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ABSTRACT

In this paper, we propose Continuous Graph Flow, a generative continuous flow
based method that aims to model complex distributions of graph-structured data.
Once learned, the model can be applied to an arbitrary graph, defining a probabil-
ity density over the random variables represented by the graph. It is formulated as
an ordinary differential equation system with shared and reusable functions that
operate over the graphs. This leads to a new type of neural graph message pass-
ing scheme that performs continuous message passing over time. This class of
models offers several advantages: a flexible representation that can generalize to
variable data dimensions; ability to model dependencies in complex data distri-
butions; reversible and memory-efficient; and exact and efficient computation of
the likelihood of the data. We demonstrate the effectiveness of our model on a
diverse set of generation tasks across different domains: graph generation, image
puzzle generation, and layout generation from scene graphs. Our proposed model
achieves significantly better performance compared to state-of-the-art models.

1 INTRODUCTION

Modeling and generating graph-structured data has important applications in various scientific fields
such as building knowledge graphs (Lin et al., 2015; Bordes et al., 2011), inventing new molecular
structures (Gilmer et al., 2017) and generating diverse images from scene graphs (Johnson et al.,
2018). Being able to train expressive graph generative models is an integral part of AI research.

Significant research effort has been devoted in this direction. Traditional graph generative meth-
ods (Erdős & Rényi, 1959; Leskovec et al., 2010; Albert & Barabási, 2002; Airoldi et al., 2008) are
based on rigid structural assumptions and lack the capability to learn from observed data. Modern
deep learning frameworks within the variational autoencoder (VAE) (Kingma & Welling, 2014) for-
malism offer promise of learning distributions from data. Specifially, for structured data, research
efforts have focused on bestowing VAE based generative models with the ability to learn structured
latent space models (Lin et al., 2018; He et al., 2018; Kipf & Welling, 2016). Nevertheless, their
capacity is still limited mainly because of the assumptions placed on the form of distributions. An-
other class of graph generative models are based on autoregressive methods (You et al., 2018; Kipf
et al., 2018). These models construct graph nodes sequentially wherein each iteration involves gen-
eration of edges connecting a generated node in that iteration with the previously generated set of
nodes. Such autoregressive models have been proven to be the most successful so far. However, due
to the sequential nature of the generation process, the generation suffers from the inability to main-
tain long-term dependencies in larger graphs. Therefore, existing methods for graph generation are
yet to realize the full potential of their generative power, particularly, the ability to model complex
distributions with the flexibility to address variable data dimensions.

Alternatively, for modeling the relational structure in data, graph neural networks (GNNs) or mes-
sage passing neural networks (MPNNs) (Scarselli et al., 2009; Gilmer et al., 2017; Duvenaud et al.,
2015; Li et al., 2017; Kipf & Welling, 2017; Santoro et al., 2017; Zhang et al., 2018) have been
shown to be effective in learning generalizable representations over variable input data dimensions.
These models operate on the underlying principle of iterative neural message passing wherein the
node representations are updated iteratively for a fixed number of steps. Hereafter, we use the term
message passing to refer to this neural message passing in GNNs. We leverage this representational
ability towards graph generation.

In this paper, we introduce a new class of models – Continuous Graph Flow (CGF): a graph gener-
ative model based on continuous normalizing flows (Chen et al., 2018; Grathwohl et al., 2019) that
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(a) Discrete neural message passing (b) Continuous graph flow 
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Figure 1: Illustration of evolution of message passing mechanisms from discrete updates (a) to our
proposed continuous updates (b). Continuous Graph Flow leverages normalizing flows to transform
simple distributions (e.g. Gaussian) at t0 to the target distributions at t1. The distribution of only
one graph node is shown here for visualization, but, all the node distributions transform over time.

generalizes the message passing mechanism in GNNs to continuous time. Specifically, to model
continuous time dynamics of the graph variables, we adopt a neural ordinary different equation
(ODE) formulation. Our CGF model has both the flexibility to handle variable data dimensions (by
using GNNs) and the ability to model arbitrarily complex data distributions due to free-form model
architectures enabled by the neural ODE formulation. Inherently, the ODE formulation also imbues
the model with following properties: reversibility and exact likelihood computation.

Concurrent work on Graph Normalizing Flows (GNF) (Liu et al., 2019) also proposes a reversible
graph neural network using normalizing flows. However, their model requires a fixed number of
transformations. In contrast, while our proposed CGF is also reversible and memory efficient, the
underlying flow model relies on continuous message passing scheme. Moreover, the message pass-
ing in GNF involves partitioning of data dimensions into two halves and employs coupling layers
to couple them back. This leads to several constraints on function forms and model architectures
that have a significant impact on performance (Kingma & Dhariwal, 2018). In contrast, our CGF
model has unconstrained (free-form) Jacobians, enabling it to learn more expressive transforma-
tions. Moreover, other similar work GraphNVP Madhawa et al. (2019) is also based on normalizing
flows as compared to CGF that models continuous time dynamics.

We demonstrate the effectiveness of our CGF-based models on three diverse tasks: graph generation,
image puzzle generation, and layout generation based on scene graphs. Experimental results show
that our proposed model achieves significantly better performance than state-of-the-art models.

2 PRELIMINARIES

Graph neural networks. Relational networks such as Graph Neural Networks (GNNs) facilitate
learning of non-linear interactions using neural networks. In every layer ` ∈ N of a GNN, the
embedding h(`)

i corresponding to a graph node accumulates information from its neighbors of the
previous layer recursively as described below.

h
(`)
i = g

({
fij(h

(`−1)
i ,x

(`−1)
i ,x

(`−1)
j )|j ∈ S(i)

})
, (1)

where the function g is an aggregator function, S(i) is the set of neighbour nodes of node i, and
fij is the message function from node j to node i, xi

(`−1) and xj
(`−1) represent the node features

corresponding to node i and j at layer (` − 1) respectively. Our model uses a restricted form of
GNNs where embeddings of the graph nodes are updated in-place (xi ← hi), thus, we denote graph
node as x and ignore h hereafter. These in-place updates allow using xi in the flow-based models
while maintaining the same dimensionality across subsequent transformations.

Normalizing flows and change of variables. Flow-based models enable construction of com-
plex distributions from simple distributions (e.g. Gaussian) through a sequence of invertible map-
pings (Rezende & Mohamed, 2015). For instance, a random variable z is transformed from an initial
state density z0 to the final state zK using a chain of K invertible functions fk described as:

zK = fK ◦ . . . f2 ◦ f1(z0). (2)

The computation of log-likelihood of a random variable uses change of variables rule formulated as:

log pK(zK) = log p0(z0)−
K∑

k=1

log

∣∣∣∣ det ∂fk(zk−1)∂zk

∣∣∣∣, (3)

2



Under review as a conference paper at ICLR 2020

where ∂fk(zk−1)/∂zk is the Jacobian of fk for k ∈ {1, 2, ...,K}.
Continuous normalizing flows. Continuous normalizing flows (CNFs) (Chen et al., 2018; Grath-
wohl et al., 2019) model the continuous-time dynamics by pushing the limit on number of transfor-
mations. Given a random variable z, the following ordinary differential equation (ODE) defines the
change in the state of the variable.

∂z

∂t
= f(z(t), t) (4)

Chen et al. (2018) extended the change of variables rule described in Eq. 3 to continuous version.
The dynamics of the log-likelihood of a random variable is then defined as the following ODE.

∂p(z(t)

∂t
= Tr

(
∂f

∂z(t)

)
(5)

Following the above equation, the log likelihood of the variable z at time t1 starting from time t0 is

log p(z(t1)) = log p(z(t0))−
∫ t1

t0

Tr

(
∂f(z)

∂z(t)

)
, (6)

where the trace computation is more computationally efficient than computation of the Jacobian
in Equation (4). Building on CNFs, we present continuous graph flow which effectively models
continuous time dynamics over graph-structured data.

3 CONTINUOUS GRAPH FLOW

Given a set of random variables X containing n related variables, the goal is to learn the joint
distribution p(X) of the set of variablesX . Each element of setX is xi ∈ Rm where i = 1, 2 . . . , n
and m represents the number of dimensions of the variable. For continuous time dynamics of the
set of variablesX , we formulate an ordinary differential equation system as follows:

ẋ1(t)
ẋ2(t)

...
ẋn(t)

 =


f1(X(t))
f2(X(t))

...
fn(X(t))

 , (7)

where ẋi = dxi/dt and X(t) is the set of variables at time t. The random variable xi at time t0
follows a base distribution that can have simple forms, e.g. Gaussian distributions. The function f i

implicitly defines the interaction among the variables. Following this formulation, the transforma-
tion of the individual graph variable is defined as

xi(t1) = xi(t0) +

∫ t1

t0

f i(X(t))dt, (8)

This provides transformation of the value of the variable xi from time t0 to time t1.

3.1 CONTINUOUS MESSAGE PASSING

The form in Eq. 8 represents a generic multi-variate update where interaction functions are defined
over all the variables in the set X . However, the functions do not take into account the relational
structure between the graph variables.

To address this, we define a neural message passing process that operates over a graph by defining
the update functions over variables according to the graph structure. This process begins from time
t0 where each variable xi(t0) only contain local information. At time t, these variables are updated
based on the information gathered from other neighboring variables. For such updates, the function
f i in Eq. 8 is defined as:

f i(X(t)) = g({f̂ij(xi(t),xj(t))|j ∈ S(i)}), (9)

where f̂ij(·) is a reusable message function and used for passing information between variables xi
and xj , S(i) is the set of neighboring variables that interacts with variable xi, and g(·) is a function
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that aggregates the information passed to a variable. The above formulation describes the case of
pairwise message functions, though this can be generalized to higher-order interactions.

We formulate it as a continuous process which eliminates the requirement of having a predetermined
number of steps of message passing. By further pushing the message passing process to update at
infinitesimally smaller steps and continuing the updates for an arbitrarily large number of steps, the
update associated with each variable can be represented using shared and reusable functions as the
following ordinary differential equation (ODE) system.

ẋ1(t)
ẋ2(t)

...
ẋn(t)

 =


g({f̂1j(x1(t),xj(t))|j ∈ S(1)})
g({f̂2j(x2(t),xj(t))|j ∈ S(2)})

...
g({f̂nj(xn(t),xj(t))|j ∈ S(n)})

 , (10)

where ẋi = dxi/dt. Performing message passing to derive final states is equivalent to solving
an initial value problem for an ODE system. Following the ODE formulation, the final states of
variables can be computed as follows. This formulation can be solved with an ODE solver.

xi(t1) = xi(t0) +

∫ t1

t0

g

({
f̂ij(xi(t),xj(t))|j ∈ S(i)

})
, i ∈ {1, . . . , n}. (11)

3.2 CONTINUOUS MESSAGE PASSING FOR DENSITY TRANSFORMATION

Continuous graph flow leverages the continuous message passing mechanism (described in Sec. 3.1)
and formulates the message passing as implicit density transformations of the variables (illustrated
in Figure 1). Given a set of variablesX with dependencies among them, the goal is to learn a model
that captures the distribution from which the data were sampled. Assume the joint distribution p(X)
at time t0 has a simple form such as independent Gaussian distribution for each variable xi(t0). The
continuous message passing process allows the transformation of the set of variables from X(t0)
to X(t1). Moreover, this process also converts the distributions over variables from simple base
distributions to complex data distributions. Building on the independent variable continuous time
dynamics described in Eq. 5, we define the dynamics corresponding to related graph variables as:

∂ log p(X(t))

∂t
= −Tr

(
∂F

∂X(t)

)
, (12)

where F represents a set of reusable functions incorporating aggregated messages. Therefore, the
joint distribution of set of variablesX can be described as:

log p(X(t1)) = log p(X(t0))−
∫ t1

t0

Tr

(
∂F

∂X(t)

)
. (13)

Here we use two types of density transformations for message passing: (1) generic message trans-
formations – transformations with generic update functions where trace in Eq. 13 can be approxi-
mated instead of computing by brute force method, and (2) multi-scale message transformations –
transformations with generic update functions at multiple scales of information.

Generic message transformations. The trace of Jacobian matrix in Eq. 13 is modeled using a
generic neural network function. The likelihood is defined as:

log p(X(t1)) = log p(X(t0))− Ep(ε)

∫ t1

t0

[
εT

∂F

∂X(t)
εdt

]
, (14)

where F denotes a neural network for message functions, and ε is a noise vector and usually can be
sampled from standard Gaussian or Rademacher distributions.

Multi-scale message transformations. As a generalization of generic message transformations,
we design a model with multi-scale message passing to encode different levels of information in
the variables. Similar to Dinh et al. (2016), we construct our multi-scale CGF model by stacking
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several blocks wherein each flow block performs message passing based on generic message trans-
formations. After passing the input through a block, we factor out a portion of the output and feed it
as input to the subsequent block. The likelihood is defined as:

log p(X(tb)) = log p(X(tb−1))− Ep(ε)

∫ tb

tb−1

[
εT

∂F

∂X(tb−1)
εdt

]
, (15)

where b = 1, 2, . . . , (B − 1) with B as the total number of blocks in the design of the multi-scale
architecture. Assume at time tb (t0 < tb < t1), X(tb) is factored out into two. We use one of these
(denoted as X̃(tb)) as the input to the (b+ 1)th block. Let X̃(tb) be the input to the next block, the
density transformation is formulated as:

log p(X̃(tb+1)) = log p(X̃(tb))− Ep(ε)

∫ tb+1

tb

[
εT

∂F

∂X̃(tb)
εdt

]
. (16)

4 EXPERIMENTS

To demonstrate the generality and effectiveness of our Continuous Graph Flow (CGF), we evalu-
ate our model on three diverse tasks: (1) graph generation, (2) image puzzle generation, and (3)
layout generation based on scene graphs. Graph generation requires the model to learn complex
distributions over the graph structure. Image puzzle generation requires the model to learn local and
global correlations in the puzzle pieces. Layout generation has a diverse set of possible nodes and
edges. These tasks have high complexity in the distributions of graph variables and diverse potential
function types. Together these tasks pose a challenging evaluation for our proposed method.

4.1 GRAPH GENERATION

Datasets and Baselines. We evaluate our model on graph generation on two benchmark datasets
EGO-SMALL and COMMUNITY-SMALL (You et al., 2018) against four strong state-of-the-art base-
lines: VAE-based method (Simonovsky & Komodakis, 2018), autoregressive graph generative
model GraphRNN (You et al., 2018) and DeepGMG (Li et al., 2018), and Graph normalizing flows
(Liu et al., 2019).

Evaluation. We conduct a quantitative evaluation of the generated graphs using Maximum Mean
Discrepancy (MMD) measures proposed in GRAPHRNN (You et al., 2018). The MMD evaluation in
GRAPHRNN was performed using a test set of N ground truth graphs, computing their distribution
over the nodes, and then searching for a set of N generated graphs from a larger set of samples
generated from the model that best matches this distribution. As mentioned by Liu et al. (2019),
this evaluation process would likely have high variance as the graphs are very small. Therefore, we
also performed an evaluation by generating 1024 graphs for each model and computing the MMD
distance between this generated set of graphs and the ground truth test set. Baseline results are from
Liu et al. (2019). Implementation details refer to Appendix A.

Results and Analysis. Table 1 shows the results in terms of MMD. Our CGF outperforms the base-
lines by a significant margin and also the concurrent work GNF. We believe our CGF outperforms
GNF because it employs free-flow functions forms unlike GNF that has some contraints necessitated
by the coupling layers. Fig. 2 visualizes the graphs generated by our model. Our model can capture
the characteristics of datasets and generate diverse graphs that are not seen during the training. For
additional visualizations and comparisons, refer to the Appendix A.

4.2 IMAGE PUZZLE GENERATION

Task description. We design image puzzles for image datasets to test model’s ability on fitting
very complex node distributions in graphs. Given an image of size W ×W , we design a puzzle by
dividing the original image into non-overlapping unique patches. A puzzle patch is of size w × w,
in which w represents the width of the puzzle. Each image is divided into p = W/w puzzle patches
both horizontally and vertically, and therefore we obtain P = p×p patches in total. Each patch cor-
responds to a node in the graph. To evaluate the performance of our model on dynamic graph sizes,
instead of training the model with all nodes, we sample p̃ adjacent patches where p̃ is uniformly
sampled from {1, . . . , P} as input to the model during training and test. In our experiments, we use
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Table 1: Quantitative results on graph generation. MMD measures between test set and gener-
ated graphs (lower is better). The second set shows GRAPHRNN evaluation with node distribution
matching (averaged over 5 different models with 3 trials). The third set shows evaluation for the test
set for all 1024 generated graphs (averaged over 5 models). (max(|V |),max(|E|)) is also shown.

Method COMMUNITY-SMALL (20,83) EGO-SMALL (18,69)
DEGREE CLUSTERING ORBIT DEGREE CLUSTERING ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02
GRAPHRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF + AE 0.20 0.20 0.11 0.03 0.10 0.001
CGF 0.10 0.30 0.08 0.02 0.11 0.001
GRAPHRNN (1024) 0.03 0.01 0.01 0.04 0.05 0.06
GNF + AE (1024) 0.12 0.15 0.02 0.01 0.03 0.0008
CGF (1024) 0.02 0.02 0.001 0.002 0.007 0.0002

COMMUNITY-SMALL EGO-SMALL

Figure 2: Visualization of generated graphs from our model. Our model can capture the charac-
teristic of datasets and generate diverse graphs not appearing in the training set.

patch size w = 16, p ∈ {2, 3, 4} and edge function for each direction (left, right, up, down) within
a neighbourhood of a node. Additional details are in Appendix A.

Datasets and baselines. We design the image puzzle generation task for three datasets: MNIST (Le-
Cun et al., 1998), CIFAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2015). CelebA dataset
does not have a validation set, thus, we split the original dataset into a training set of 27,000 images
and test set of 3,000 images as in (Kingma & Dhariwal, 2018). We compare our model with six
state-of-the-art VAE based models: (1) StructuredVAE (He et al., 2018), (2) Graphite (Grover et al.,
2019), (3) Variational message passing using structured inference networks (VMP-SIN) (Lin et al.,
2018), (4) BiLSTM + VAE: a bidirectional LSTM used to model the interaction between node latent
variables (obtained after serializing the graph) in an autoregressive manner similar to Gregor et al.
(2015), (5) Variational graph autoencoder (GAE) (Kipf & Welling, 2016), and (6) Neural relational
inference (NRI) (Kipf et al., 2018): we adapt this to model data for single time instance and model
interactions between the nodes.

Results and analysis. We report the negative log likelihood (NLL) in bits/dimension (lower is
better). The results in Table 2 indicate that CGF significantly outperforms the baselines. In addition
to the quantitative results, we also conduct sampling based evaluation and perform two types of
generation experiments: (1) Unconditional Generation: Given a puzzle size p, p2 puzzle patches are
generated using a vector z sampled from Gaussian distribution (refer Fig. 3(a)); and (2) Conditional
Generation: Given p1 patches from an image puzzle having p2 patches, we generate the remaining
(p2 − p1) patches of the puzzle using our model (see Fig. 3(b)). We believe the task of conditional
generation is easier than unconditional generation as there is more relevant information in the input
during flow based transformations. For unconditional generation, samples from a base distribution
(e.g. Gaussian) are transformed into learnt data distribution using the CGF model. For conditional
generation, we map xa ∈ Xa where Xa ⊂ X to the points in base distribution to obtain za and
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(a) Unconditional Generation (b) Conditional Generation
Figure 3: Qualitative results for image puzzle generation. Samples generated using our model
for 2x2 MNIST puzzles (above horizontal line) and 3x3 CelebA-HQ puzzles (below horizontal line)
in (a) unconditional generation and (b) conditional generation settings. For setting (b), generated
patches (highlighted in green boxes) are conditioned on the remaining patches (from ground truth).

subsequently concatenate the samples from Gaussian distribution to za to obtain z′ that match the
dimensions of desired graph and generate samples by transforming from z′ to x ∈ X using the
trained graph flow.

Table 2: Quantitative results on image puzzle generation. Comparison of our CGF model with
standard VAE and state-of-the-art VAE based models in bits/dimension (lower is better). These
results are for unconditional generation using multi-scale version of continuous graph flow.

Method MNIST CIFAR-10 CelebA-HQ
2x2 3x3 4x4 2x2 3x3 4x4 2x2 3x3 4x4

BiLSTM + VAE 4.97 4.77 4.42 6.02 5.20 4.53 5.72 5.66 5.48
StructuredVAE (He et al., 2018) 4.89 4.65 3.82 6.03 5.02 4.70 5.66 5.43 5.27
Graphite (Grover et al., 2019) 4.90 4.64 4.02 6.06 5.09 4.61 5.71 5.50 5.32
VMP-SIN (Lin et al., 2018) 5.13 4.92 4.44 6.00 4.96 4.34 5.70 5.43 5.27
GAE (Kipf & Welling, 2016) 4.91 4.89 4.17 5.83 4.95 4.21 5.71 5.63 5.28
NRI (Kipf et al., 2018) 4.58 4.35 4.11 5.44 4.82 4.70 5.36 5.43 5.28
CGF 1.24 1.21 1.20 2.42 2.31 2.00 3.44 3.17 3.16

4.3 LAYOUT GENERATION FROM SCENE GRAPHS

Task description and evaluation metrics. Layout generation from scene graphs is a crucial task
in computer vision and bridges the gap between the symbolic graph-based scene description and the
object layouts in the scene (Johnson et al., 2018; Zhao et al., 2019; Jyothi et al., 2019). Scene graphs
represent scenes as directed graphs, where nodes are objects and edges give relationships between
objects. Object layouts are described by the set of corresponding bounding box annotations (Johnson
et al., 2018). Our model uses scene graph as inputs (nodes correspond to objects and edges represent
relations). An edge function is defined for each relationship type. The output contains a set of object
bounding boxes described by {[xi, yi, hi, wi]}ni=1, where xi, yi are the top-left coordinates, and
wi, hi are the bounding box width and height respectively. We use negative log likelihood per node
(lower is better) for evaluating models on scene layout generation.

Datasets and baselines. Two large-scale challenging datasets are used to evaluate the proposed
model: Visual Genome (Krishna et al., 2017) and COCO-Stuff (Caesar et al., 2018) datasets. Vi-
sual Genome contains 175 object and 45 relation types. The training, validation and test set contain
62565, 5506 and 5088 images respectively. COCO-Stuff dataset contains 24972 train, 1024 valida-
tion, and 2048 test scene graphs. We use the same baselines as in Sec. 4.2.

Results and analysis. We show quantitative results in Table 3 against several state-of-the-art base-
lines. Our CGF model significantly outperforms these baselines in terms of negative log likelihood.
Moreover, we show some qualitative results in Fig. 4. Our model can learn the correct relations
defined in scene graphs for both conditional and unconditional generation, Furthermore, our model
is capable to learn one-to-many mappings and generate diverse of layouts for the same scene graph.
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Sample 1 Sample 2

(a) Scene graph (b) Layout samples

Sample 3 Sample 4
Conditional layout

Figure 4: Visualization for layout generation on Visual Genome. Our CGF model can generate
diverse layouts for the same scene graph. Upper row: layout samples with unconditional generation.
Lower row: Layout generation conditioned on known layout. Best viewed in color.

Table 3: Quantitative results for layout generation for scene graph in negative log-likelihood.
These results are for unconditional generation using CGF with generic message transformations.

Method Visual Genome COCO-Stuff
BiLSTM + VAE -1.20 -1.60
StructuredVAE (He et al., 2018) -1.05 -1.36
Graphite (Grover et al., 2019) -1.17 -0.93
VMP-SIN (Lin et al., 2018) -0.61 -0.85
GAE (Kipf & Welling, 2016) -1.85 -1.92
NRI (Kipf et al., 2018) -0.76 -0.91
CGF -4.24 -6.21

4.4 ANALYSIS: GENERALIZATION TEST

To test the generalizability of our model to variable graph sizes, we design three different evaluation
settings and test it on image puzzle task: (1) odd to even: training with graphs having odd graph
sizes and testing on graphs with even numbers of nodes, (2) less to more: training on graphs with
smaller sizes and testing on graphs with larger sizes, and (3) more to less: training on graphs with
larger sizes and testing on graphs with smaller. In the less to more setting, we test the model’s ability
to use the functions learned from small graphs on more complicated ones, whereas the more to less
setting evaluates the model’s ability to learn disentangled functions without explicitly seeing them
during training. In our experiments, for the less to more setting, we use sizes less than G/2 for
training and more than G/2 for testing where G is the size of the full graph. Similarly, for the less to
more setting, we use sizes less than G/2 for training and more than G/2 for testing. Table 4 reports
the NLL for these settings. The NLL of these models are close to the performance on the models
trained on full dataset demonstrating that our model is able to generalize to unseen graph sizes.

Table 4: Generalization test in three different evaluation settings for image puzzle sizes 3x3 for
three image datasets in bits/dimension.

Settings MNIST CIFAR-10 CelebA-HQ
Odd to even 1.33 2.81 3.31
Less to more 1.37 2.91 3.66
More to less 1.34 2.83 3.44

5 CONCLUSION

In this paper, we presented continuous graph flow, a generative model that generalizes the neural
message passing in graphs to continuous time. We formulated the model as an neural ordinary dif-
ferential equation system with shared and reusable functions that operate over the graph structure.
We conducted evaluation for a diverse set of generation tasks across different domains: graph gener-
ation, image puzzle generation, and layout generation for scene graph. Experimental results showed
that continuous graph flow achieves significant performance improvement over various of state-of-
the-art baselines. For future work, we will focus on generation tasks for large-scale graphs which is
promising as our model is reversible and memory-efficient.
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A APPENDIX

We provide supplementary materials to support the contents of the main paper. In this part, we
describe implementation details of our model. We also provide additional qualitative results for
the generation tasks: Graph generation, image puzzle generation and layout generation from scene
graphs.

A.1 IMPLEMENTATION DETAILS

The ODE formulation for continuous graph flow (CGF) model was solved using ODE solver pro-
vided by NeuralODE (Chen et al., 2018). In this section, we provide specific details of the con-
figuration of our CGF model used in our experiments on two different generation tasks used for
evaluation in the paper.

Graph Generation. For each graph, we firstly generate its line graph with edges switched to nodes
and nodes switched to edges. Then the graph generation problem is now generating the current
nodes values which represents the adjacency matrix in the original graph. Each node value is binary
(0 or 1) and is dequantized to continuous values through variational dequantization, with a global
learnable Gaussian distribution as variational distribution. For our architecture, we use two blocks
of continuous graph flow with two fully connected layers in Community-small dataset, and one
block of continuous graph flow with one fully connected layer in Citeseer-small dataset. The hidden
dimensions are all 32.

Image puzzle generation. Each graph for this task comprise nodes corresponding to the puzzle
pieces. The pieces that share an edge in the puzzle grid are considered to be connected and an
edge function is defined over those connections. In our experiments, each node is transformed to an
embedding of size 64 using convolutional layer. The graph message passing is performed over these
node embeddings. The image puzzle generation model is designed using a multi-scale continuous
graph flow architecture. We use two levels of downscaling in our model each of which factors out
the channel dimension of the random variable by 2. We have two blocks of continuous graph flow
before each downscaling wth four convolutional message passing blocks in each of them. Each
message passing block has a unary message passing function and binary passing functions based on
the edge types – all containing hidden dimensions of 64.

Layout generation for scene graphs. For scene graph layout generation, a graph comprises node
corresponding to object bounding boxes described by {[xi, yi, hi, wi]}ni=1, where xi, yi represents
the top-left coordinates, and wi, hi represents the bounding box width and height respectively and
edge functions are defined based on the relation types. In our experiments, the layout generation
model uses two blocks of continuous graph flow units, with four linear graph message passing
blocks in each of them. The message passing function uses 64 hidden dimensions, and takes the
embedding of node label and edge label in unary message passing function and binary message
passing function respectively. The embedding dimension is also set to 64 dimensions. For binary
message passing function, we pass the messages both through the direction of edge and the reverse
direction of edge to increase the model capacity.

A.2 IMAGE PUZZLE GENERATION: ADDITIONAL QUALITATIVE RESULTS FOR CELEBA-HQ

Fig. 5 and Fig. 6 presents the image puzzles generated using unconditional generation and condi-
tional generation respectively.

A.3 LAYOUT GENERATION FROM SCENE GRAPH: QUALITATIVE RESULTS

Fig. 7 and Fig. 8 show qualitative result on unconditional and conditional layout generation from
scene graphs for COCO-stuff dataset respectively. Fig. 9 and Fig. 10 show qualitative result on
unconditional and conditional layout generation from scene graphs for Visual Genome dataset re-
spectively. The generated results have diverse layouts corresponding to a single scene graph.
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Figure 5: Qualitative results on CelebA-HQ for image puzzle generation. Samples generated
using our model for 3x3 CelebA-HQ puzzles in unconditional generation setting. Best viewed in
color.

Figure 6: Qualitative results on CelebA-HQ for image puzzle generation. Samples generated
using our model for 3x3 CelebA-HQ puzzles in conditional generation setting. Generated patches
are highlighted in green. Best viewed in color.

Sample 1 Sample 2

(a) Scene Graph (b) Layout samples

Sample 3 Sample 4

Figure 7: Examples of Unconditional generation of layouts from scene graphs for COCO-Stuff
dataset. We sample 4 layouts. The generated results have different layouts, but sharing the same
scene graph. Best viewed in color. Please zoom in to see the category of each object.
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Sample 1 Sample 2

(a) Scene Graph (b) Layout samples

Sample 3 Sample 4

(b) Conditional layout

Figure 8: Conditional generation of layouts from scene graphs for COCO-stuff dataset. We
sample 4 layouts. The generated results have different layouts except the conditional layout objects
in (b), but sharing the same scene graph. Best viewed in color. Please zoom in to see the category
of each object.

Sample 1 Sample 2

(a) Scene Graph (b) Layout samples
Sample 3 Sample 4

Figure 9: Unconditional generation of layouts from scene graphs for Visual Genome dataset.
We sample 4 layouts for each scene graph. The generated results have different layouts, but sharing
the same scene graph. Best viewed in color. Please zoom in to see the category of each object.

A.4 GRAPH GENERATION: ADDITIONAL QUALITATIVE RESULTS

Fig. 11 and Fig. 12 present the generated graphs for EGO-SMALL and COMMUNITY-SMALL respec-
tively.
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Sample 1 Sample 2

(a) Scene Graph (c) Layout samples

Sample 3 Sample 4

(b) Conditional layout

Figure 10: Conditional generation of layouts from scene graphs for Visual Genome dataset.
We sample 4 layouts for each scene graph. The generated results have different layouts except the
conditional layout objects in (b), but sharing the same scene graph. Best viewed in color. Please
zoom in to see the category of each object.

A.5 ANALYSIS: NUMBER OF FUNCTION EVALUATION VS NUMBER OF NODES

We analyze the variation in number of function evaluations (NFE) required to solve the ODE as the
number of nodes in the graph changes. Refer to Figure 13. The results interestingly show that the
average number of function evaluation does not increase linearly with the increment in number of
graph nodes, which would be the case if the variables were independent.
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(a) CGF samples

(b) GRAPHRNN SAMPLES

Figure 11: Graph generation on EGO-SMALL. Samples generated using (a) our CGF and (b)
GRAPHRNN.

15



Under review as a conference paper at ICLR 2020

(a) CGF samples

(b) GRAPHRNN SAMPLES

Figure 12: Graph generation on COMMUNITY-SMALL. Samples generated using (a) our CGF and
(b) GRAPHRNN.
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(a)EGO-SMALL

(b)COMMUNITY-SMALL

Figure 13: Visualization illustrating the effect on number of nodes in the graph on the number of
function evaluations (NFE) required by the ODE solver for (a)EGO-SMALL and (b)COMMUNITY-
SMALL datasets used in our graph generation model.
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