, w is the window size and σ is the denoising parameter.

FGSM IGSM DeepFool C&W

RPN L∞=130 L∞=90 L∞=10 L∞=10
PD d=300, w=20, σ=0 d=100, w=20, σ=0 d=10, w=20, σ=0.08 d=100, w=25, σ=0.08

RRP resize range=[4,28] resize range=[22,28] resize range=[23,28] resize range=[23,28]

not cause significant difference in performance. This may be because CAMs are more effective on
larger images such as those in ImageNet where there are many more background pixels.

D.4 DISTRIBUTION CLASSIFIER HYPERPARAMETERS

Our defense method uses a distribution classifier to train on distributions of softmax probabilities
obtained from transformed samples of the clean images. For each image, we build the marginal
distributions of the softmax for each class using kernel density estimation with a Gaussian kernel.
The kernel width is optimized to be 0.05. For DRN and MLP, the network architecture of the
distribution classifier and optimization hyperparameters are chosen by cross-validation. For random
forest, the number of trees and maximum depth of the trees are tuned by cross-validation. The
hyperparameters used are shown in Tables 8 to 10.

D.5 ACCURACY RESULTS FOR DISTRIBUTION CLASSIFIERS

Here we include the detailed numerical figures for the accuracies of majority voting and the distri-
bution classifier methods. Tables 11 to 13 show the clean and adversarial test accuracies and the 4
attack methods and the 3 defense methods.

E DETAILS OF IMPLEMENTATION OF BOUNDARY ATTACK

For Vote, DRN and DRN LAT, the model outputs are random because of the random image trans-
formation. At each step of Boundary Attack, we allow the attack to query the model once, and
this involves taking 50-100 transformed samples for the image to perform voting or to feed to the

Table 5: Details of the image transformation parameters for CIFAR10.

FGSM IGSM DeepFool C&W

RPN L∞=40 L∞=40 L∞=7 L∞=10
PD d=60, w=10, σ=0.06 d=80, w=10, σ=0.06 d=20, w=10, σ=0.04 d=80, w=10, σ=0.04

RRP resize range=[20,25] resize range=[19,25] resize range=[28,32] resize range=[23,32]
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Table 6: Details of the image transformation parameters for CIFAR100.

FGSM IGSM DeepFool C&W

RPN L∞=40 L∞=25 L∞=3 L∞=9
PD d=90, w=10, σ=0.06 d=80, w=10, σ=0.06 d=20, w=10, σ=0.02 d=30, w=10, σ=0.04

RRP resize range=[23,26] resize range=[23,26] resize range=[27,32] resize range=[25,30]

Table 7: Performance for pixel deflection on the CIFAR10 dataset with and without class activation
maps (CAM). Numbers shown are the test accuracies (%).

FGSM IGSM

Without CAM With CAM Without CAM With CAM

clean 75.96 (0.07) 75.98 (0.02) 75.71 (0.04) 75.70 (0.06)
adv. 36.35 (0.07) 36.40 (0.02) 51.66 (0.07) 51.59 (0.08)

Table 8: DRN network architecture for the distribution classifier, where 2x10 represents 2 hidden
layers of 10 nodes.

FGSM IGSM DeepFool C&W

MNIST
RPN 1x10 2x10 1x10 1x10
PD 1x10 1x10 1x20 1x20

RRP 1x10 1x10 1x20 1x20

CIFAR10
RPN 1x10 1x20 1x20 1x20
PD 1x20 1x10 1x20 1x10

RRP 1x20 1x10 1x20 1x10

CIFAR100
RPN 1x100 1x100 1x100 1x100
PD 1x100 1x100 1x100 1x100

RRP 1x100 1x100 1x100 1x100

Table 9: MLP network architecture for the distribution classifier, where 2x10 represents 2 hidden
layers of 10 nodes.

FGSM IGSM DeepFool C&W

MNIST
RPN 1x20 1x20 1x50 1x20
PD 1x20 1x50 1x50 1x50

RRP 1x50 1x20 1x50 1x50

CIFAR10
RPN 1x50 1x50 1x50 1x20
PD 1x50 1x50 1x50 1x50

RRP 1x50 1x50 1x20 1x20

CIFAR100
RPN 1x2000 1x1000 1x500 1x500
PD 1x500 1x1000 2x100 1x1000

RRP 1x200 1x1000 2x100 1x1000
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Table 10: Random forest hyperparameters for the distribution classifier, where n represents the
number of trees and d represents the maximum depth of the trees.

FGSM IGSM DeepFool C&W

MNIST
RPN n=100, d=20 n=100, d=20 n=200, d=50 n=200, d=50
PD n=100, d=20 n=100, d=20 n=200, d=50 n=200, d=50

RRP n=200, d=20 n=100, d=20 n=200, d=50 n=200, d=50

CIFAR10
RPN n=200, d=50 n=200, d=50 n=200, d=50 n=200, d=50
PD n=200, d=50 n=200, d=50 n=200, d=50 n=200, d=50

RRP n=200, d=50 n=200, d=50 n=200, d=50 n=200, d=50

CIFAR100
RPN n=200, d=200 n=200, d=200 n=200, d=200 n=200, d=200
PD n=200, d=200 n=200, d=200 n=200, d=100 n=200, d=200

RRP n=200, d=200 n=200, d=200 n=200, d=100 n=200, d=100

Table 11: MNIST results: For each attack, we compare the clean and adversarial (adv.) test accura-
cies with majority voting (Vote) and the three distribution classifier methods: distribution regression
network (DRN), random forest (RF) and multilayer perceptron (MLP). The three transformation-
based defenses are random pixel noise (RPN), pixel deflection (PD) and random resize and padding
(RRP). With no defense, the clean accuracy is 100% and the adversarial accuracy is 0%.

MNIST test accuracies (%)
RPN PD RRP

clean adv. clean adv. clean adv.

FGSM

Vote 95.4 17.0 87.6 17.1 91.4 36.4
DRN 97.8 32.1 96.9 22.6 98.2 39.4
RF 97.8 35.2 97.5 32.8 98.7 31.7

MLP 98.1 34.4 97.3 31.6 98.8 24.0

IGSM

Vote 97.2 77.9 98.9 51.3 98.7 71.1
DRN 98.4 90.9 98.8 67.3 98.4 82.4
RF 98.4 91.1 99.3 49.1 99.0 75.4

MLP 98.5 91.4 99.3 45.4 99.0 65.2

DeepFool

Vote 100 99.3 100 99.4 98.9 93.6
DRN 99.9 98.3 99.9 99.4 99.1 95.2
RF 99.9 93.1 99.8 97.0 99.1 96.1

MLP 99.8 77.0 99.8 92.8 99.0 95.4

C&W

Vote 99.9 99.7 99.0 93.8 98.9 95.3
DRN 99.7 99.5 99.4 98.0 99.2 97.4
RF 99.9 96.8 99.3 96.6 99.1 97.0

MLP 99.7 89.6 99.4 96.3 99.0 96.7
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Table 12: CIFAR10 results: For each attack, we compare the clean and adversarial (adv.) test accura-
cies with majority voting (Vote) and the three distribution classifier methods: distribution regression
network (DRN), random forest (RF) and multilayer perceptron (MLP). The three transformation-
based defenses are random pixel noise (RPN), pixel deflection (PD) and random resize and padding
(RRP). With no defense, the clean accuracy is 100% and the adversarial accuracy is 0%.

CIFAR10 test accuracies (%)
RPN PD RRP

clean adv. clean adv. clean adv.

FGSM

Vote 47.3 16.9 75.9 36.4 81.9 39.6
DRN 68.4 24.8 84.1 39.0 88.4 41.2
RF 73.8 28.8 85.2 38.3 88.7 41.1

MLP 72.2 26.8 84.6 37.7 88.6 40.5

IGSM

Vote 47.3 26.5 75.7 51.7 79.8 56
DRN 68.8 37.7 83.1 58.2 87.9 61.3
RF 73.8 40.7 85.2 59.4 88.5 60.9

MLP 72.2 39.2 84.9 58.7 88.4 61.0

DeepFool

Vote 97.8 91.4 93.5 91.1 97.6 91.3
DRN 98.6 93.0 94.6 92.3 97.7 91.5
RF 98.6 93.0 94.5 92.2 97.9 91.9

MLP 98.3 87.3 94.2 91.1 97.7 91.0

C&W

Vote 95.8 85.5 92.5 88.5 95.8 87.7
DRN 97.5 87.6 94.1 90.8 97.0 89.3
RF 97.7 87.6 94.2 90.6 96.9 89.2

MLP 97.3 86.8 93.9 89.9 96.8 88.8

Table 13: CIFAR100 results: For each attack, we compare the clean and adversarial (adv.) test
accuracies with majority voting (Vote) and the three distribution classifier methods: distribu-
tion regression network (DRN), random forest (RF) and multilayer perceptron (MLP). The three
transformation-based defenses are random pixel noise (RPN), pixel deflection (PD) and random re-
size and padding (RRP). With no defense, the clean accuracy is 100% and the adversarial accuracy
is 0%.

CIFAR100 test accuracies (%)
RPN PD RRP

clean adv. clean adv. clean adv.

FGSM

Vote 22.4 6.2 61.7 24.5 65.7 19.8
DRN 22.8 9.5 59.5 21.8 73.5 23.0
RF 46.9 18.9 71.8 28.9 79.5 27.0

MLP 22.8 8.9 69.8 27.4 78.0 25.5

IGSM

Vote 46.7 16.1 61.9 40.3 65.7 34.0
DRN 48.6 17.8 61.8 40.6 73.5 39.9
RF 65.7 25.2 71.9 47.1 79.6 44.7

MLP 59.8 21.4 69.4 44.6 78.1 43.7

DeepFool

Vote 97.7 92.4 96.1 92.8 89.4 82.3
DRN 97.7 92.2 95.9 92.5 91.2 84.6
RF 97.5 90.8 95.8 92.1 91.5 84.5

MLP 91.4 55.6 91.3 81.7 89.2 80.8

C&W

Vote 88.3 72.3 84.6 78.8 82.4 72.0
DRN 89.1 73.0 84.1 77.8 86.2 75.5
RF 90.6 74.9 86.5 80.7 88.2 77.9

MLP 88.8 71.0 85.1 78.4 87.1 77.1
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Table 14: Distribution classifier outperforms majority voting for clean images that are misclassified
by CNN and images where the attack has failed. The results are for CIFAR100 with FGSM attack,
random resize and padding and random forest classifier.

Test accuracy (%)

No transformation Voting Distribution classifier

Clean images misclassified by CNN 0 12.3 18.1

Images where attack has failed 100 65.7 79.5

distribution classifier to obtain a prediction. To avoid overfitting to a fixed transformation pattern,
the transformation is random at each step. Our criteria for an image being adversarial is that out of 5
queries, the image is misclassified at least once. Because of the randomness of the model, the image
returned by Boundary Attack may be classified to the correct class, and we increase the perturba-
tion by increasing amounts until the image is misclassified. Note that to overcome the randomness,
we could have performed multiple queries at each attack step, but because our models already use
50-100 transformed samples per query, this will be computationally infeasible.

19


	Introduction
	Related work: Attacks and defenses
	Transformation-based defenses

	Analysis on distributions of softmax with random image transformations
	Enhancing transformation-based defenses with distribution classifier
	Experiments and Discussion
	MNIST results
	Number of transformed samples required

	CIFAR10 and CIFAR100 results

	End-to-end attack on distribution classifier method
	Conclusion
	Distance between distributions of softmax for all MNIST classes
	Examples of voting recovering from adversarial attack
	Adaptation of DRN for distribution classification
	Experimental setup
	Adversarial attack hyperparameters
	Image transformation defense parameters
	Class activation maps for pixel deflection
	Distribution classifier hyperparameters
	Accuracy results for distribution classifiers

	Details of implementation of Boundary Attack

