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1 Paper Summary

Most of the visual question-answering (VQA) models perform poorly on the task of counting objects
in an image. The reasons are manifold:

1. Most VQA models use a soft attention mechanism to perform a weighted sum over the
spatial features to obtain a single feature vector. These aggregated features help in most
categories of questions but seem to hurt for counting based questions.

2. For the counting questions, we do not have a ground truth segmentation of where the objects
to be counted are present on the image. This limits the scope for supervision.

Additionally, we need to ensure that any modification in the architecture, to enhance the performance
on the counting questions, should not degrade the performance on other classes of questions.

The paper proposes to overcome these challenges by using the attention maps (and not the aggregated
feature vectors) as the input to a separate count module. The basic idea is quite intuitive: when we
perform weighted averaging based on different attention maps, we end up averaging the features
corresponding to the different instances of an object. This makes the feature vectors indistinguishable
from the scenario where we had just one instance of the object in the image. Even multiple glimpses
(multiple steps of attention) can not resolve this problem as the weights given to one feature vector
would not depend on the other feature vectors (that are attended to). Hard attention could be more
useful than soft-attention but there is not much empirical evidence in support of this hypothesis.

1.1 Motivation

The motivation for the proposed approach comes directly from one of the limitations of the existing
approaches which is to use features based on soft-attention for all classes of questions, including
the counting questions. The paper proposed to use a separate class of counting features which
are obtained from the raw attention maps (and not the aggregated feature maps). To ensure that
their model is plug-and-play, the authors designed the count features such that the module using

∗Equal Contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



them can be integrated into any VQA model (that uses attention based features). The authors also
aimed to ensure that any new module, that is added to the original architecture, should not degrade
the performance of the original architecture. With these motivations, the authors formed separate
counting features by using the soft-attention maps and the bounding box proposals and integrated
these features into the main classifier. In the ideal setting, the output of the counting component
would be a one-hot vector with a non-zero value at the index that corresponds to the count of the
object in the image. This clearly aids the VQA model in predicting the correct answer for count-type
questions.

1.2 Proposed approach

The proposed count module is a separate pipeline that can be integrated with most of the existing
attention based VQA models, without affecting the performance on non-count based questions. The
inputs to the count module are the attention maps and the object proposals (obtained from some
pre-trained model like the R-CNN model) and the output is a count-feature vector which is used to
answer the count-based question. The top level idea is the following - given the object proposals and
the attention maps, create a graph where nodes are objects (object proposals) and edges capture how
similar two object proposals are (how much do they overlap). The graph is transformed (by removing
and scaling edges) so that the true count of the number of underlying objects can be obtained easily.

The inputs to the count module are the object proposals (in terms of bounding boxes) and attention
weights for these proposals based on the question. The attention weights are such that, more is
the relevance of a proposal, more is its attention weight. To explain their methodology, the paper
simplifies the setting by making two assumptions. The first assumption is that the attention weights
are either 1 (when the object is present in the proposal) or 0 (when the object is absent from the
proposal). The second assumption is that any two object proposals either overlap completely (in
which case, they are corresponding to the exact same object and hence receive the exact same weights)
or the two proposals have zero overlap (in which case, they must be corresponding to completely
different objects). These simplifying assumptions are made only for the sake of exposition and do not
limit the capabilities of the count module.

Given the assumptions, the task of the count module is to handle the exact duplicates to prevent
double-counting of objects. As the first step, the attention weights (a) are used to generate an attention
matrix (A) by performing an outer product between a and aT . This corresponds to the step of creation
of a graph from the input. A corresponds to the adjacency matrix of that graph. The attention weight
for the ith proposal corresponds to the ith node in the graph, and the edge between the nodes i and
j has the weight ai ∗ aj . Also note that the graph is a weighted directed graph and the subgraph
of vertices satisfying the condition ai = 1 is a complete directed graph with self-loops. Given
such a graph, the number of vertices is |V | =

√
|E|. |E| could be computed by summing over the

adjacency matrix. This implies that if the proposals are distinct, the count can be obtained trivially by
performing a sum over the adjacency matrix.

The objective is now to eliminate the edges such that the underlying objects are the vertices of a
complete subgraph. This requires removing two type of duplicate edges - intra-object edges and
inter-object edges.

Intra-object edges can be removed by computing a distance matrix, D ∈ Rn×n, defined as Dij = (1−
IoU(bi, bj)), where IoU matrix corresponds to the Intersection-over-Union matrix and bi corresponds
to the bounding-box of the ith proposal. A modified adjacency matrix Ã is obtained by performing
the element-wise product between f1(A) and f2(D), where f1 and f2 are piece-wise linear functions
that are learnt via backpropogation.

The inter-object edges are removed in the following manner: Count the number of proposals that
correspond of each instance of an object and then scale down the edges corresponding to the different
instances by that number. This creates the effect of reducing the weights of multiple proposals
equivalent to a single proposal. The number of proposals corresponding to an object is not available
as an annotation in the training pipeline and is estimated based on the similarity between the different
proposals (measured via the attention weights a, adjacency matrix A and distance matrix D). The
matrix corresponding to the similarity between proposals (simi,j) is transformed into a vector
corresponding to the scaling factor of each node (si) as shown below:
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si =
1∑

j simi,j
(1)

s can be converted into a matrix (by doing outer-product with itself) so as to scale both the incoming
and the outgoing edges. The self edges (which were removed while computing Ã) are added back
(after scaling with s) to obtain a new transformed matrix C as given below:

C = Ã� ssT + diag(s� f1(a� a)) (2)

The transformed matrix C is a complete graph with self-loops where the nodes corresponds to all
the relevant object instances and not the object proposals. The actual count can be obtained from
C by performing a sum over all its values as described earlier. The original count problem was a
regression problem but it is transformed into a classification problem to avoid scale issues. The
network produces a k-hot n-dimensional vector o, where n is the number of object proposals that
were fed into the module (and hence the upper limit on how large a number could the module count).
In the ideal setting, k should be one, as the network would produce an integer value but in practice,
the network produces a real number so k can be upto 2. If c is an exact integer, the output is a
1-hot vector with the value in index corresponding to c set to 1. If c is a real number, the output is a
linear interpolation between two one-hot vectors (the one-hot vectors correspond to the two integers
between which c lies).

The count module supports computing the confidence of a prediction by defining two variables pa
and pD which compute the average distance of f6(a) and f7(D) from 0.5. The final output o is
defined as f8(pa + pD).o

All the different f functions are piece wise linear functions and are learnt via backpropagation.

2 Experiments

2.1 Motivation for the experiments

The authors motivated their approach by making two simplifying assumptions (attention weights
are either 1 or 0 and any two object proposals either overlap completely or have zero overlap). In
this ideal scenario, the authors argue that their count module would be able to exactly compute the
number of instances of the relevant objects given an image. In the real life scenario, these assumptions
do not hold exactly and empirical evidence is needed to evaluate the performance of the model on
real data.

The authors have argued that their count module could be used with most of the VQA models. Since
they claim novelty on the use of count module (and not on what base VQA model is used), they
used the model proposed by [3] as the base model without making any changes to its architecture
or the hyper parameters. It seems to be a justified choice given that the base model achieved the
state-of-the-art results on VQA v1 dataset. This model is augmented with the count module, which
uses object feature proposals as an additional feature. These object proposals come from the Faster
R-CNN model [4] (as used by [1]).

The authors also performed experiments on a toy dataset to understand the intricacies of the count
module. Since those experiments are for exposition and not for evaluating the performance of the
count module, we did not reproduce those experiments.

2.2 Experiments demonstrated in the paper

The core problem that the paper proposes to solve is the following: improving the performance of
VQA models on count based questions without degrading the performance on other category of
questions. To provide empirical evidence for the effectiveness of their solution, the paper evaluates
the VQA model (augmented with the count module on the validation set, test-dev and test set of VQA
v2 [2]. The performance of this count augmented VQA model is compared with the performance of
the base VQA model on count-based questions (to verify that the use of count module helps with
count-based questions) and on other class of questions like ‘Yes/No’, ‘Other’ etc (to verify that the
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use of count module does not deteriorate the performance on other questions). The answers are
evaluated according to the following accuracy metric:

accuracy = min
(no.of humans who gave that answer

3
, 1
)

The original VQA v2 dataset provides a category of questions called as ‘Number’ questions which
contains both count-based questions as well as questions like “what time is it?” for which the answer
is also a number. Since the count module is designed specifically to handle the count-based questions
and not the number-based questions, the paper introduces a new sub-category of ‘Count’ questions in
which they consider only questions starting with ‘How many’ and ignore the other number-based
questions. This introduces a slight discrepancy in the evaluation on the test data as the official
evaluation server (URL: https://evalai.cloudcv.org/web/challenges/challenge-page/
80/phases) does not support this new sub-category of count-based questions.

The authors additionally evaluate the accuracy of their model on the balanced pairs (which comprise
of a single question on two different images). The model must answer correctly on both to receive a
score. Evaluation on balanced pairs is important it because the model should learn to find the subtle
details between images, instead of being able to exploit the question biases in the dataset.

2.3 Reproducing the main results

We implemented both the baseline architecture and the count module from scratch using the details
mentioned in the paper and the hyper-parameters suggested by the paper to reproduce the exper-
iments on VQA-v2 dataset. We also implemented the baseline architecture, which does not use
a separate count module.(Link to our implementation: https://github.com/shagunsodhani/
Reproducibility-Report-CountVQA)We report the results on test-dev and test, as obtained from
the official evaluation server in Table 1. For the validation set, we report results on individual question
categories (in Table 2) as well as balanced pairs by using the evaluation script provided by the authors
for our trained model (in Table 2). We also report the results on validation set as obtained from the
official evaluation scripts released by [2]. In a nutshell, our experiments achieve similar level of
performance gains, compared to the baseline model, as reported in the paper. For a detailed discussion
on this aspect, refer to Section 3.

2.4 Assumptions in implementation

• The authors proposed a slight modification in the baseline architecture. In the baseline
model, vision features x and question features y are fused using the concatenation operation,
followed by linear projection and ReLU. The authors replace this operation by a different
fusion operation x � y = ReLU(Wxx+Wyy)− (Wxx−Wyy)

2. We used this modified
formulation, but it was unclear what is the nature of Wx for vision features. Since a
feedforward linear layer is not suitable for image feature maps, we used 1× 1 convolutional
layer, which worked well in our case.

• In the classifier, the authors have mentioned that their model uses both BatchNorm and
Dropout, which is seldom recommended in literature but works in this case.

• In all of our LSTM variants of different models, we use the cell state of the final timestamp
as the feature representation of the question, and the baseline paper doesn’t clearly mention
if it uses the hidden state or cell state.

• We use the attention vectors from the first glimpse as input to the count module. We also try
one experiment with use of second glimpse instead of first glimpse attention vector.

• The paper does not specify if they have used the validation data as part of training data when
evaluating the model over test data. We have used only the training data when evaluating
the performance over both validation and test data.

All other hyper-parameters like learning rate, half-life of LR scheduler (in terms of no. of iterations),
type of optimizer (Adam) were clearly mentioned in the paper, and we stick to using these for our
experiments.
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2.5 Additional Experiments

In addition to the experiments proposed in the paper, we performed some more experiments to
perform a more holistic ablation study on the choice of different hyper-parameters or sub-modules of
the model proposed by the authors. The following additional experiments were performed:

• Increasing the number of objects to 20 instead of default 10.
• Use of unidirectional LSTM instead of unidirectional GRU to obtain the question features.
• Setting the threshold value for confidence of prediction to 0.2 instead of 0.5.
• Setting the embedding dimension corresponding to the words to 100 instead of 300.
• Use of second glimpse attention vector instead of first glimpse attention vector.
• Use of bidirectional LSTM instead of the unidirectional LSTM for baseline model.

Table 1: Results on VQA v2 test and test-dev (obtained from standard evaluation server)

VQA v2 test-dev VQA v2 test

Model Yes/No Number Other All Yes/No Number Other All
Baseline + count (author) 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41
Baseline + count (ours) 81.46 47.9 56.85 66.08 81.07 47.59 56.65 65.68
Unidirectional LSTM 81.2 48 56.59 65.8 81.62 47.38 56.87 66.1
Use 20 objects 80.67 48.48 56.54 65.56 81.14 48.53 56.73 65.96
Embed. size 100 78.33 47.97 56.14 64.35 78.71 47.94 56.43 64.74
Confidence thresh. 0.2 80.59 48.78 56.72 65.66 80.9 48.85 56.86 65.96
Use second glimpse 80.3 48.82 56.68 65.52 80.61 48.47 56.94 65.83
Baseline (author) 82.98 46.88 58.99 67.50 83.21 46.60 59.20 67.78
Baseline (ours) 80.67 44.76 56.45 65.1 80.75 43.76 56.76 65.29
Baseline (bidirect. LSTM) 80.68 44.35 56.63 65.14 81.09 44.01 56.73 65.44

Table 2: Results on the VQA v2 validation set with models trained only on the training set (uses the
answer post-processing as described by the author).

VQA accuracy Balanced pair accuracy

Model Number Count All Number Count All
Baseline + count (author) 49.36±0.1 57.03±0.0 65.42±0.1 23.10±0.2 26.63±0.2 37.19±0.1
Baseline + count (ours) 47.31 54.65 64.25 20.96 24.18 35.66
Unidirectional LSTM 47.36 54.67 64.35 21.05 24.26 35.75
Use 20 objects 48.19 55.73 64.32 21.67 25.03 35.6
Embed. size 100 47.10 54.41 63.19 20.72 23.90 33.82
Confidence thresh. 0.2 48.18 55.75 64.27 22.03 25.36 35.59
Use second glimpse 48.04 55.57 64.2 21.83 25.27 35.49
Baseline (author) 44.83±0.2 51.69±0.2 64.80±0.0 17.34±0.2 20.02±0.2 36.44±0.1
Baseline (ours) 43.56 50.13 63.54 15.98 18.48 34.54
Baseline (bidirect. LSTM) 43.64 50.33 63.59 15.78 18.28 34.6

3 Discussion

The key idea of the paper is to design and evaluate an independent count module which can be easily
incorporated into the existing VQA models and could improve the accuracy of count-based questions,
without affecting the other categories. So, we focus our analysis only on the ‘Count’ and ‘Number’
categories. In the paper, all models are run for 100 epochs (which takes over 1 hour per epoch). Due
to computational constraints (and given the number of experiments we perform), we run each model
only for 30 epochs. We note that the validation accuracy appears to saturate before 30 epochs itself.
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Table 3: Results on VQA v2 validation set (obtained from standard evaluation server)

Model Yes/No Number Other All
Baseline + count (ours) 80.76 47.3 55.99 64.16
Unidirectional LSTM 80.85 47.34 56.09 64.25
Use 20 objects 80.46 48.19 56.11 64.22
Embed. size 100 78.54 47.06 55.59 63.09
Confidence thresh. 0.2 80.43 48.15 56.06 64.18
Use second glimpse 80.23 48.02 56.08 64.1
Baseline (ours) 80.23 43.52 55.92 63.43
Baseline (bidirect. LSTM) 43.62 80.31 55.96 63.49

The accuracy for ‘Number’ category obtained using our implementation is 47.9 (test-dev) while the
accuracy reported by the paper is 51.62 (test-dev). A possible reason for this mismatch could be
that our model is trained for less number of epochs, though we don’t expect the accuracy to rise
significantly after 30 epochs. Another possibility is that the paper used more than 10 object proposals.
The maximum number of object proposals could be up to 100, and the paper reports that a natural
choice would be to use 10 object proposals. To validate this assumption, we ran an experiment
where the number of object proposals considered in count module, is set to 20, and we do observe a
slight improvement in accuracy to 48.48 from the initial value of 47.9. In the model with confidence
threshold changed to 0.2 (from 0.5), the accuracy figure for ‘Number’ improves slightly. This is
somewhat counter-intuitive as we would expect the model to be completely robust to the value of
threshold as f6 and f7 can adjust their parameters as per the threshold. Figure 1 and Figure 2 compare
the two scenarios where the threshold values are set to 0.5 (as proposed by the authors) and 0.2
respectively. While there is no noticeable change in the plot of f7, the plot corresponding to f6 seems
to be somewhat shifted. An exact linear shift is not observed as f6 is only a piece-wise linear function.
When we reduced the embedding size for question words, we observe degradation in performance on
all categories, except the ‘Number’ category. The use of second glimpse as the attention vector input
to the count module improves the ‘Number’ accuracy slightly but the overall accuracy is reduced.

For the baseline model [3], we obtain an accuracy figure of 44.76 which is below the reported figure
of 46.88. Use of bidirectional LSTM for the baseline model doesn’t make a significant difference. We
report the results on validation set from both this paper’s evaluation script and the standard evaluation
scripts (released with the dataset). The results on the standard evaluation scripts are just slightly
lower than the authors’ evaluation script, but the difference is not significant.

4 Conclusion

The paper proposes a simple and intuitive approach to improve performance over count-based
questions for the task of Visual Question Answering. Our motivation behind this report was to judge
the work on the parameters of reproducibility. The paper is well written, rich in details and largely
unambiguous. We had to make very few assumptions while implementing the paper (the same have
been described in section 2.4. We note that we could not exactly reproduce the results in the paper, but
the more likely reason is the limit in terms of computational resources. Our results provide empirical
evidence of the effectiveness of the proposed model.

We further performed a series of ablation studies to understand the finer details of the model and
bring out the strengths and shortcomings of the paper. Our assessment shows that the model is
largely robust to choice of different hyper-parameters and gives significant gains in performance over
count-based questions, compared to the baseline model. This can be attributed to the solid analytical
foundation of the proposed approach in terms of basic graph theory and the corresponding feature
engineering.
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Figure 1: Shape of activation functions for (Baseline count) model
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Figure 2: Shape of activation functions for (Baseline + count) model with confidence threshold 0.2
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