
Under review as a conference paper at ICLR 2020

PROMOTING COORDINATION
THROUGH POLICY REGULARIZATION IN
MULTI-AGENT DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in multi-agent reinforcement learning is the induction of
coordination between agents of a team. In this work, we investigate how to
promote inter-agent coordination using policy regularization and discuss two
possible avenues respectively based on inter-agent modelling and synchronized
sub-policy selection. We test each approach in four challenging continuous control
tasks with sparse rewards and compare them against three baselines including
MADDPG, a state-of-the-art multi-agent reinforcement learning algorithm. To
ensure a fair comparison, we rely on a thorough hyper-parameter selection
and training methodology that allows a fixed hyper-parameter search budget
for each algorithm and environment. We consequently assess both the hyper-
parameter sensitivity, sample-efficiency and asymptotic performance of each
learning method. Our experiments show that the proposed methods lead to
significant improvements on cooperative problems. We further analyse the effects
of the proposed regularizations on the behaviors learned by the agents.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) refers to the task of training an agent to maximize its
expected return by interacting with an environment that contains other learning agents. It represents
a challenging branch of Reinforcement Learning (RL) with interesting developments in recent years
(Hernandez-Leal et al., 2018). A popular framework for MARL is the use of a Centralized Training
and a Decentralized Execution (CTDE) procedure (Lowe et al., 2017; Foerster et al., 2018; Iqbal &
Sha, 2019; Foerster et al., 2019; Rashid et al., 2018). It is typically implemented by training critics
that approximate the value of the joint observations and actions, which are used to train actors
restricted to the observation of a single agent. Such critics, if exposed to coordinated joint actions
leading to high returns, can steer the agents’ policies toward these highly rewarding behaviors.
However, these approaches depend on the agents luckily stumbling on these actions in order to
grasp their benefit. Thus, it might fail in scenarios where coordination is unlikely to occur by
chance. We hypothesize that in such scenarios, coordination-promoting inductive biases on the
policy search could help discover coordinated behaviors more efficiently and supersede task-specific
reward shaping and curriculum learning.

In this work, we explore two different priors for successful coordination and use these to regularize
the learned policies. The first avenue, TeamReg, assumes that an agent must be able to predict the
behavior of its teammates in order to coordinate with them. The second, CoachReg, supposes that
coordinating agents individually recognize different situations and synchronously use different sub-
policies to react to them. In the following sections we show how to derive practical regularization
terms from these premises and meticulously evaluate them1.

Our contributions are twofold. First, we propose two novel approaches that aim at promoting
coordination in multi-agent systems. Our methods augment CTDE MARL algorithms with
additional multi-agent objectives that act as regularizers and are optimized jointly with the main
return-maximization objective. Second, we design two new sparse-reward cooperative tasks in the

1Source code for the algorithms and environments will be made public upon publication of this work.

1

Under review as a conference paper at ICLR 2020

multi-agent particle environment (Mordatch & Abbeel, 2018). We use them along with two standard
multi-agent tasks to present a detailed evaluation of our approaches against three different baselines.
Finally, we validate our methods’ key components by performing an ablation study. Our experiments
suggest that our TeamReg objective provides a dense learning signal that helps to guide the policy
towards coordination in the absence of external reward, eventually leading it to the discovery of high
performing team strategies in a number of cooperative tasks. Similarly, by enforcing synchronous
sub-policy selections, CoachReg enables to fine-tune a sub-behavior for each recognized situation
yielding significant improvements on the overall performance.

2 BACKGROUND

2.1 MARKOV GAMES

In this work we consider the framework of Markov Games (Littman, 1994), a multi-agent extension
of Markov Decision Processes (MDPs) with N independent agents. A Markov Game is defined by
the tuple 〈S, T ,P, {Oi,Ai,Ri}Ni=1〉. S, T , and P respectively are the set of all possible states,
the transition function and the initial state distribution. While these are global properties of the
environment, Oi, Ai and Ri are individually defined for each agent i. They are respectively the
observation functions, the sets of all possible actions and the reward functions. At each time-step
t, the global state of the environment is given by st ∈ S and every agent’s individual action vector
is denoted by ait ∈ Ai. To select their action, each agent i has only access to its own observation
vector oit which is extracted by its observation function Oi from the global state st. The initial
global state s0 is sampled from the initial state distribution P : S → [0, 1] and the next states of the
environment st+1 are sampled from the probability distribution over the possible next states given
by the transition function T : S×S×A1× ...×AN → [0, 1]. Finally, at each time-step, each agent
receives an individual scalar reward rit from its reward functionRi : S × S ×A1 × ...×AN → R.
Agents aim at maximizing their expected discounted return E

[∑T
t=0 γ

trit

]
over the time horizon T ,

where γ ∈ [0, 1] is a discount factor.

2.2 MULTI-AGENT DEEP DETERMINISTIC POLICY GRADIENT (MADDPG)

MADDPG (Lowe et al., 2017) is an adaptation of the Deep Deterministic Policy Gradient algorithm
(DDPG) (Lillicrap et al., 2015) to the multi-agent setting. It allows the training of cooperating
and competing decentralized policies through the use of a centralized training procedure. In
this framework, each agent i possesses its own deterministic policy µi for action selection and
critic Qi for state-action value estimation, which are respectively parametrized by θi and φi. All
parametric models are trained off-policy from previous transitions ζt := (ot,at, rt,ot+1) uniformly
sampled from a replay buffer D. Note that ot := [o1

t , ..., o
N
t] is the joint observation vector and

at := [a1
t , ..., a

N
t] is the joint action vector, obtained by concatenating the individual observation

vectors oit and action vectors ait of all N agents. Each centralized critic is trained to estimate the
expected return for a particular agent i using the Deep Q-Network (DQN) (Mnih et al., 2015) loss:

Li(φi) = Eζt∼D

[
1

2

(
Qi(ot,at;φ

i)− (rit + γQi(ot+1,at+1; φ̄i))
)2∣∣∣∣

ajt+1=µj(ojt+1;θ̄j) ∀j

]
(1)

For a given set of weights w, we define its target counterpart w̄, updated from w̄ ← τw + (1− τ)w̄
where τ is a hyper-parameter. Each policy is updated to maximize the expected discounted return
of the corresponding agent i :

J iPG(θi) = Eot∼D

[
Qi(ot,at)

∣∣
ait=µ

i(oit; θ
i), ajt=µj(ojt ; θ̄j) ∀j 6=i

]
∇θiJ iPG(θi) = Eot∼D

[
∇θiµi(oit; θi)∇ait Q

i(ot,at)
∣∣
ait=µ

i(oit; θ
i), ajt=µj(ojt ; θ̄j) ∀j 6=i

] (2)

By taking into account all agents’ observation-action pairs when guiding an agent’s policy, the value-
functions are trained in a centralized, stationary environment, despite taking place in a multi-agent
setting. In addition, this mechanism can allow to implicitly learn coordinated strategies that can
then be deployed in a decentralized way. However, this procedure does not encourage the discovery
of coordinated strategies since high-reward behaviors have to be randomly experienced through
unguided exploration. This work aims at alleviating this limitation.

2

Under review as a conference paper at ICLR 2020

3 RELATED WORK

Many works in MARL consider explicit communication channels between the agents and distinguish
between communicative actions (e.g. broadcasting a given message) and physical actions (e.g.
moving in a given direction) (Foerster et al., 2016; Mordatch & Abbeel, 2018; Lazaridou et al.,
2016). Consequently, they often focus on the emergence of language, considering tasks where the
agents must discover a common communication protocol in order to succeed. Deriving a successful
communication protocol can already be seen as coordination in the communicative action space and
can enable, to some extent, successful coordination in the physical action space (Ahilan & Dayan,
2019). Yet, explicit communication is not a necessary condition for coordination as agents can rely
on physical communication (Mordatch & Abbeel, 2018; Gupta et al., 2017).

Approaches to shape RL agents’ behaviors with respect to other agents have also been explored.
Strouse et al. (2018) use the mutual information between the agent’s policy and a goal-independent
policy to shape the agent’s behavior towards hiding or spelling out its current goal. However, this
approach is only applicable for tasks with an explicit goal representation and is not specifically
intended for coordination. Jaques et al. (2019) approximate the direct causal effect between agent’s
actions and use it as an intrinsic reward to encourage social empowerment. This approximation relies
on each agent learning a model of other agents’ policies to predict its effect on them. In general, this
type of behavior prediction can be referred to as agent modelling (or opponent modelling) and has
been used in previous work to enrich representations (Hernandez-Leal et al., 2019), to stabilise the
learning dynamics (He et al., 2016) or to classify the opponent’s play style (Schadd et al., 2007). In
our work, agent modelling is extended to derive a novel incentive toward team-predictable behaviors.

Finally, Barton et al. (2018) propose convergent cross mapping (CCM) to measure the degree of
effective coordination between two agents. Although this may represent an interesting avenue
for behavior analysis, it fails to provide a tool for effectively enforcing coordination as CCM
must be computed over long time series which makes it an impractical learning signal for single-
step temporal difference methods. In this work, we design two coordination-driven multi-agent
approaches that do not rely on the existence of explicit communication channels and allow to carry
the learned coordinated behaviors at test time, when all agents act in a decentralized fashion.

4 COORDINATION AND POLICY
REGULARIZATION

 𝝁1 𝝁2

Figure 1: Illustration of TeamReg
with two agents. Each agent’s policy
is equipped with additional heads that
are trained to predict other agents’
actions and every agent is regular-
ized to produce actions that its team-
mates correctly predict. Note that the
method is depicted for agent 1 only to
avoid cluttering.

Intuitively, coordination can be defined as an agent’s behav-
ior being informed by the one of another agent, i.e. structure
in the agents’ interactions. Namely, a team where agents
act independently of one another would not be coordinated.
To promote such structure, our proposed methods rely on
team-objectives as regularizers of the common policy gra-
dient update. In this regard, our approach is closely related
to General Value Functions and Auxiliary tasks (Sutton &
Barto, 2018) used in Deep RL to learn efficient representa-
tions (Jaderberg et al., 2019). However, this work’s novelty
lies in the explicit bias of agents’ policy towards either pre-
dictability for their teammates or synchronous sub-policy
selection. Pseudocodes of our implementations are provided
in Appendix C (see Algorithms 1 and 2).

4.1 TEAM REGULARIZATION

The structure of coordinated interactions can be leveraged
to attain a certain degree of predictability of one agent’s
behavior with respect to its teammate(s). We hypothesize
that the reciprocal also holds i.e. that promoting agents’ predictability could foster such team
structure and lead to more coordinated behaviors. This assumption is cast into the decentralized
framework by training agents to predict their teammates’ actions given only their own observation.
For continuous control, the loss is defined as the Mean Squared Error (MSE) between the predicted

3

Under review as a conference paper at ICLR 2020

and true actions of the teammates, yielding a teammate-modelling secondary objective. While the
previous work of Hernandez-Leal et al. (2019) focus on stationary, non-learning teammates and
exclusively use this approach to learn richer internal representations, we propose to extend this
objective to drive the teammates’ behaviors closer to the prediction by leveraging a differentiable
action selection mechanism. We call team-spirit this novel objective J i,jTS between agents i and j:

J i,jTS(θi, θj) = Eot∼D

[
−MSE(âi,jt , a

j
t)
∣∣∣ajt=µj(ojt),âi,jt =µ̂i,j(oit)

]
(3)

= −Eot∼D

1

2

|Aj |∑
k=1

(âi,jt,k − a
j
t,k)2

∣∣∣ajt=µj(ojt),âi,jt =µ̂i,j(oit)

]
(4)

where µ̂i,j is the policy head of agent i trying to predict the action of agent j. The total gradient for
a given agent i becomes:

∇θiJ itotal(θi) = ∇θiJ iPG(θi) + λ1

∑
j

∇θiJ i,jTS(θi, θj) + λ2

∑
j

∇θiJj,iTS(θj , θi) (5)

where λ1 and λ2 are hyper-parameters that respectively weight how well an agent should predict its
teammates’ actions, and how predictable an agent should be for its teammates. We call TeamReg
this dual regularization from team-spirit objectives. Figure 1 summarizes these interactions.

4.2 COACH REGULARIZATION

𝝁1
Coach

𝝁2

Figure 2: Illustration of CoachReg
with two agents. A central model, the
coach, takes all agents’ observations
as input and outputs the current mode
(policy mask). Agents are regular-
ized to predict the same mask from
their local observations only and op-
timize the corresponding sub-policy.

In order to foster structured agents interactions, this method
aims at teaching the agents to recognize different situations
and synchronously select corresponding sub-behaviors.

4.2.1 SUB-POLICY SELECTION

Firstly, to enable explicit sub-behavior selection, we pro-
pose policy masks that modulate the agents’ policy. A pol-
icy mask uj is a one-hot vector of sizeK with its jth compo-
nent set to one. In practice, we use policy masks to perform
dropout (Srivastava et al., 2014) in a structured manner on
h̃1 ∈ RM , the pre-activations of the first hidden layer h1

of the policy network π. To do so, we construct the vector
uj , which is the concatenation of C copies of uj , in order
to reach the dimensionality M = C ∗K. The element-wise
product uj � h̃1 is then performed and only the units of h̃1

at indicesmmoduloK = j are kept form = 0, . . . ,M−1.
In our contribution, each agent i generates eit, its own policy
mask, from its observation oit. Here, a simple linear layer
li is used to produce a categorical probability distribution
pi(eit|oit) from which the one-hot vector is sampled:

pi(eit = uj |oit) = softmax(li(oit; θ
i))j =

exp
(
li(oit; θ

i)j
)∑K−1

k=0 exp
(
li(oit; θ

i)k
) (6)

To our knowledge, while this method draws similarity to the options and hierarchical frameworks
(Sutton & Barto, 2018; Ahilan & Dayan, 2019) and to policy dropout for exploration (Xie et al.,
2018), it is the first to introduce an agent induced modulation of the policy network by a structured
dropout that is decentralized at evaluation and without an explicit communication channel. Although
the policy masking mechanism enables the agent to swiftly switch between sub-policies it does not
encourage the agents to synchronously modulate their behavior.

4.2.2 SYNCHRONOUS SUB-POLICY SELECTION

To promote synchronization we introduce the coach entity, parametrized by ψ, which learns to
produce policy-masks ect from the joint observations, i.e. pc(eic|ot;ψ). The coach is used at training

4

Under review as a conference paper at ICLR 2020

time only and drives the agents toward synchronously selecting the same behavior mask. In other
words, the coach is trained to output masks that (1) yield high returns when used by the agents and
(2) are predictable by the agents. Similarly, each agent is regularized so that (1) its private mask
matches the coach’s mask and (2) it derives efficient behavior when using the coach’s mask. At
evaluation time, the coach is removed and the agents only rely on their own policy masks. The
policy gradient loss when agent i is provided with the coach’s mask is given by:

J iEPG(θi, ψ) = Eot,at∼D

[
Qi(ot,at)

∣∣
ait=µ(oit,et;θ

i), et∼pc(·|ot;ψ)

]
(7)

The difference between the mask of agent i and the coach’s one is measured from the Kullback–Leibler
divergence:

J iE(θi, ψ) = Eot∼D
[
DKL

(
pc(·|ot;ψ)| |pi(·|oit; θi)

)]
(8)

The total gradient for agent i is:

∇θiJ itotal(θi) = ∇θiJ iPG(θi) + λ1∇θiJ iE(θi, ψ) + λ2∇θiJ iEPG(θi, ψ)

∇θiJ iEPG(θi, ψ) = Eot,at∼D

[
∇θiµ(oit, et; θ

i)∇ait Q
i(ot,at)

∣∣
ait=µ(oit,et), et∼pc(·|ot;ψ)

] (9)

with λ1 and λ2 the regularization coefficients. Similarly, the coach is trained with the following dual
objective, weighted by the λ3 coefficient:

∇ψJctotal(ψ) =
1

N

N∑
i=1

(
∇ψJ iEPG(θi, ψ) + λ3∇ψJ iE(θi, ψ)

)
(10)

In order to propagate gradients through the sampled policy mask we reparametrized the categorical
distribution using the Gumbel-softmax trick (Jang et al., 2017) with a temperature of 1. We call this
coordinated sub-policy selection regularization CoachReg and illustrate it in Figure 2.

5 TRAINING ENVIRONMENTS

All of our tasks are based on the OpenAI multi-agent particle environments (Mordatch & Abbeel,
2018). SPREAD and CHASE were introduced by (Lowe et al., 2017). We use SPREAD as is but
with sparse rewards only. CHASE is modified with a prey controlled by repulsion forces and only
the predators are learnable, as we wish to focus on coordination in cooperative tasks. Finally we
introduce COMPROMISE and BOUNCE where agents are explicitly tied together. While non-
zero return can be achieved in these tasks by selfish agents, they all benefit from coordinated
strategies and optimal return can only be achieved by agents working closely together. Figure 3
presents visualizations and a brief description of all four tasks. A detailed description is provided in
Appendix A. In all tasks, agents receive as observation their own global position and velocity as well
as the relative position of other entities. Note that work showcasing experiments on this environment
often use discrete action spaces and (dense) reward shaping (e.g. the proximity with the objective)
(Iqbal & Sha, 2019; Lowe et al., 2017; Jiang & Lu, 2018). However, in our experiments, agents
learn with continuous action spaces and from sparse rewards.

6 RESULTS AND DISCUSSION

The proposed methods offer a way to incorporate new inductive biases in CTDE multi-agent policy
search algorithms. In this work, we evaluate them by extending MADDPG, a state of the art
algorithm widely used in the MARL litterature. We compare against vanilla MADDPG as well
as two of its variations in the four cooperative multi-agent tasks described in Section 5. The first
variation (DDPG) is the single-agent counterpart of MADDPG (decentralized training). The second
(MADDPG + sharing) shares the policy and value-function models across agents.

To offer a fair comparison between all methods, the hyper-parameter search routine is the same for
each algorithm and environment (see Appendix D.1). For each search-experiment (one per algorithm
per environment), 50 randomly sampled hyper-parameter configurations each using 3 training seeds
(total of 150 runs) are used to train the models for 15, 000 episodes. For each algorithm-environment
pair, we then select the best hyper-parameter configuration for the final comparison and retrain them
on 10 seeds for twice as long. We give more details about the training setup and model selection in
Appendix B and D.2. The results of the hyperparameter searches are given in Appendix D.5.

5

Under review as a conference paper at ICLR 2020

Figure 3: Multi-agent tasks used in this work. (a) SPREAD: Agents must spread out and cover
a set of landmarks. (b) BOUNCE: Two agents are linked together by a spring and must position
themselves so that the falling black ball bounces towards a target. (c) COMPROMISE: Two linked
agents must compete or cooperate to reach their own assigned landmark. (d) CHASE: Two agents
chase a (non-learning) prey (turquoise) that moves w.r.t repulsion forces from predators and walls.

6.1 ASYMPTOTIC PERFORMANCE

From the average learning curves reported in Figure 4 we observe that CoachReg significantly
improves performance on three environments (SPREAD, BOUNCE and COMPROMISE) and
performs on par with the baselines on the last one (CHASE). The same can be said for TeamReg,
except on COMPROMISE, the only task with an adversarial component, where it significantly
underperforms compared to the other algorithms. We discuss this specific case in Section 6.3.
Finally, parameter sharing is the best performing choice on CHASE, yet this superiority is restricted
to this task where the optimal play is to move symmetrically and squeeze the prey into a corner.

0 5000 10000 15000 20000 25000 30000

0

80

160

Re
tu

rn

SPREAD

0 5000 10000 15000 20000 25000 30000
0.0

2.5

5.0

7.5

BOUNCE

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

Re
tu

rn

COMPROMISE

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg MADDPG + CoachReg

0 5000 10000 15000 20000 25000 30000
Episodes

0

400

800

1200
CHASE

Figure 4: Learning curves (mean return over agents) for all algorithms on all four environments.
Solid lines are the mean and envelopes are the Standard Error (SE) across the 10 training seeds.

6.2 ABLATION STUDY

Additionally to our two proposed algorithms and the three baselines, we present results for two
ablated versions of our methods. The first ablation (MADDPG + agent modelling) is similar to
TeamReg but with λ2 = 0, which results in only enforcing agent modelling (i.e. agent predictability
is not encouraged). The second ablation (MADDPG + policy mask) is structurally equivalent to
CoachReg, but with λ1,2,3 = 0, which means that agents still predict and apply a mask to their own
policy, but synchronicity is not encouraged. Figure 12 and 13 (Appendix D.6) present the results
of the corresponding hyper-parameter search and Figure 5 shows the learning curves for our full
regularization approaches, their respective ablated versions and MADDPG.

6

Under review as a conference paper at ICLR 2020

0 5000 10000 15000 20000 25000 30000
0

80

160

Re
tu

rn

SPREAD

0 5000 10000 15000 20000 25000 30000
0.0

2.5

5.0

7.5

BOUNCE

0 5000 10000 15000 20000 25000 30000
Episodes

0

10

20

30

Re
tu

rn

COMPROMISE

MADDPG MADDPG + agent modelling MADDPG + policy mask MADDPG + TeamReg MADDPG + CoachReg

0 5000 10000 15000 20000 25000 30000
Episodes

0

300

600

900

CHASE

Figure 5: Learning curves (mean return over agents) for the ablated algorithms on all environments.
Solid lines are the mean and envelopes are the Standard Error (SE) across the 10 training seeds.

The use of unsynchronized policy masks might result in swift and unpredictable behavioral
changes and make it difficult for agents to perform together and coordinate. Experimentally,
“MADDPG + policy mask” performs similarly or worse than MADDPG on all but one environment,
and never outperforms the full CoachReg approach. However, policy masks alone seem enough to
succeed on SPREAD, which is about selecting a landmark from a set. Regarding “MADDPG + agent
modelling”, it does not drastically improve on MADDPG apart from on the SPREAD environment,
and the full TeamReg approach shows improvement over its ablated version except on the
COMPROMISE task, which we discuss in Section 6.3.

6.3 EFFECTS OF ENFORCING PREDICTABLE BEHAVIOR

First, we investigate the reason for TeamReg’s poor performance on COMPROMISE. Then, we
analyse how TeamReg might be helpful in other environments.

0

5

10

15

20

25

|
pe

rf
|

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg

10 3 10 2 10 1 100

2

Figure 6: Average performance difference
(∆perf) between the two agents in COM-
PROMISE for each 150 runs of the hyper-
parameter searches (left). All occurrences of
abnormally high performance difference are
associated with high values of λ2 (right).

COMPROMISE is the only task with a competitive
component (and the only one in which agents do not
share their rewards). The two agents being linked,
a good policy has both agents reach their landmark
successively (maybe by simply having both agents
navigate towards the closest landmark). However,
if one agent never reaches for its landmark, the
optimal strategy for the other one becomes to drag it
around and always go for its own, leading to a strong
imbalance in the return cumulated by both agents.
While this scenario very rarely occurs for the other
algorithms, we found TeamReg to often lead to such
domination cases (see Figure 14 in Appendix E).
Figure 6 depicts the agents’ performance difference
for every 150 runs of the hyperparameter search
for TeamReg and the baselines, and shows that (1)
TeamReg is the only algorithm that does lead to large
imbalances in performance between the two agents
and (2) that these cases where one agent becomes
dominant are all associated with high values of λ2,
which drives the agents to behave in a predictable
fashion to one another. However, the dominated agent eventually gets exposed more and more to
sparse reward gathered by being dragged (by chance) onto its own landmark, picks up the goal of the
task and starts pulling in its own direction, which causes the average return over agents to drop as we
see in Figure 4. This experiment demonstrates that using a predictability-based team-regularization

7

Under review as a conference paper at ICLR 2020

in a competitive task can be harmful; quite understandably, you might not want to optimize an
objective that aims at making your behavior predictable to your opponent.

On SPREAD and BOUNCE, TeamReg significantly improves the performance over the baselines.
We aim to analyze here the effects of λ2 on cooperative tasks and investigate if it does make
the agent modelling task more successful (by encouraging the agent to be predictable). To this
end, we compare the best performing hyper-parameter configuration for TeamReg on the SPREAD
environment with its ablated versions. The average return and team-spirit loss defined in Section 4.1
are presented in Figure 7 for these three experiments.

Figure 7: Comparison between enabling and disabling the regularizing weights λ1 and λ2 for
MADDPG+TeamReg on the SPREAD environment. Values are averaged over the 3 agents and
over the 3 seeds used in the hyper-parameter exploration.

Initially, due to the weight initialization, the predicted and actual actions both have relatively small
norms yielding small values of team-spirit loss. As training goes on (∼1000 episodes), the norms
of the action-vector increase and the regularization loss becomes more important. As expected,
λ2OFF |λ1OFF leads to the highest team-spirit loss as it is not trained to predict the actions of other
agents correctly. When using only the agent-modelling objective (λ1ON), the agents significantly
decrease the team-spirit loss, but it never reaches values as low as when using the full TeamReg
objective. Finally, when also pushing agents to be predictable (λ2ON), the agents best predict
each others’ actions and performance is also improved. We also notice that the team-spirit loss
increases when performance starts to improve i.e. when agents start to master the task (∼8000
episodes). Indeed, once the reward maximisation signals becomes stronger, the relative importance
of the second task is reduced. We hypothesize that being predictable with respect to one-another
may push agents to explore in a more structured and informed manner in the absence of reward
signal, as similarly pursued by intrinsic motivation approaches (Chentanez et al., 2005).

6.4 ANALYSIS OF SYNCHRONOUS SUB-POLICY SELECTION

(a) The ball is on the left side of the target, agents both select the purple policy mask

t = 0, C = t = 5, C = t = 10, C = t = 15, C = t = 50, C = t = 59, C = t = 60, C = t = 65, C =

(b) The ball is on the right side of the target, agents both select the green policy mask

t = 0, C = t = 5, C = t = 10, C = t = 15, C = t = 50, C = t = 58, C = t = 59, C = t = 65, C =

Figure 8: Visualization of two different BOUNCE evaluation episodes. Note that here, the agents’
colors represent their chosen policy mask. Agents have learned to synchronously identify two
distinct situations and act accordingly. The coach’s masks (not used at evaluation time) are displayed
with the timestep at the bottom of each frame.

8

Under review as a conference paper at ICLR 2020

(a)

(b)

Figure 9: (a) Entropy of
the policy mask distributions
for each task, averaged over
agents and training seeds.
Hmax,k is the entropy of a k-
CUD. (b) Hamming Proxim-
ity between the policy mask
sequence of each agent aver-
aged across agent pairs and
seeds. randk stands for agents
independently sampling their
masks from k-CUD. Error
bars are SE across seeds.

In this section we aim at experimentally verifying that CoachReg
yields the desired behavior: agents synchronously alternating be-
tween varied sub-policies. A special attention is given when the
sub-policies are interpretable. To this end we record and analyze
the agents’ policy masks on 100 different episodes for each task.

From the collected masks, we reconstructed the empirical mask
distribution of each agent (see Figure 15 in Appendix F.1) whose
entropy provides an indication of the mask diversity used by a given
agent. Figure 9 (a) shows the mean entropy for each environment
compared to the entropy of Categorical Uniform Distributions of
size k (k-CUD). It shows that, on all the environments, agents use
at least two distinct masks by having non-zero entropy. In addition,
agents tend to alternate between masks with more variety (close
to uniformly switching between 3 masks) on SPREAD (where
there are 3 agents and 3 goals) than on the other environments
(comprised of 2 agents). To test if agents are synchronously
selecting the same policy mask at test time (without a coach),
we compute the Hamming proximity between the agents’ mask
sequences with 1 − Dh where Dh is the Hamming distance, i.e.
the number of timesteps where the two sequences are different
divided by the total number of timesteps. From Figure 9 (b)
we observe that agents are producing similar mask sequences.
Notably, their mask sequences are significantly more similar that
the ones of two agent randomly choosing between two masks
at each timestep. Finally, we observe that some settings result
in the agents coming up with interesting strategies, like the one
depicted in Figure 8 where the agents alternate between two sub-
policies depending on the position of the target. More cases where
the agents change sub-policies during an episode are presented in
Appendix F.1. These results indicate that, in addition to improving
the performance on coordination tasks, CoachReg indeed yields the
expected behaviors. An interesting following work would be to
use entropy regularization to increase the mask usage variety and
mutual information to further disentangle sub-policies.

6.5 ROBUSTNESS TO HYPER-PARAMETERS

Stability across hyper-parameter configurations is a recurring challenge in Deep RL. The average
performance for each sampled configuration allow to empirically evaluate the robustness of an
algorithm w.r.t. its hyper-parameters. We share the full results of the hyper-parameter searches
in Figures 10, 11, 12 and 13 in Appendix D.5 and D.6. Figure 11 shows that while most algorithms
can perform reasonably well with the correct configuration, our proposed coordination regularizers
can improve robustness to hyper-parameter despite the fact that they have more hyper-parameters to
search over. Such robustness can be of great value with limited computational budgets.

6.6 ROBUSTNESS TO THE NUMBER OF AGENTS

To assess how the proposed methods perform when using an greater number of agents, we present
additional experiments for which the number of agents in the SPREAD task is gradually increased
from three to six agents. The results presented in Figure 18 (Appendix G) show that the performance
benefits provided by our methods hold when the number of agents is increased. Strikingly, we also
note how quickly the performance of all methods drop when the number of agents rises. Indeed,
with each new agent, the coordination problem becomes more and more difficult, and that might
explain why our methods that promote coordination maintain a higher degree of performance in the
case of 4 agents. Nonetheless, estimating the value function also becomes increasingly challenging
as the input space grows exponentially with the number of agents. In the sparse reward setting, the
complexity of the task soon becomes too difficult and none of the algorithms is able to solve it with
six agents.

9

Under review as a conference paper at ICLR 2020

7 CONCLUSION

In this work we introduced two policy regularization methods to promote multi-agent coordination
within the CTDE framework: TeamReg, which is based on inter-agent action predictability and
CoachReg that relies on synchronized behavior selection. A thorough empirical evaluation of these
methods showed that they significantly improve asymptotic performances on cooperative multi-
agent tasks. Interesting avenues for future work would be to study the proposed regularizations
on other policy search methods as well as to combine both incentives and investigate how the two
coordinating objectives interact. Finally, a limitation of the current formulation is that it relies on
single-step metrics, which simplifies off-policy learning but also limits the longer-term coordination
opportunities. A promising direction is thus to explore model-based planning approaches to promote
long-term multi-agent interactions.

REFERENCES

Sanjeevan Ahilan and Peter Dayan. Feudal multi-agent hierarchies for cooperative reinforcement
learning. arXiv preprint arXiv:1901.08492, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Sean L Barton, Nicholas R Waytowich, Erin Zaroukian, and Derrik E Asher. Measuring collabo-
rative emergent behavior in multi-agent reinforcement learning. In International Conference on
Human Systems Engineering and Design: Future Trends and Applications, pp. 422–427. Springer,
2018.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pp. 1281–1288, 2005.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2137–2145, 2016.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent
reinforcement learning. International Conference on Machine Learning, 2019.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In AAMAS Workshops, 2017.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning, pp. 1804–1813, 2016.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. Is multiagent deep reinforcement
learning the answer or the question? a brief survey. arXiv preprint arXiv:1810.05587, 2018.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. Agent Modeling as Auxiliary Task
for Deep Reinforcement Learning. In AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2019.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
International Conference on Machine Learning, pp. 2961–2970, 2019.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al.
Human-level performance in 3d multiplayer games with population-based reinforcement learning.
Science, 364(6443):859–865, 2019.

10

Under review as a conference paper at ICLR 2020

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, Dj Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning, pp. 3040–3049, 2019.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
In Advances in Neural Information Processing Systems, pp. 7254–7264, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation and the
emergence of (natural) language. arXiv preprint arXiv:1612.07182, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pp. 4292–4301, 2018.

Frederik Schadd, Sander Bakkes, and Pieter Spronck. Opponent modeling in real-time strategy
games. In GAMEON, pp. 61–70, 2007.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Daniel Strouse, Max Kleiman-Weiner, Josh Tenenbaum, Matt Botvinick, and David J Schwab.
Learning to share and hide intentions using information regularization. In Advances in Neural
Information Processing Systems, pp. 10270–10281, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

Sirui Xie, Junning Huang, Lanxin Lei, Chunxiao Liu, Zheng Ma, Wei Zhang, and Liang Lin.
Nadpex: An on-policy temporally consistent exploration method for deep reinforcement learning.
arXiv preprint arXiv:1812.09028, 2018.

11

Under review as a conference paper at ICLR 2020

A TASKS DESCRIPTIONS

SPREAD (Figure 3a): In this environment, there are 3 agents (small orange circles) and 3 landmarks
(bigger gray circles). At every timestep, agents receive a team-reward rt = n − c where n is the
number of landmarks occupied by at least one agent and c the number of collisions occurring at that
timestep. To maximize their return, agents must therefore spread out and cover all landmarks. Initial
agents’ and landmarks’ positions are random. Termination is triggered when the maximum number
of timesteps is reached.

BOUNCE (Figure 3b): In this environment, two agents (small orange circles) are linked together
with a spring that pulls them toward each other when stretched above its relaxation length. At
episode’s mid-time a ball (smaller black circle) falls from the top of the environment. Agents must
position correctly so as to have the ball bounce on the spring towards the target (bigger beige circle),
which turns yellow if the ball’s bouncing trajectory passes through it. They receive a team-reward
of rt = 0.1 if the ball reflects towards the side walls, rt = 0.2 if the ball reflects towards the top of
the environment, and rt = 10 if the ball reflects towards the target. At initialisation, the target’s and
ball’s vertical position is fixed, their horizontal positions are random. Agents’ initial positions are
also random. Termination is triggered when the ball is bounced by the agents or when the maximum
number of timesteps is reached.

COMPROMISE (Figure 3c): In this environment, two agents (small orange circles) are linked
together with a spring that pulls them toward each other when stretched above its relaxation length.
They both have a distinct assigned landmark (light gray circle for light orange agent, dark gray
circle for dark orange agent), and receive a reward of rt = 10 when they reach it. Once a landmark
is reached by its corresponding agent, the landmark is randomly relocated in the environment. Initial
positions of agents and landmark are random. Termination is triggered when the maximum number
of timesteps is reached.

CHASE (Figure 3d): In this environment, two predators (orange circles) are chasing a prey
(turquoise circle). The prey moves with respect to a scripted policy consisting of repulsion forces
from the walls and predators. At each timestep, the learning agents (predators) receive a team-
reward of rt = n where n is the number of predators touching the prey. The prey has a greater
max speed and acceleration than the predators. Therefore, to maximize their return, the two agents
must coordinate in order to squeeze the prey into a corner or a wall and effectively trap it there.
Termination is triggered when the maximum number of time steps is reached.

B TRAINING DETAILS

In all of our experiments, we use the Adam optimizer (Kingma & Ba, 2014) to perform parameter
updates. All models (actors, critics and coach) are parametrized by feedforward networks containing
two hidden layers of 128 units. We use the Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) as
activation function and layer normalization (Ba et al., 2016) on the pre-activations unit to stabilize
the learning. We use a buffer-size of 106 entries and a batch-size of 1024. We collect 100 transitions
by interacting with the environment for each learning update. For all tasks in our hyper-parameter
searches, we train the agents for 15, 000 episodes of 100 steps and then re-train the best configuration
for each algorithm-environment pair for twice as long (30, 000 episodes) to ensure full convergence
for the final evaluation. The scale of the exploration noise is kept constant for the first half of the
training time and then decreases linearly to 0 until the end of training. We use a discount factor γ of
0.95 and a gradient clipping threshold of 0.5 in all experiments. Finally for CoachReg, we fixed K
to 4 meaning that agents could choose between 4 sub-policies. Since policies’ hidden layers are of
size 128 the corresponding value for C is 32.

12

Under review as a conference paper at ICLR 2020

C ALGORITHMS

Algorithm 1 Team

Randomly initialize N critic networks Qi and actor networks µi
Initialize the target weights
Initialize one replay buffer D
for episode from 0 to number of episodes do

Initialize random processes N i for action exploration
Receive initial joint observation o0

for timestep t from 0 to episode length do
Select action ai = µi(oit) +N i

t for each agent
Execute joint action at and observe joint reward rt and new observation ot+1

Store transition (ot, at, rt, ot+1) in D
end for
Sample a random minibatch of M transitions from D
for each agent i do

Evaluate Li and J iPG from Equations (1) and (2)
for each other agent (j 6= i) do

Evaluate J i,jTS from Equations (3)
Update actor j with θj ← θj + αθ∇θjλ2J

i,j
TS

end for
Update critic with φi ← φi − αφ∇φiLi

Update actor i with θi ← θi + αθ∇θi
(
J iPG + λ1

∑N
j=1 J

i,j
TS

)
end for
Update all target weights

end for

Algorithm 2 Coach

Randomly initialize N critic networks Qi, actor networks µi and one coach network pc
Initialize N target networks Qi′ and µi′
Initialize one replay buffer D
for episode from 0 to number of episodes do

Initialize random processes N i for action exploration
Receive initial joint observation o0

for timestep t from 0 to episode length do
Select action ai = µi(oit) +N i

t for each agent
Execute joint action at and observe joint reward rt and new observation ot+1

Store transition (ot, at, rt, ot+1) in D
end for
Sample a random minibatch of M transitions from D
for each agent i do

Evaluate Li and J iPG from Equations (1) and (2)
Update critic with φi ← φi − αφ∇φiLi
Update actor with θi ← θi + αθ∇θiJ iPG

end for
for each agent i do

Evaluate J iE and J iEPG from Equations (8) and (7)
Update actor with θi ← θi + αθ∇θi

(
λ1J

i
E + λ2J

i
EPG

)
end for
Update coach with ψ ← ψ + αψ∇ψ 1

N

∑N
i=1

(
J iEPG + λ3J

i
E

)
Update all target weights

end for

13

Under review as a conference paper at ICLR 2020

D HYPER-PARAMETER SEARCH

D.1 HYPER-PARAMETER SEARCH RANGES

We perform searches over the following hyper-parameters: the learning rate of the actor αθ, the
learning rate of the critic ωφ relative to the actor (αφ = ωφ ∗ αθ), the target-network soft-update
parameter τ and the initial scale of the exploration noise ηnoise for the Ornstein-Uhlenbeck noise
generating process (Uhlenbeck & Ornstein, 1930) as used by Lillicrap et al. (2015). When using
TeamReg and CoachReg, we additionally search over the regularization weights λ1, λ2 and λ3. The
learning rate of the coach is always equal to the actor’s learning rate (i.e. αθ = αψ), motivated by
their similar architectures and learning signals and in order to reduce the search space. Table 1 shows
the ranges from which values for the hyper-parameters are drawn uniformly during the searches.

Table 1: Ranges for hyper-parameter search, the log base is 10

HYPER-PARAMETER RANGE
log(αθ) [−8,−3]
log(ωφ) [−2, 2]
log(τ) [−3,−1]
log(λ1) [−3 , 0]
log(λ2) [−3 , 0]
log(λ3) [−1 , 1]
ηnoise [0.3, 1.8]

D.2 MODEL SELECTION

During training, a policy is evaluated on a set of 10 different episodes every 100 learning steps. At
the end of the training, the model at the best evaluation iteration is saved as the best version of the
policy for this training, and is re-evaluated on 100 different episodes to have a better assessment of
its final performance. The performance of a hyper-parameter configuration is defined as the average
performance (across seeds) of the policies learned using this set of hyper-parameter values.

14

Under review as a conference paper at ICLR 2020

D.3 SELECTED HYPER-PARAMETERS

Tables 2, 3, 4, and 5 shows the best hyper-parameters found by the random searches for each of the
environments and each of the algorithms.

Table 2: Best found hyper-parameters for the SPREAD environment

HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 5.3 ∗ 10−5 2.1 ∗ 10−5 9.0 ∗ 10−4 2.5 ∗ 10−5 1.2 ∗ 10−5

ωφ 53 79 0.71 42 82
τ 0.05 0.083 0.076 0.098 0.0077
λ1 - - - 0.054 0.13
λ2 - - - 0.29 0.24
λ3 - - - - 8.4
ηnoise 1.0 0.5 0.7 1.2 1.2

Table 3: Best found hyper-parameters for the BOUNCE environment

HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 8.1 ∗ 10−4 3.8 ∗ 10−5 1.2 ∗ 10−4 1.3 ∗ 10−5 6.8 ∗ 10−5

ωφ 2.4 87 0.47 85 9.4
τ 0.089 0.016 0.06 0.055 0.02
λ1 - - - 0.06 0.0066
λ2 - - - 0.0026 0.23
λ3 - - - - 0.34
ηnoise 1.2 0.9 1.2 1.0 1.1

Table 4: Best found hyper-parameters for the CHASE environment

HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 4.5 ∗ 10−4 2.0 ∗ 10−4 9.7 ∗ 10−4 1.3 ∗ 10−5 1.8 ∗ 10−4

ωφ 32 64 0.79 85 90
τ 0.031 0.021 0.032 0.055 0.011
λ1 - - - 0.06 0.0069
λ2 - - - 0.0026 0.86
λ3 - - - - 0.76
ηnoise 0.6 1.0 1.5 1.0 1.1

Table 5: Best found hyper-parameters for the COMPROMISE environment

HYPER-PARAMETER DDPG MADDPG MADDPG+SHARING MADDPG+TEAMREG MADDPG+COACHREG
αθ 6.1 ∗ 10−5 3.1 ∗ 10−4 6.2 ∗ 10−4 1.5 ∗ 10−5 3.4 ∗ 10−4

ωφ 1.7 0.94 0.58 90 29
τ 0.065 0.045 0.007 0.02 0.0037
λ1 - - - 0.0013 0.65
λ2 - - - 0.56 0.5
λ3 - - - - 1.3
ηnoise 1.1 0.7 1.3 1.6 1.6

15

Under review as a conference paper at ICLR 2020

D.4 SELECTED HYPER-PARAMETERS (ABLATIONS)

Tables 6, 7, 8, and 9 shows the best hyper-parameters found by the random searches for each of the
environments and each of the ablated algorithms.

Table 6: Best found hyper-parameters for the SPREAD environment

HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.3 ∗ 10−5 6.8 ∗ 10−5

ωφ 85 9.4
τ 0.055 0.02
λ1 0.06 0
λ2 0 0
λ3 - 0
ηnoise 1.0 1.1

Table 7: Best found hyper-parameters for the BOUNCE environment

HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.3 ∗ 10−5 2.5 ∗ 10−4

ωφ 85 0.52
τ 0.055 0.0077
λ1 0.06 0
λ2 0 0
λ3 - 0
ηnoise 1.0 1.3

Table 8: Best found hyper-parameters for the CHASE environment

HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 2.5 ∗ 10−5 6.8 ∗ 10−5

ωφ 42 9.4
τ 0.098 0.02
λ1 0.054 0
λ2 0 0
λ3 - 0
ηnoise 1.2 1.1

Table 9: Best found hyper-parameters for the COMPROMISE environment

HYPER-PARAMETER MADDPG+AGENT MODELLING MADDPG+POLICY MASK
αθ 1.2 ∗ 10−4 2.5 ∗ 10−4

ωφ 0.71 0.52
τ 0.0051 0.0077
λ1 0.0075 0
λ2 0 0
λ3 - 0
ηnoise 1.8 1.3

16

Under review as a conference paper at ICLR 2020

D.5 HYPER-PARAMETER SEARCH RESULTS

The performance of each parameter configuration is reported in Figure 10 yielding the performance
distribution across hyper-parameters configurations for each algorithm on each task. The same
distributions are depicted in Figure 11 using box-and-whisker plot. It can be seen that TeamReg and
CoachReg both boost the performance of the third quartile, suggesting an increase in the robustness
across hyper-parameter.

0

50

100

150

200

av
er

ag
e

re
tu

rn
SPREAD

0

2

4

6

8

BOUNCE

0

5

10

15

20

25

av
er

ag
e

re
tu

rn

COMPROMISE

0

200

400

600

800

CHASE

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg MADDPG + CoachReg

Figure 10: Hyper-parameter tuning results for all algorithms. There is one distribution per
(algorithm, environment) pair, each one formed of 50 points (hyper-parameter configuration
samples). Each point represents the best model performance averaged over 100 evaluation episodes
and averaged over the 3 training seeds for one sampled hyper-parameters configuration (total of 300
performance values per sampled configuration).

DDPG MADDPG MADDPG
+sharing

MADDPG
+TeamReg

MADDPG
+CoachReg

0

50

100

150

200

av
er

ag
e

re
tu

rn

SPREAD

DDPG MADDPG MADDPG
+sharing

MADDPG
+TeamReg

MADDPG
+CoachReg

0

2

4

6

8

BOUNCE

DDPG MADDPG MADDPG
+sharing

MADDPG
+TeamReg

MADDPG
+CoachReg

0

5

10

15

20

25

av
er

ag
e

re
tu

rn

COMPROMISE

DDPG MADDPG MADDPG
+sharing

MADDPG
+TeamReg

MADDPG
+CoachReg

0

200

400

600

800

CHASE

Figure 11: Summarized performance distributions of the sampled hyper-parameters configurations
for each (algorithm, environment) pair. The box-plots divide in quartiles the 49 lower-performing
configurations for each distribution while the score of the best-performing configuration is high-
lighted above the box-plots by a single dot.

17

Under review as a conference paper at ICLR 2020

D.6 HYPER-PARAMETER SEARCH RESULTS (ABLATIONS)

From Figure 13 it seems that the “policy mask” or the “agent modelling” additions respectively
provide nearly the same robustness boosts as CoachReg and TeamReg.

0

50

100

150

200
av

er
ag

e
re

tu
rn

SPREAD

0

2

4

6

8

BOUNCE

0

5

10

15

20

25

av
er

ag
e

re
tu

rn

COMPROMISE

0

200

400

600

800

1000
CHASE

MADDPG MADDPG + agent modelling MADDPG + policy mask MADDPG + TeamReg MADDPG + CoachReg

Figure 12: Hyper-parameter tuning results for ablated algorithms compared to their full approach
counterparts and MADDPG. There is one distribution per (algorithm, environment) pair, each
one formed of 50 points (hyper-parameter configuration sample). Each point represents the best
model performance averaged over 100 evaluation episodes and averaged over the 3 training seeds
for one sampled hyper-parameters configuration (total of 300 performance values per sampled
configuration).

MADDPG MADDPG
+agent modelling

MADDPG
+policy mask

MADDPG
+TeamReg

MADDPG
+CoachReg

0

50

100

150

200

av
er

ag
e

re
tu

rn

SPREAD

MADDPG MADDPG
+agent modelling

MADDPG
+policy mask

MADDPG
+TeamReg

MADDPG
+CoachReg

0

2

4

6

8

BOUNCE

MADDPG MADDPG
+agent modelling

MADDPG
+policy mask

MADDPG
+TeamReg

MADDPG
+CoachReg

0

5

10

15

20

25

av
er

ag
e

re
tu

rn

COMPROMISE

MADDPG MADDPG
+agent modelling

MADDPG
+policy mask

MADDPG
+TeamReg

MADDPG
+CoachReg

0

200

400

600

800

1000
CHASE

Figure 13: Summarized performance distributions of the sampled hyper-parameters configurations
for each (ablated algorithm, environment) pair. The box-plots divide in quartiles the 49 lower-
performing configurations for each distribution while the score of the best-performing configuration
is highlighted above the box-plots by a single dot.

18

Under review as a conference paper at ICLR 2020

E THE EFFECTS OF ENFORCING PREDICTABILITY (ADDITIONAL RESULTS)

0 5000 10000 15000 20000 25000 30000
0

15

30

45

Av
er

ag
e

Re
tu

rn
DDPG

agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
0

15

30

45

MADDPG
agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
Episodes

0

15

30

45

Av
er

ag
e

Re
tu

rn

MADDPG + sharing
agent 0
agent 1

0 5000 10000 15000 20000 25000 30000
Episodes

0

15

30

45

MADDPG + TeamReg
agent 0
agent 1

Figure 14: Learning curves for TeamReg and the three baselines on COMPROMISE. We see that
while both agents remain equally performant as they improve at the task for the baseline algorithms,
TeamReg tends to make one agent much stronger than the other one. This domination is optimal as
long as the other agent remains docile, as the dominant agent can gather much more reward than if
it had to compromise. However, when the dominated agent finally picks up the task, the dominant
agent that has learned a policy that does not compromise see its return dramatically go down and the
mean over agents overall then remains lower than for the baselines.

19

Under review as a conference paper at ICLR 2020

F ANALYSIS OF SUB-POLICY SELECTION (ADDITIONAL RESULTS)

F.1 MASK DENSITIES

We depict on Figure 15 the mask distribution of each agent for each (seed, environment) experiment.
Firstly, in most of the experiments, agents use at least 2 different masks. Secondly, for a given
experiments, agents’ distributions are very similar, suggesting that they are using the same masks in
the same situations and that they are therefore synchronized. Finally, agents collapse more to using
only one mask on CHASE, where they also display more dissimilarity between one another. This
may explain why CHASE is the only task where CoachReg does not improve performance. Indeed,
on CHASE, agents do not seem synchronized nor leveraging multiple sub-policies which are the
priors to coordination behind CoachReg. In brief, we observe that CoachReg is less effective in
enforcing those priors to coordination of CHASE, an environment where it does not boost nor harm
performance.

Figure 15: Agent’s policy mask distributions. For each (seed, environment) we collected the masks
of each agents on 100 episodes.

20

Under review as a conference paper at ICLR 2020

F.2 EPISODES ROLL-OUTS

We render here some episodes roll-outs, the agents synchronously switch between policy masks
during an episode. In addition, the whole group selects the same mask as the one that would have
been suggested by the coach.

t = 0, C = t = 5, C = t = 20, C =t = 10, C = t = 15, C = t = 25, C = t = 30, C = t = 35, C =

(a) SPREAD

t = 0, C = t = 3, C = t = 17, C =t = 6, C = t = 7, C = t = 22, C = t = 32, C = t = 33, C =

t = 34, C = t = 37, C = t = 40, C = t = 42, C = t = 43, C = t = 48, C = t = 51, C = t = 52, C =

t = 53, C = t = 54, C = t = 64, C = t = 65, C = t = 66, C = t = 67, C = t = 68, C = t = 73, C =

(b) COMPROMISE

Figure 16: Visualization sequences on two different environments. An agent’s color represent its
current policy mask. For informative purposes the policy mask that the coach would have produced
if these situations would have happened during training is displayed next to the frame’s timestep.
Agents synchronously switch between the available policy masks.

21

Under review as a conference paper at ICLR 2020

F.3 MASK DIVERSITY AND SYNCHRONICITY (ABLATION)

As in Subsection 6.4 we report the mean entropy of the mask distribution and the mean Hamming
proximity for the ablated “MADDPG + policy mask” and compare it to the full CoachReg. With
“MADDPG + policy mask” agents are not incentivized to use the same masks. Therefore, in order
to assess if they synchronously change policy masks, we computed, for each agent pair, seed and
environment, the Hamming proximity for every possible masks equivalence (mask 3 of agent 1
corresponds to mask 0 of agent 2, etc.) and selected the equivalence that maximised the Hamming
proximity between the two sequences.

We can observe that while “MADDPG + policy mask” agents display a more diverse mask usage,
their selection is less synchronized than with CoachReg. This is easily understandable as the coach
will tend to reduce diversity in order to have all the agents agree on a common mask, on the other
hand this agreement enables the agents to synchronize their mask selection. To this regard, it should
be noted that “MADDPG + policy mask” agents are more synchronized that agents independently
sampling their masks from k-CUD, suggesting that, even in the absence of the coach, agents tend to
synchronize their mask selection.

(a)

(b)

Figure 17: Entropy of the policy mask distributions for each task and method, averaged over
agents and training seeds. Hmax,k is the entropy of a k-CUD. (b) Hamming Proximity between
the policy mask sequence of each agent averaged across agent pairs and seeds. randk stands for
agents independently sampling their masks from k-CUD. Error bars are SE across seeds.

22

Under review as a conference paper at ICLR 2020

G ROBUSTNESS TO THE NUMBER OF AGENTS

We varied the number of agents present in the SPREAD task from three to six. For each algorithm we
used the best performing hyper-parameter configuration from the hyper-parameter search performed
on SPREAD with three agents and trained on ten different random seeds. Results are shown in
Figure 18. As expected the task becomes more complicated when the number of agents increases
and no algorithm succeeds at the task with six agents. This difficulty is likely to be exacerbated by
the sparse reward setting. However, the proposed methods still outperform the baselines showing
that they do not disproportionately suffer from the increased regularization pressure of additional
agents.

0 5000 10000 15000 20000 25000 30000
150

0

150

Re
tu

rn

SPREAD - 3 AGENTS

0 5000 10000 15000 20000 25000 30000
150

0

150

SPREAD - 4 AGENTS

0 5000 10000 15000 20000 25000 30000
Episodes

150

0

150

Re
tu

rn

SPREAD - 5 AGENTS

DDPG MADDPG MADDPG + sharing MADDPG + TeamReg MADDPG + CoachReg

0 5000 10000 15000 20000 25000 30000
Episodes

150

0

150

SPREAD - 6 AGENTS

Figure 18: Learning curves (mean return over agents) for all algorithms on the SPREAD
environment for varying number of agents. Solid lines are the mean and envelopes are the Standard
Error (SE) across the 10 training seeds.

23

	Introduction
	Background
	Markov Games
	Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

	Related Work
	Coordination and Policy regularization
	Team regularization
	Coach regularization
	Sub-policy selection
	Synchronous sub-policy selection

	Training environments
	Results and Discussion
	Asymptotic Performance
	Ablation study
	Effects of enforcing predictable behavior
	Analysis of synchronous sub-policy selection
	Robustness to hyper-parameters
	Robustness to the number of agents

	Conclusion
	Tasks descriptions
	Training details
	Algorithms
	Hyper-parameter search
	Hyper-parameter search ranges
	Model selection
	Selected hyper-parameters
	Selected hyper-parameters (ablations)
	Hyper-parameter search results
	Hyper-parameter search results (ablations)

	The effects of enforcing predictability (additional results)
	Analysis of sub-policy selection (additional results)
	Mask densities
	Episodes roll-outs
	Mask diversity and synchronicity (ablation)

	Robustness to the number of agents

