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ABSTRACT

It is unclear whether the extensively applied long-short term memory (LSTM) is
an optimised architecture for recurrent neural networks. Its complicated design
makes the network hard to analyse and non-immediately clear for its utilities in
real-world data. This paper studies LSTMs as systems of difference equations,
and takes a theoretical mathematical approach to study consecutive transitions
in network variables. Our study shows that the cell state propagation is predomi-
nantly controlled by the forget gate. Hence, we introduce DecayNets, LSTMs with
monotonically decreasing forget gates, to calibrate cell state dynamics. With re-
current batch normalisation, DecayNet outperforms the previous state of the art for
permuted sequential MNIST. The Decay mechanism is also beneficial for LSTM-
based optimisers, and decrease optimisee neural network losses more rapidly.

1 INTRODUCTION

Neural networks are powerful universal approximators that are difficult to interpret. This paper
presents a numerical study on the forward pass of the long-short term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) recurrent neural networks (RNNs). We treat LSTMs as systems of difference
equations and present visualisations to study and to clarify consecutive transitions in the cell state
dynamics. We introduce DecayNets as an addition to the LSTM architecture – DecayNets have
monotonic decays in forget gates and enjoy smooth transitions in their cell state values.

LSTMs are versatile models that have been used to advance the state-of-the-art for a variety of ma-
chine learning problems. This covers handwriting recognition (Graves et al., 2009), speech recog-
nition (Sundermeyer et al., 2012), and text modelling (Kim et al., 2016). There are an abundance of
work that extends on the basic LSTM architecture. Popular extensions include the attention mecha-
nism (Bahdanau et al., 2014) and the bidirectional design (Schuster & Paliwal, 1997). It is also not
uncommon to blend LSTMs into vision tasks to expand network practicalities (Xu et al., 2015).

However, it is unclear whether LSTMs are optimal architectural designs for RNNs (Jozefowicz
et al., 2015). Additionally, the significance of their individual components are unclear, and empirical
explorations are required for understanding their utility in real-world data (Karpathy et al., 2015).
This lack of interpretability limits our ability in designing better and more transparent networks.

RNNs repeatedly integrate new observations into implicit hidden variables to model temporal rep-
resentations of sequences. Like dynamical systems, the network undergoes iterative computations
on a same set of operators. The transitional dynamics can be visualised through cobweb diagrams
(Glendinning, 1994); and numerical analyses allow us to predict shrinkage and growth in variables.

We show that the updating scheme of the LSTM cell state volatilely alternates between a catch and
a release phase. The former controls the shrinkage while the latter controls the growth of cell state
magnitudes. Our study reveals that the forget gate dictates the dynamical alterations of the cell state.
We hence introduce DecayNets, LSTMs with monotonically decreasing forget gates, for stabilising
cell state propagation and for making networks more interpretable.

With recurrent batch normalisation (Cooijmans et al., 2016), DecayNets outperform previous state of
the art results (best: 97.8%; mean: 97.4%) on the fixed-length permuted pixel-by-pixel (sequential)
MNIST task (Le et al., 2015; LeCun et al., 1998). For the arbitrary-length learning-to-learn task
(Andrychowicz et al., 2016), LSTM-optimisers with the Decay mechanism decrease multi-layer
perceptron (MLP) losses more rapidly, and converge to lower and less varied MLP losses.
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2 THE VANILLA LSTM

DecayNets will be frequently compared to conventional LSTMs. The most commonly implemented
LSTM RNN was proposed by Graves & Schmidhuber (2005), and this paper will refer to the archi-
tecture therein that paper as the LSTM.

LSTMs are recursive systems driven by its input xt, which has the data-size dimensionality M .
The network propagates for a data-length of D units of time, with the subscript t as the recursive
instance, i.e., t = 1 · · ·D . Each instantaneous computation (in abbreviated form) encompasses

System (1): the vanilla LSTM
the gated variables: ft, it,ot = σ(W{F ,I ,O}xt + WR{F ,I ,O}qt−1 + b{F ,I ,O}),
the internal input: at = tanh(WAxt + WRAqt−1 + bA),
the cell state: st = ft � st−1 + it � at,
the hidden state: qt = ot � tanh(st),
with
the dimensionality: xt ∈ RM , ft, it,ot,at, qt, st, b{F,I,O,A} ∈ RN , and

W{F,I,O,A} ∈ RN×M , WR{F,I,O,A} ∈ RN×N .

The input xt and the hidden state qt contribute to other variables via Ws and via WRs. The dimen-
sionality N is user-defined and� is the operator for element-wise product. Along with biases bs, the
regressive contributions are activated by either the sigmoidal function σ or the hyperbolic tangent
function tanh. During the update of the cell state st, the forget gate ft relinquishes fragments of
its previous instance st−1, and the input gate it fine-tunes replenishment from the internal input at.
Finally, the variable qt, which also serves as the output of the network, is a transformation of st
synchronised with the output gate ot.

3 LSTMS AS DIFFERENCE EQUATIONS

Difference equations are recurrent relations with discrete propagation; and the term dynamic refers
to the dependency between time and geometric space. Dynamical behaviours of a difference equa-
tion can be studied to determine whether variables will grow or shrink. This allows us to explain
behaviours of individual LSTM variables and clarify network mechanics.

This section discusses three key concepts – the importance for studying the LSTM cell state; the two
dynamic regimes for cell state values to grow and to shrink; and that the forget gate can be controlled
to yield interpretable and predictable cell state motions. Cobweb diagrams will be used to support
concept visualisations, and a brief introduction to the technique can be found in Appendix A.

3.1 THE CELL STATE REVISITED

This paper postulates the cell state as the source of LSTMs’ modelling capability. Furthermore, we
regard gated variables as secondary variables. Our justifications are as follows.

First, gated variables only exist to read and to set the hidden variables of qt and st. That is, they
exist to assist LSTMs to memorise better, but are not a part of the memories. Second, tanh is a
one-to-one function, thus dynamic properties of qt are inherited from st. Last, at is included in the
update of st, and acts as a small component to the grander dynamic entailed in st. For these reasons,
we postulate the cell state as the most important variable and study it as a difference equation.

3.2 A PIECEWISE ANALYSIS ON THE CELL STATE

We study the cell state, st = ft � st−1 + it � at, separately as sp = ft � st−1 and sq = it � at.
Since we have asserted gated variables as secondary variables, we can think of ft and it as constant
vectors with elements between 0 and 1. That is, individual dimensions of sp and sq have cobweb
outlines that are analogous to Figures 1(a) and 1(b) respectively.

For the rest of this paper, we will refer to the marginal dimensions of ft, it, at, xt, and st as fmt,
imt, amt, xmt, and smt, respectively. For instance, each dimension of sq is imt amt and inherits the
diverse characteristic outline of 1(b) through tanh from amt.

2



Under review as a conference paper at ICLR 2019

Consecutive transitions in network variables are shown as the dotted trajectories in Figure 1. They
start from the rhombuses and ends on the circles. The characteristic outlines of the sub-dynamics
are the solid lines, and the dashed lines represent the 45-degree y = x lines.

The two subfigures address qualitatively different dynamic regimes. The origin of Figure 1(a) is a
sink that attracts propagation trajectories and decreases variable magnitudes. Conversely, the origin
of 1(b) is a source that repels propagation trajectories and increases variable magnitudes. We refer
to 1(a) as the dynamic catch regime; and refer to 1(b) as the dynamic release regime.

The update of the LSTM cell state is thus a composition of two opposing modifiers. With one that
dedicates to its growth, and the other specialised in its shrinkage. It is thus crucial to understand
which one, between sp and sq , serves as the more dominant evolution component. We will then
reformulate the more dominant component with deterministic properties to redefine the network
with interpretable and affirmative qualities.

A key difference between the opposing regimes of Figure 1 is the boundedness of the characteristic
outlines. The sub-dynamic of sq is limited between±1, while that of sp is unbounded. This implies
that sq contributes less to the additive relationship of sk, and is less impactful than sp. With the
dominant component identified, our next target is to understand how sp affects vanilla LSTMs. The
insight will allow us to propose sensible modifications to make LSTM mechanics more interpretable.

3.3 THE FORGET GATE AND THE CATCH-AND-RELEASE DYNAMICS

Based on the two insights of, first, sp = ft�st−1 serving as the dominant modifier to st, and second,
as each of its dimensional outline sm(t−1) being modified by the gradient fmt, we conjecture that
the forget gate controls the overall gradient of the characteristic outline of the cell state. That is,
ft predominantly controls the stability of the origin, and dictates the dynamic alterations between
the catch and the release phases. As a consequence and regardless of sq , values of the cell state are
more likely to grow with large ft, and more likely to shrink with small ft.

We use Figure 2 to support these inferences. The first row simulates the near-random dynamics of
a vanilla LSTM cell state. We present rows two and three to show stark contrasts, and advantages,
of generating predictable cell state propagation with controllable forget gate values.

3.3.1 THE NEAR-RANDOM DYNAMICS OF A VANILLA LSTM CELL STATE

Gated units of LSTMs are not hardwired with deterministic propagation. As a result, they evolve in
a near-chaotic fashion. The first row of Figure 2 simulates behaviours of st under unregulated ft.

The three subfigures of the row serves as consecutive instances of a propagation, i.e., t =[1 . . . 3].
The presentation follows Figure 1, and dot-dash lines are appended to instances t = 2 and 3 to
show the characteristic outlines of their previous instances. Parameters fm(1...3) = [1, 0.25, 1] and
im(1...3) = [1, 0, 0.75] are carefully chosen to exaggerate impacts brought to the vanilla LSTM cell
state by the near-chaotic evolution of gates. Real scenarios and experimental set-ups that justify the
choice of these demonstrative parameters can be found in Appendix B.

These settings lead to sudden catches and abrupt releases. The disordered dynamics make it dif-
ficult to predict growth and shrinkage in cell state magnitudes. It is also unclear how such drastic
behaviours can assist us to understand the learned features of a trained LSTM.

3.3.2 INTERPRETABLE CELL STATE DYNAMICS UNDER CONTROLLED FORGET GATES

Let us now consider cell state dynamics under controlled fts. The second row has fmt = 0.9
with im(1...3) = [1, 0.75, 0.5]; and the third row has fmt = 0.25 with im(1...3) = [1, 0.75, 0.15].
Consistent growth and consistent shrinkage are observed in rows two and three respectively.

The magnitudes evolve monotonically because the controlled forget gates expose cell states to homo-
geneous dynamic regimes. Large constant fmts expose the cell state to consistent (global) releases;
whereas small constant fmts expose smt to global catches.

Dynamic reversals may occur in st through sq , but only under the unlikely incidents where com-
binations of extreme values of it and at are simultaneously presented. In addition, the dynamic
reversals are merely temporary (local) due to the boundedness of values in sq .
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Figure 1: Visualisations of difference equations variable propagation
The dynamic regimes of sp and sq behave analogously to the respective difference equations of
(a): xt = T (xt−1) = 0.5xt−1 and (b): xt = T (xt−1) = tanh(3xt−1) .
The propagation, in dots, start from rhombuses and end on circles. The dashed lines represent y = x
and the solid lines denotes the characteristic outlines of y = T (x ). Vertical mappings from y = x
to y = T (x ) reflect instantaneous variable computations of T (xt−1); and horizontal mappings from
y = T (x ) to y = x represent the recursive nature of difference equations to re-insert the last output as
the new input xt = T (xt−1). The origin of (a) is a sink which attracts propagation and diminishes
variable magnitudes; that of (b) is a source which repels propagations and increases variable magnitudes.

t =1

-0.2
0.0

1.0

1.8

y
(fm , im ) =(1, 1) (fm , im ) =(0.25, 0)

t =2

Row 1: Unregulated LSTM

(fm , im ) =(1, 0.75)

t =3

(fm , im ) =(0.9, 1)

-0.2
0.0

1.0

1.8

y
(fm , im ) =(0.9, 0.75)

Row 2: Global releases

(fm , im ) =(0.9, 0.5)

(fm , im ) =(0.25, 1)

-0.2
0.0

1.0

1.8

y

-0.2 0.0 1.0 1.4
x

(fm , im ) =(0.25, 0.75)

-0.2 0.0 1.0 1.4
x

Row 3: Global catches

(fm , im ) =(0.25, 0.15)

-0.2 0.0 1.0 1.4
x

Figure 2: Cell state propagation of controlled and uncontrolled forget gates
Three qualitatively different scenarios for cell state propagation are investigated.
The subfigures follow the presentation format of Figure 1; additional dot-dash lines are appended as the
characteristic shape of the t − 1th instance. The characteristic shape of interest is the update of the cell
state y = T (x ) = fmt x + imt tanh(x ). From top to bottom, the rows represent for cell state dynamics
under an unregulated LSTM, under a large constant forget gate, and under a small constant forget gate,
respectively. The latter two scenarios exhibit monotonic propagation because the constant forget gates
expose cell states to homogeneous dynamical regimes. The motions are thus more interpretable than
those of the unregulated LSTM, where abrupt shrinkage and sudden growth are observed.
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4 DECAYNETS

This section presents DecayNets1, and calibrate cell state dynamics according to mathematical in-
sights therein Subsection 3.3. From Figure 2, it is evident that forget gates deprived of random
evolution yield predictable and stable cell state propagation. For this reason, we propose the idea to
hard-wire forget gate outputs with a continuous and monotonic decrease.

The DecayNet modifies the forget gate according to

System (2): The Decay mechanism on the LSTM forget gate
the forget-polar input: pt = pt−1 − π

2D
1
6 (WFxt + WRFqt−1 + 3)

purposedly presented this way

with p0 = π
2 · 1̃,

forget gate elements: fti = Φ(pti) =

{
1 for pti >

π
2

0 for pti < 0
sin(pti) otherwise

for i in 1, 2, . . . N ,

and inherits all remaining variables and their corresponding dimensionalities from System (1). Note,
no new learnable parameters are introduced to this system.

The forget gate is initialised as a vector of ones, with equivalent portions of the said initial ones set
to be lost over the iterative instances of the LSTM. That is, we set
. f0i = sin(p0i) = sin(π2 ) = 1,
and that, over time, we remove a maximised cumulative amount of 1, and a minimised cumulative
amount of 0, to constrain the final value ftD ∈ [0, 1].

We implement the sinusoidal function as the “activation function” of the forget gate. In addition, we
engineer “pre-activated neurons” with values within the bounds of [0, π2 ]. Let us elaborate.

We replace σ with sin to decay equivalent portions over time. The available amount of instantaneous
decay needs to be uniform throughout time to ensure that all instantaneous lost in values are equally
important. The sigmoidal outline of σ yields less changes when magnitudes of pre-activated values
are extreme. We remove this undesirable property with the substitution of sin with radian-like inputs.

Elements of the pre-activated neurons are in the bound of [0, π2 ]. Empirically, we observed that dis-
tributions of WFxt+WRFqt−1 , with entries of WF and WRF initialised with uniform sampling
within the interval of ±1, are bounded within the limits of [−3, 3].2 That is, we have
. WFxt + WRFqt−1 ∈ [−3, 3] and
. π

2
1
6 (WFxt + WRFqt−1 + 3) ∈ [0, π2 ].

The design in mind is thus, for each instance, a maximum amount of π
2D is lost from pti ’-s initialised

π
2 . In other words, over an input-length of D units of time, an accumulation, minimised at 0 and
maximum at π

2 , is lost in the forget-polar input. The former induces the final value of pDi = π
2

(equivalently fDi = 1), and the latter gives pDi = 0 (equivalently fDi = 0).

DecayNets learn to dichotomise cell state values conditioned on the input shown. One subset of the
cell state maintains large magnitudes, whereas the other decreases to small magnitudes. The former
subset corresponds to dimensions of the forget gate that maintain their large magnitude over time;
whereas the latter subset corresponds to those that diminish.

More importantly, the monotonic decrease in the forget gate serves as an interpretation to LSTM’s
inferential decision mechanism. This is because the update of the cell state,
st = sp+sq = ft�st−1 + it�at, is composed of recurrent memory sp and feedforward memory
sq . The irreversible decay indicates that, dimensions of the cell state, that correspond to forget gates
that diminish, gradually lose their recurrent nature over time, and effectively function as feedforward
neurons. Large forget gate values thus serve as clear indicators for, those neural dimensions, that the
DecayNet prefer to reiterate, for the input-driven optimisation.

1Implementation of our algorithm will be available at https://github.com/anonymous author/decaynet/
2New/revised text are in brown to assist the reviewers, and will be resumed to black after the revision period.
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5 RELATED STUDIES

The forward pass of LSTMs (and RNNs) consists high dimensional variables with coupled relation-
ships; and is mostly understood with observational studies and search studies. The former explores
practical network usages, and the latter finds optimal combinations of network variables.

Observational studies suggest that cell states develop specific functionality. In text (Karpathy et al.,
2015), they are observed to act as line length counters and quotation machines; whereas in speech
(Wu & King, 2016), they are highly correlated to the Mel-Cepsrtal coefficient. Search studies (Greff
et al., 2017; Chung et al., 2014; Jozefowicz et al., 2015) found that, no particular combinatory sets of
variables yield an architecture, that consistently outperforms LSTM in all experimental conditions.

Though rigorous and informative, these studies are based on exhibited qualities of optimised LSTMs.
Karpathy et al. (2015) conjectured the functionality of trained LSTM cell states through examining
post-activated cell state values tanh(st). Greff et al. (2017) observed that gated recurrent units
(GRUs) (Cho et al., 2014) are capable of performing well on tasks unoptimised by those LSTMs
deprived of output gates. Hence, they conjectured that GRUs’ coupling of the input gate and the
forget gate, and the output gate of LSTMs prevent unbounded cell states. In contrast, our theoretical
mathematical approach therein Sections 3 and 4 are conducted prior to the training of LSTMs.

Mathematical properties of neural networks are mostly studied through the lens of statistical learning
theory. This paper took an alternative approach. We treated neural networks as dynamical systems,
and offered the perspective of understanding LSTMs as systems of difference (discrete) equations.

Statistical studies and dynamical studies are complementary. Burger & Neubauer (2003) took an in-
verse problem approach and integrated Tikhonov regularisations to enhance neural network stability.
Tallec & Ollivier (2018) offers another theoretical study on the forward pass. Incremental updates
of LSTMs are treated as differential equations, and the effects of multiple scales are analysed.

The mathematical analyses therein this paper differs to existing literature because, we propose mod-
ifications on a specific variable, to yield an affirmative / deterministic outcome – DecayNets have
monotonically decreasing forget gates. In addition, DecayNets initialise their forget gate values as
1s, which is similar to the effect of the common practice of setting LSTM forget gate biases to 1s
(Gers et al., 1999), for yielding large initial forget values and for “remembering more by default”.

A hard regularisation emerges from the reformulation. As mentioned in Section 4, the network
learns to irreversibly suppress the recurrent nature of a selection of cell state values conditioned on
the input shown. This differs to soft regularisations such as Dropout (Srivastava et al., 2014) and
Zoneout (Krueger et al., 2016), where the respective nullified and frozen activation are recoverable.

6 EXPERIMENTS AND RESULTS

6.1 PERMUTED SEQUENTIAL MNIST IMAGE CLASSIFICATION

We apply DecayNets and LSTMs on image classification with sequential inputs. The data of choice
is MNIST (LeCun et al., 1998), a database of handwritten digits of numbers [0-9], with 60K and
10K images for training and testing respectively. MNIST images are in 28 × 28-pixel formats, we
present each pixel, one at a time, as a 784(= 28 × 28)-unit pixel-by-pixel sequence to the RNNs
therein this subsection. Following Le et al. (2015), we apply a fixed random permutation over the
pixels for setting up the task commonly known as permuted sequential MNIST (Perm-SeqMNIST).

RNNs of this subsection have a single layer of 100 hidden dimensions and are trained on the RM-
SProp optimiser (Tieleman & Hinton, 2012) over 150 epoches. The learning rate is 0.001, with
0.9 momentum and no weight decay. Gradient clipping is applied at 1 to avoid exploding gradients
(Pascanu et al., 2012). All weights are initialised with uniform sampling within the interval of ±1,
and all biases are initialised as zeros. No normalisation is performed on the data prior to training,
and a softmax classifier is attached to produce prediction from the final hidden state qD.

The best prediction accuracy for unregulated RNNs is 92.1% for DecayNet and 89.5% for LSTM
(which roughly matches the baseline model of 89.8% in Krueger et al. (2016)). We then integrated
recurrent batch normalisation (RBN) (Cooijmans et al., 2016) to DecayNet and found that both the
best performing RBN DecayNet, 97.8%, and the average simulatory performance, 97.4%, yield
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Figure 3: Testing accuracy of the RNNs on Perm-SeqMNIST
Purple and blue denotes DecayNet, while green and yellow is used for LSTM. Performances of RBN
RNNs are thick solid lines over shades. Bottoms and tops of the shades are the worst and the best perfor-
mance of all simulations; and the thick central line is the average performance.

Table 1: Existing competitive results on Perm-SeqMNIST
Model Accuracy (%) Source

RBN DecayNet-LSTM Best: 97.8 ; Mean: 97.4 This paper
Temporal Convolutional Network 97.2 Bai et al. (2018)

RBN Zoneout LSTM 95.9 Krueger et al. (2016)
3D tLSTM+CN 95.7 He et al. (2017)

Dilated GRU and Dilated CNN 94.6 and 96.7 Chang et al. (2017)
iRNN 82.0 Le et al. (2015)

better results than the state of the art performance reported in Bai et al. (2018) at 97.2%. Table 1
presents a list of competitive results in existing literature, and Figure 3 shows the test set accuracy.
Purple and blue denote DecayNets, while yellow and green are used for LSTMs. The best unregu-
lated networks are dashed and dotted; and 10 simulations of RBN RNNs are presented as thick solid
lines on shades. Bottoms and tops of the shades are the worst and best performances of all simula-
tions; the central lines are the mean performances. The RBN LSTM results differ to those reported
in Cooijmans et al. (2016) and Krueger et al. (2016), we speculate this as a result of differences in
the initialisations of weights and biases.

A similar task, of image classification with row-by-row inputs, is presented in Appendix C. There,
DecayNets outperform LSTMs with less significant differences, but yield more consistent results.

6.2 LSTMS AS OPTIMISERS

The second task follows Andrychowicz et al. (2016) and update weights of multi-layer perceptrons
(MLPs) with LSTMs. The paper showed that MLP-optimisees trained with LSTM-optimisers yield
marginally lower losses than those trained with the hand-crafted optimiser of ADAM (Kingma &
Ba, 2014). Here, we show that the Decay mechanism helps the already successful LSTM-optimiser
decrease MLP losses more rapidly, and converge to lower and less varied MLP losses.

We train two-layer MLPs for MNIST classification and update their weights θ with LSTMs. The
MNIST images are normalised with mean and standard deviation (MSD) = (0.1037, 0.3081), and
are organise as vector inputs of dimensionality 784. The first MLP layer has weights of dimension-
ality R784×20; the second layer, a softmax layer, has weights of dimensionality R20×10. The update
. θt = θt−1 −αt∇θt−1

Lt
uses learning rate αt and ∇θt−1Lt, the gradient of the optimisation loss with respect to parameter
θt−1. We use LSTM-optimisers to infer αt given the element-wise product of θt and their corre-
sponding gradients Gθt−1 . That is, for each instance, in brevity,
. αt, qt, st = LSTM(θt−1 �Gθt−1 , qt−1, st−1).
The optimisers are trained according to Andrychowicz et al. (2016), which we reiterate in Appendix
D. For justifications and details on the choices of the input and the output, see Appendix E.

The Decay mechanism allows LSTM-optimisers to update their hidden variables for multiple steps
before they create learning rates. At the beginning of each instance, the forget polar input is reset as
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Figure 4: Performances of optimisers
We compare various optimisers to update the weights of MLP-optimisees for learning MNIST classifica-
tion. Subplot (a) shows that, both LSTM-based optimisers, yellow for LSTMs and purple for DecayNets,
yield MLPs with marginally lower losses than their rival hand-crafted optimisational schemes. Subplot
(b) shows that the appended Decay mechanism allows LSTMs to decrease MLP losses more rapidly.

the maximal values of π
2 · 1̃ (effectively ft = 1̃). For each instance, the input of θt−1 � Gθt−1

monotonically decrease the forget gate and update the hidden variables as according to
. qt− 1

2
, st− 1

2
= DecayNet(θt−1 �Gθt−1 , qt−1, st−1) and

. αt, qt, st = DecayNet(θt−1 �Gθt−1
, qt− 1

2
, st− 1

2
).

That is, the learning rate is created only after the gated units and hidden variables propagated for
two times. Such an internal propagation can be pro-longed, for example, to twenty steps.

A comparison of optimiser performances is presented in Figure 4(a). The figure shows MLP losses
after every update of a size 32 mini-batch. The colours of green, grey, blue, yellow, and purple are
used to denote stochastic gradient descent with learning rate 0.05, ADAM with learning rate 0.002,
RMSProp with learning rate 0.001, a trained LSTM-optimiser, and a trained DecayNet-optimiser,
respectively. LSTM-based optimisers outperform hand-crafted rivals by a significant margin, and
their MLP losses converge after the 60th update. Hence, we treat losses from the 80th to the 100th
update as losses of optimised MLPs. Using these data, two-independent sample t-test found sta-
tistical significance that DecayNet-optimised MLPs yield less losses than LSTM-optimised MLPs,
with MSD= (−0.13, 0.01) by p-value < 0.001. In addition, we present Figure 4(b), a sequence of
violin-plots, to examine the running performance of the LSTM-based optimisers. With colours in-
herited from 4(a), each violin-plot aggregates twenty iterative updates of loss data, i.e., the first is of
the 1st to the 20th update, and that the second is of the 21st to the 40th update. The figure indicates
that DecayNet-optimisers minimise MLP losses more rapidly, and converge to less varied losses.

7 CONCLUSION

This paper proposes DecayNets, LSTMs with monotonically decreasing forget gates. Motivations
and modifications are based on theoretical mathematical clarifications of the LSTM cell state me-
chanics. The update of the cell state is studied as a difference equation, and we have showen that
the update alternates between a catch and a release phase to control shrinkage and growth in its
values. We have found that the dynamic alteration is predominately controlled by the forget gate
and propose to stabilise the cell state through a monotonically decreasing forget gate. The reformu-
lation is easy to implement and introduces no extra learnable parameters. With RBN, DecayNets
achieved better results than previously reported state of the art performance on the Perm-SeqMNIST
task. Our experimental results have showen that the Decay mechanism also functions as a promising
additional feature for those LSTMs casted as optimisers to update optimisee MLP weights.

However, the most important quality of the Decay mechanism is that it is deterministic. It would
be interesting to treat the gradually decaying patterns as features to analyse interactions among
speech utterances and other natural language processing tasks (Suominen, 2014). Such a similar
deterministic-ness may be hard-wired to GRUs. However, the update of the GRU cell state is more
complicated than its LSTM counterpart, and separate dynamical analyses must be conducted.

LSTMs are still opaque. The authors of this manuscript believe that more mathematical analyses
should be focused on component sq of the cell state. We believe this less controllable, and more
diverse sub-dynamic of the cell state controls bifurcations (Glendinning, 1994) in LSTM dynamics.
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A A BRIEF INTRODUCTION TO COBWEB DIAGRAMS
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Figure 5: Simple examples of cobwebs
Two simple examples for cobwebs are presented.
Subplot (a) is for y = 0.5x, while (b) is for y = 1.5x. Both scenarios share the origin as an equilib-
rium. Gradients around the vicinity of the equilibria serve as major influences that dictate their stability.
Solutions, the neural trajectories, start from the rhombuses and ends at the circles. The gradients around
the origin of (a) is < 1, the equilibrium is hence a sink and attracts neural trajectoreis; its counterpart in
(b) is > 1, hence a source, and repels trajectories. The attractiveness and repulsiveness of the dynamic
singularities dictate the growth and shrinkage in variables.

This appendix should only serve as a brief introduction to cobweb diagrams. Interested readers
should consult Glendinning (1994) for a broad and complete view on cobweb diagrams, and other
dynamical techniques / implications.

Cobweb diagram serves as an intuitive technique to visualise dynamical motions for variables in low
dimensional difference equations. Note, not differential equations. Let us first revisit the concept of
difference equations, and then introduce cobweb diagrams.

The simplest form of a difference equation is xt = T (xt−1) with x0 = α. Difference equations
are simple recursive networks where variable xt serves as both the input and the output. Subscript t
represents computational instances, and T is some arbitrary function.

A cobweb diagram consists 4 fundamental elements. The 45-degree y = x line, the characteristic
shape of the operator y = T (x), an initial point x0 = α, and a trail of propagation trajectories.
Figure 5 will be used to support the narrative therein this appendix. The dashed line is y = x, the
solid line is y = T (x), the initial positions are in rhombuses, the solution trajectories are dotted, and
the final positions are in circles.

Cobwebs are useful because they visualise repeated insertions of functional outputs. The repetition
is visualised by two qualitatively different types of mappings: a vertical mapping, and a horizontal
mapping. Vertical mappings initiate from y = x and terminate on y = T (x), whereas horizontal
mappings start from y = T (x) and end on y = x. Vertical mappings represent for functional
computations, i.e., given the input of xk−1 → compute for the output of T (xk−1). Their counterparts
of horizontal mappings represent for system updates, i.e., given the post-computational T (xk−1)→
update the network variable of xk = T (xk−1). This is the reason why the variable trajectories
shown in Figure 5 are zig-zag-like. Not all trajectories are zig-zagged, interested readers can find
descriptions of tent map propagation in Boeing (2016).

Another important feature to cobwebbing is the labelling of the dynamic singularities known as
equilibria. Equilibria are the intersections of y = x and y = T (x). These are the positions where,
once a trajectory maps into, or starts on them, the said trajectory will never leave. Trajectories move
towards attractive / stable equilibria known as sinks, and moves away from repulsive / unstable
equilibria known as sources. For instance, the origin of Figure 5(a) is a stable equilibria, and that
of 5(b) is an unstable equilibria. While travelling towards the sink, the variable of 5(a) decreases in
magnitudes, i.e., magnitudes of the y-coordinates of the trajectories decrease; and while travelling
away from the source, the variable of 5(b) increases in magnitudes. From these two examples, it is
clear that the stability of the equilibria are highly dependent on the gradients around their vicinities.
The gradient around the origin of 5(a) and 5(b) are < 1 and > 1 respectively. More interesting
dynamics may emerge with more complicated outlines of y = T (x).
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B A JUSTIFICATION ON THE DEMONSTRATIVE PARAMETERS
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Figure 6: Time series of ft in an optimised LSTM

We insert inputs xs1 and xs2 as binary strings to a trained LSTM for summation. We present the arbitrary
2nd, 12th, 22nd, and 32nd dimensions of the forget gate during the computation of the LSTM cell. The
time series of all of these arbitrary dimensions exhibit near-random dynamics, where extreme dynamic
alterations with no clear patterns are observed.

This appendix serves as a justification to the chosen demonstrative parameters in the first row of Fig-
ure 2. The justification involves 3 items: the vanilla LSTM (see System (1)), an additive problem,
and records of time series of the forget gate.

The binary string additive problem defined:

The vanilla LSTM is provided with two input numbers of xs1 and xs2 in their 16-digit binary form;
the network is trained to generate the correct summation output ys, also in the 16-digit binary form.
We apply some simple constraints to ensure that values of both the input and the output do not
exceed the maximum capacity of the 16-digit binary form. The maximum value of xs1 is limited to
the rounded value of 216−1

2 , and that of xs2 is limited to the floored value of 216−1
2 .

The LSTM in this appendix is a one layer network with 2 input dimensions, 32 hidden dimensions,
and 1 output dimension. The network is set to run for 16 units of time, and during each instance,
one digit from each of the paired input is forwarded to the LSTM. The binary digits are presented
from back to forth. For every instance, the output of the network is computed as follows. Matrix
multiplication of a learnable feedforward regressive weight is applied onto the current hidden state
qt, the product is then activated via tanh, and finally rounded.

The network is trained in gradient descent with backpropagation through time. The learning rate is
set as 0.1, and the network is not regularised by other means.

Time series of the forget gate:

After the network is optimised, we randomly generated two pairs of xs1 and xs2 and inserted them
to the network. Time series of the 2nd, 12th, 22nd, and 32nd dimension of the forget gate are shown
in Figure 6.

Marginal dimensions of the forget gate oscillate in aperiodic and near-random fashions. There are no
clear nor repeating patterns, and it is common to have extreme alterations in oscillatory magnitudes.
The demonstrative parameters fm(1...3) = [1, 0.25, 1] mimic these behaviours via an initial decrease
followed by a sharp increase; the demonstrative parameters are chosen to provide clear illustrations
on the impact to st from ft, thus the three values are chosen to induce extreme alterations.
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Figure 2 is based on Figure 6. The first two columns of the first row demonstrate an abrupt catch
through a large decrease in the forget gate value; whereas the latter two columns of the first row
demonstrate a sudden release through a large increase in the forget gate value.

C ROW-BY-ROW IMAGE CLASSIFICATION
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Figure 7: Back-to-back violin plots with side-by-side box plots

Result visualisations, with purple for DecayNet and yellow for LSTM.
Subplot (a) is for MNIST; comparisons (i) and (ii) are on 32 and 64 HD networks. The best perform-
ing DecayNet outperforms the best performing LSTM; and DecayNets have more consistent results than
LSTMs. Subplot (b) is for 48 HD DecayNets vs 64 HD LSTMs on Fashion-MNIST. The best performing
LSTM outperforms the best performing DecayNet; but arbitrary performances of DecayNets are compa-
rable with LSTMs, and are more consistent.

Table 2: Results
Data Model Accuracy (%) t-test (p) Surpass Best result (%)
MNIST LSTM (32 HD) 95.1± 0.2 - - - - 96.2

DecayNet (32 HD) 95.6± 0.1 < 10−4
√

96.4
LSTM (64 HD) 96.2± 0.2 - - - - 97.0
DecayNet (64 HD) 96.5± 0.1 < 10−4

√
97.1

Fashion-MNIST LSTM (64 HD) 82.3± 0.3 - - - - 84.1
DecayNet (48 HD) 82.2± 0.2 0.5197 - - 83.2

We apply DecayNets and LSTMs for image classification with sequential inputs. The data of choice
is, again, MNIST, and Fashion-MNIST (Xiao et al., 2017). Fashion-MNIST contains images of
fashion products from 10 categories; it also has 60K and 10K images for training and testing, and
has images in 28× 28-pixel formats. Comparative results are listed in Table 2.

This appendix considers the task of processing images row-by-row, sequentially, from top to bot-
tom. There are thus 28 instances and the inputs are vectors of 28 dimensions. Prior to training, no
normalisation is applied to MNIST, and a normalisation of mean and standard deviation
(MSD) = (0.5, 0.5) is applied to Fashion-MNIST. No other means of regularisation is applied.
RNNs of this subsection have one hidden dimension, which we will elaborate later. A softmax clas-
sifier is attached to produce prediction from the final hidden state qD; and all RNNs are trained on
the ADAM with learning rate 0.01. Note, the term MSD will reappear later.

We conduct two comparisons on DecayNets and LSTMs. The first under the setting of 32 hidden
dimensions (HD) and the second with 64 HD. All networks are trained on MNIST for 1 epoch.

Within each HD-group, the best performing DecayNets outperform LSTMs. The results, in the
prediction accuracy, are, 96.4% vs 96.2% for 32 HD, and 97.1% vs 97.0% for 64 HD. Two inde-
pendent sample t-tests show that DecayNets yield statistically significantly greater accuracy than
LSTMs. For 32 HD models, DecayNets give MSD = (95.6%,0.0037) against LSTMs’ MSD =
(95.1%,0.0078), with p-values < 10−4. For 64 HD models, DecayNets give MSD = (96.5,0.0033)
against LSTMs’ MSD = (96.2%,0.0064), with p-values < 10−4. We present back-to-back violin
plots with side-by-side box plots in Figure 7(a). Purple is used to denote DecayNets, and yellow is
for LSTMs. The box plots show that the inter-quatile ranges of DecayNets are smaller than those of
LSTMs, implying that the DecayNets yield more consistent and more reliable results.
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For Fashion-MNIST, we compare 48 HD DecayNets against 64 HD LSTMs over 1 epoch of training.
The DecayNets of this task have 37.44% less parameters than their rivaling LSTMs.

The best performing LSTMs outperform DecayNets, in the prediction accuracy, by 84.1% vs 83.2%.
However, two independent sample t-test show that there are no statistical differences in the mean
accuracy for DecayNets and LSTMs. DecayNets have MSD = (82.2%,0.0054) against LSTMs’
MSD = (82.3%,0.0084), with p-values > 0.5. The result visualisations in Figure 7(b), again, shows
that DecayNets yield more consistent results than LSTMs.

D DESCRIPTIONS OF THE LEARNING TO LEARN TASK

The learning to learn task follows the paper of Andrychowicz et al. (2016). This section pro-
vides some of our own training details, which reiterates some training details provided in the men-
tioned paper.

Weights of the MLP-optimisee are updated via
. θt = θt−1 −αt∇θt−1

Lt
with LSTM-optimisers used for inferring learning rates αt. We considered two-layer MLPs, with
dimensionalities 784× 20× 10; which we denote the overall learnable parametric count as rH . All
weights are initialised randomly from a uniform distribution with the bounds of [−0.1, 0.1], and the
biases are initialised as zero vectors. This controlled initialisation is to ensure all MLP-optimisees
start as if they were empty canvases, and for maximising the utility of the LSTM-optimisers.

The input of the LSTM, θt−1 � Gθt−1
, is the element-wise product of the last instance of MLP

parameters and their corresponding gradients. That is,
. αt, qt, st = LSTM(θt−1 �Gθt−1

, qt−1, st−1).

The inputs and the outputs for LSTM-based optimisers differ to those given in Andrychowicz et al.
(2016). Justifications are provided in Appendix E.

The dimensionality of the vector input θt−1�Gθt−1
is the total count of MLP learnable parameters,

rH , which is a large constant. In order to simplify training for LSTM-optimisers, the LSTMs have
a small feedforward layer, located prior to the computation of the gated units, with a learnable
matrix of dimensionlity RrH×28, for the purpose of down-sizing the input. Thus, the LSTM-based
optimisers have a ‘formal’ input dimensions of 28; in addition, the hidden dimensions are chosen to
be 64.

Two separate layer normalisations are applied in the LSTM-optimisers. One to post-process the
input-to-hidden connections of Wxt, and the other to post-process the hidden-to-hidden connec-
tions of WRqt. Trained LSTM-optimisers unfold every instance to create learning rates for the
MLP-optimisees. The learning rates αt are of dimensionality RrH , and are created from the matrix
multiplication of the LSTM hidden state and a learnable up-size matrix of dimensionality R64×rH .

The LSTM-based optimisers are trained via ADAM with learning rate 0.001. Each newly initialised
LSTM-based optimiser learns to update 5 controlled initialised MLP-optimisees. Weights of the
MLP-optimisees are updated for 100 consecutive instances. For each update, a size 32 mini-batch is
provided to the MLP-optimisees, with records of the differences, between the cross entropy losses,
prior and after, the update of MLP-optimisee weights, recorded. For every 20 update instances,
of the 100 consecutive instances, from the optimisers to the optimisees, an accumulation of the
differences in the recorded losses are used to update weights therein the LSTM-based optimisers.

E JUSTIFICATIONS ON OUR CHOICES OF INPUTS AND OUTPUTS FOR THE
LEARNING TO LEARN TASK

Justification on inputs:

GradientsGθt−1
of the learning to learn task are the products of the pre-processed gradient provided

in Andrychowicz et al. (2016). In that paper, the original gradient is given as∇, and the transforma-
tions are given as

. ∇t →
{

( log(|∇|)
10 , sgn(∇) ) if |∇| ≥ e−10,

( −1, e10∇ ) otherwise.
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The authors of this manuscript understood the first pair of gradients ( log(|∇|)
10 ,−1) as an emphasis

on large magnitude gradients. Its counterpart pair of (sgn(∇), e10∇) provides an emphasis on small
magnitude gradients. The first pair consistently produces negative values, whereas the second pair
has values of either signs, which mostly dependent on their larger elements. That is, the sign of
the second pair could serve as cues, for the directions, to travel sensibly, in search for the solution
space for MLPs. In addition, the magnitude of the first pair could serve as cues for the magnitudes
of the strides in those directions. Thus, it is not necessary to feed the pre-processed gradients as
separate inputs to the LSTM-optimisers. This is because the product of the two retains property of
both transformations.

As an additional note, the MLP parameters are element-wise-producted with Gθt−1
, the element-

wise product of the pre-processed gradients, to prevent the learning of redundant dependencies be-
tween MLP parameters and their gradients during the training of the LSTM-optimisers.

Justification on outputs:

Therein this paper, the outputs of the LSTM-based optimisers are chosen as the learning rates of
the MLP weights. This decision is based on two paper – on the original learning to learn paper
of Andrychowicz et al. (2016), and on the learning to learn for few-shot learning paper of Ravi &
Larochelle (2016).

In Andrychowicz et al. (2016), the authors used LSTM-optimisers to prepare the whole updating
content for the weights of the optimisees. However, the output is not simply added towards the
existing weights of the optimisees – the LSTM outputs are rescaled by a factor of 0.1. The authors
of this manuscript speculate this as a consequence of activation function saturation. That is, the
output values are close to extrema of the activation functions. Furthermore, we speculate this as
a consequnece of the high dimensionality of rH . This serves as another reason for our producted-
input, for avoiding excessive optimiser input contributions that stem from the redundant synaptically
connected dimensionality.

In Ravi & Larochelle (2016), the authors used LSTM-optimisers to prepare for a set of learning
rates and a set of “anti-learning rates” for the weights of the optimisees. The anti-learning rates first
relinquishes fractions of the existing MLP weights prior to updating the remaining said weights.

We have concerns for both implementations. We want to avoid a potentially saturated output, and
we want an updating rule for MLPs that are mathematically sound. For this reason, we choose to
only produce the learning rates via the LSTM-based optimisers. Our experimental results, shown in
Figure 4, closely resemble those in Andrychowicz et al. (2016).
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