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Abstract
We present a novel model-based framework in-
spired by spectral graph theory and deep geo-
metric learning: the Diffusion-based Approxi-
mate Value Function. Our approach efficiently
approximates the graph Laplacian of an MDP’s
underlying graph by using Graph Convolutional
Networks (GCN). By generating an approximate
value function, we diffuse the reward signal much
faster than traditional Reinforcement Learning al-
gorithms such as TD(0). This leads to substantial
improvements on sparse rewards environments
where efficient credit assignment is most demand-
ing.

1. Introduction
Model-free reinforcement learning agents have recently
achieved impressive results by solving complex tasks such
as the Atari games (Mnih et al., 2015) and simulated robotics
tasks (Schulman et al., 2015). However, a main challenge
still remains: the ability to perform well on sparse rewards
environments. This comes on one hand from the need of
better exploration, but also from the fact that back-ups, as
performed by temporal difference updates, require an agent
to visit the goal state multiple times for the information to
spread back towards initial states.

A way to approach this challenge is through model-based
reinforcement learning (Sutton, 1991; Silver et al., 2016b;a),
which gives the agent the fundamental ability to plan. This
ability is clearly desirable when an agent has limited access
to the environment. It is also important when addressing the
temporal credit assignment problem. Given a sparse rewards
environment, this model can be used to intentionally train
the agent in states that lie somewhere between the initial
states and the rewarding states, propagating the informa-
tion more efficiently by reducing the states’ distance. The
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drawback comes when the agent has access to an imperfect
model of the environment (which is usually the case) and
generates unrealistic trajectories.

In this work we present a model-based approach inspired
by spectral graph theory (Chung, 1997) to overcome the
temporal credit assignment problem: the diffusion-based
approximate value function. The basic intuition in our ap-
proach is that value functions can be seen as the outcome
of diffusing the reward signal throughout state-space. As
in the framework of Proto-Value Functions (Mahadevan,
2005; Mahadevan & Maggioni, 2007), we will approximate
the transition matrix of an MDP by a diffusion model: the
graph Laplacian. We will leverage recent advances in deep
geometric learning (Bronstein et al., 2016) to implement
a fast, flexible and efficient approximation to applying the
graph Laplacian through Graph Convolutional Networks
(Kipf & Welling, 2016; Defferrard et al., 2016).

We first present results in discrete domains in which we im-
prove the speed of convergence by a factor of up to 20x by
using diffusion-based approximate value functions. To ver-
ify that our method scales to more complex environments,
we then perform experiments on two sparse rewards environ-
ments: SparseMountainCar-v0 and SparseHalfCheetah-v0.
On these more complex tasks, our method shows once again
significant improvements.

2. Background
2.1. Reinforcement Learning

A Markov Decision ProcessM is a tuple =̇(S,A, γ, r, P )
with S the state set,A the action set and the scalar γ ∈ [0, 1)
the discount factor. The reward function maps states and
actions to a scalar reward r : S × A → Dist(R) and
the transition matrix P : S × A → Dist(S) specifies the
environment’s dynamics. A policy π is a set of probability
distributions over actions conditioned on states π: S →
Dist(A). For a given policy, the value function defines the
expected return obtained by following π:

Vπ(s)=̇Eπ

[∑
t=0

γtr(St, At)

∣∣∣∣∣S0 = s

]
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Vπ satisfies the following Bellman equations:

Vπ(s) =
∑
a

π (a|s)

(
r(s, a) + γ

∑
s′

P (s′|s, a)Vπ(s′)

)

The policy gradient theorem (Sutton et al., 1999) provides
the gradient of a parametrized stochastic policy πθ with
respect to the expected discounted return from an initial
state distribution d0 ∈ dist(S). For simplicity, we write the
policy as π, making its parametrization (θ) implicit.

∂L(θ)

∂θ
=
∑
s

d(s; θ)
∑
a

∂π (a|s)
∂θ

Qπ(s, a)

where d(s; θ) =
∑
s0
d(s0)

∑∞
t=0 γ

tPπ(St = s|S0 = s0)
is a weighting of states along the trajectories generated by
π and passing through s. Using the log-likelihood trick
(Williams, 1992),

∂L(θ)

∂θ
= E

[
∂ log π (At|St)

∂θ
Aπ(St, At)

]
whereAπ(St, At) = Qπ(St, At)−Vπ(St) is the advantage
function. The term Vπ(st) acts as a baseline (Williams,
1992; Sutton et al., 1999) which reduces the variance of
the resulting estimator. This particular choice of policy
gradient is called actor-critic (Barto et al., 1983), which is
what all our agents use for training. To avoid modeling
Qπ(St, At) as well as Vπ(St), we make use of the identity:
Qπ(St, At) = E [r(St, At) + γVπ(St+1)].

2.2. Diffusion Models and Proto-Value Functions

Spectral analysis of Markov Decision Processes has been
explored in various ways (Mahadevan, 2005; Mahadevan
& Maggioni, 2007; Osentoski & Mahadevan, 2007; Şimşek
et al., 2005; Machado et al., 2017). We will focus on prior
work based on Proto-Value Functions (PVFs), in which the
graph Laplacian plays a central role. Given a reversible
MDP1, its transition matrix is diagonalizable in the follow-
ing way:

Pπ = ΦΛΦT

Pπ =

n∑
i=1

λiφiφ
T
i

where Λ is the diagonal matrix of eigenvalues and Φ is the
matrix of eigenvectors. These eigenvectors form a complete
orthogonal basis. The expected reward function when fol-
lowing policy π can be defined on the state space, therefore
we can express it as: Rπ = Φα, where α is a vector of
coefficients. The value function V π can then be defined

1We make this assumption only to simplify the derivation.

with respect to the eigenvectors φk:

V π =

∞∑
i

γi(Pπ)iRπ

=

∞∑
i=0

γi(Pπ)iΦα

=

∞∑
i=0

n∑
k=1

γi(Pπ)iφkαk

=

∞∑
i=0

n∑
k=1

γi(λk)iφkαk

=

n∑
k=1

1

1− γλk
φkαk

=

n∑
k=1

βkφk (1)

To obtain a compact approximation of the value function, it
is possible to choose the top m largest values of βk. Since
the transition model is almost never available, a good sur-
rogate candidate is the Laplacian as it is always diagonal-
izable and it produces the smoothest approximation to the
value function by respecting the underlying graph topol-
ogy. Proto-value functions make use of a particular form
of the Laplacian, that is the normalized graph Laplacian
L = D

−1
2 (D −A)D

−1
2 . As in equation (1), this results in

the value function being approximated by a sum of basis
functions V π = β1V

G
1 + β2V

G
2 + ...+ βnV

G
n , where each

basis function V Gk is an eigenvector of the normalized graph
Laplacian.

3. Difference Operators
An important shortcoming of the PVF framework is that it
relies on the eigendecomposition of the underlying graph of
an MDP. In large or continuous state-space this computation
becomes intractable, although some approaches have been
proposed (Mahadevan & Maggioni, 2007). To leverage
the many interesting properties of the graph Laplacian, we
propose to use it mainly as a difference operator (defined as
L) on the space of functions on a graph (or equivalently the
MDP) F : S → R. Indeed, it is possible to verify that:

Lf(s) =
∑
s′

(
f(s)− f(s′)

)
where s′ are the adjacent states of state s. Given sparse
rewards environments leading to terminal goal states, it is
straightforward to draw a connection between policy evalu-
ation (Sutton & Barto, 1998) and the recurrent application
of the difference operator on a value function:
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vk+1(s) =
(
Rπ(s) + γ

∑
s′

Pπss′vk(s′)
)

vk+1(s) = vk(s) + α

(
Rπ(s) + γ

∑
s′

Pπss′vk(s′)− vk(s)

)
Vk+1(s) = Vk + α

(
γ
∑
s′

Pπss′Vk(s′)− Vk(s)

)
Vk+1(s) ≈ Vk − αLVk(s) (2)

where Vk(s) =

{
r(s, a) if vk(s) is terminal
vk(s) elsewhere

The approximation made is similar to the one in the Proto-
Value Function framework: we approximate the transition
model by a diffusion model, in this case the graph Laplacian.
An efficient implementation of equation (2) would require a
matrix multiplication between an |S| × |S| matrix (where
|S| is the number of saved states) and a vector of length
|S|. Such an operation implemented naively would result
in a O(n3) complexity. To circumvent this problem, we
will approximate applying the graph Laplacian through a
recently proposed architecture in deep geometric learning:
the Graph Convolutional Network ((Defferrard et al., 2016),
(Kipf & Welling, 2016)). This architecture has been used
for semi-supervised tasks such as node labeling. The loss
function the network is minimizing is the following:

L = L0 + λLreg, with Lreg =
∑
i,j

Aij ||f(Xj)− f(Xi)||2

where L0 represents the supervised loss (the labeled nodes
of the graph). The regularization loss, Lreg , will propagate
the label information smoothly through the graph as this
loss is defined by Aij , the adjacency matrix taken between
node i and j. We notice that the regularization loss takes
the same form as the graph Laplacian used as a difference
operator. However, the authors argue that by conditioning
the function f (the neural network) on the adjacency matrix,
we would naturally be able to propagate the labels through
gradient descent: we can therefore ignore the Lreg loss. The
forward pass then takes (for a 2-layer Graph Convolutional
Network) this exact form:

f(X,A) = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
(3)

where Â is a transformed adjacency matrix used to simplify
the notation. The details of this derivation are available in
(Kipf & Welling, 2016). The computation complexity of
equation (3) becomes linear with the number of edges. We
therefore propose using GCNs as diffusion-based approxi-
mate value functions to complement actor-critic algorithms

(Barto et al., 1983). Let an agent store its past transitions
from N episodes in a graph. As soon as it reaches the goal,
it would use the stored transitions as input to the GCN, la-
beling the starting states as sources and the state preceding
to the goal state as a sink (0 and 1 respectively). By repeat-
edly applying the forward/backward pass on this dataset,
the GCN diffuses the reward signal throughout the MDP’s
underlying graph. We resume the process in Algorithm 1.

Algorithm 1 Diffusion-Based Approximate Value Func-
tions for Actor-Critic agents.
Create empty graph G
for Episode=0,1,2,.... do

for t=0,1,2...T do
Add transition (st−1, st) to graph G
if goal is reached then

Label the starting states as 0
Label the pre-goal states as 1
Train GCN on dataset for M epochs
Use final output to update the value function

Proceed with actor-critic algorithm
end
if mod(Episode,N) then

Reset G to empty graph
end

The next figure is a qualitative illustration of the result of
such process in the domain FourRooms: it gives the agent
an approximate value function to use as a critic. In this
environment, the agent starts in the upper-left room while
the goal is located in the bottom-right room. The upper-
right room has not been explored yet by the agent (black
color), therefore the GCN cannot diffuse the reward in that
direction.

Figure 1. Diffusion-Based Approximate Value-Function on the
FourRooms domain.

We can notice that most of the states in the bottom-right
room (near the goal) have unrealistically high values. This
is a consequence of using an approximate diffusion model
to estimate the transition matrix as well as a consequence of
limited exploration of the environment. To correct this error,
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we continue training the agent using standard actor-critic,
fine-tuning the diffusion-based approximate value function.

When we move to environments with continuous state space
it is necessary to use function approximation for the critic.
Similarly to discrete state environments, each visited state
will be represented as a node in the underlying graph. How-
ever, the state-space being continuous implies that we will
unlikely visit the same state twice. Therefore we will end
up forming mostly path-graphs as inputs to the GCN, which
aren’t rich representations of an environment’s dynamics.
Thus, we propose to perform a radius-based nearest neigh-
bor search on the stored states, adding edges between those
that are relatively near. The value of the radius is a hyperpa-
rameter that has to be set and depends on the environment’s
state-space dimensionality. Indeed, high-dimensional space
naturally leads to sparser data. Thus, we should expect a
larger radius length in order to capture the same number of
neighours as for a low-dimensional environment. To per-
form a nearest-neighbours search we also have to decide
on a metric. As the space dimensionality grows, it is rec-
ommended to use Lk norms with k taking low values, such
as the Manhattan metric or the fractional metric (Aggarwal
et al., 2001; Hinneburg et al., 2000), as they behave better
in these spaces. However, in our experiments we used the
Euclidean metric as the environments we explored had lim-
ited dimensionality and the algorithm produced satisfying
results.

In continuous state-space environments, we notice that
diffusion-based value function can once again give accu-
rate outputs when compared to fully trained value functions.

Figure 2. A comparison between the value functions obtained on
SparseMountainCar-v0.

In figure 2, we compare a value function trained using actor-
critic (left) to a diffusion-based approximate value func-
tion (right) obtained by repeatedly applying the difference
operator, in our case the GCN, and fine-tuning the critic
in a handful of episodes. This comparison is conducted
on SparseMountainCar-v0 as it is possible to visualize the
critic’s output without dimensionality reduction. We notice
that both value functions, even though obtained from dif-
ferent processes, have very similar outputs. This suggest
that diffusion-based approximate value functions are able to

accurately capture the environment’s dynamics.

4. Empirical Results
4.1. Tabular case

In this section we present the results obtained on tabular
domains. We will show that even in the tabular case, where
credit assignment is less daunting, it is possible to obtain
large improvements. We will explore the FourRooms
domain with variable grid sizes (13x13, 22x22 and 29x29)
and the more challenging Maze domain.2 In both cases,
the agent starts in one of the rooms and needs to get to the
goal state, at which point the episode ends. In the figure 3,
we plot the cumulative steps with respect to the number of
episodes (i.e. the regret) for all configurations. We plot this
variable instead of the cumulative rewards as it shows more
clearly that diffusion-based approximate value functions
reduce the exploration time and lead to more efficient
credit assignment. As the number of states becomes larger,
exploration becomes increasingly more difficult. More
importantly, the backups performed by temporal differences
algorithm require multiple visits to the goal in order for the
reward signal to diffuse, therefore leading to misguided
wandering. In the case of diffusion-based approximate
value functions, we notice that after the first few visits to
the goal, the algorithm converges quickly to a good solution.
In Maze domain, our method leads to a 20x improvement in
the number of steps needed for convergence.

4.2. Function Approximation

As mentioned in section 3, in the case of continuous state-
space environments, we will perform an extra step before
diffusing the reward with GCNs. We proceed to a radius-
based nearest-neighbours search on the stored transitions in
order to contribute more edges between very close states,
therefore facilitating the diffusion of information. This pro-
cedure naturally assumes that the value function is locally
smooth.

We perform experiments on SparseMountainCar-v0 and
SparseHalfCheetah-v0 from OpenAI’s Gym (Brockman
et al., 2016). Both of these environments were previ-
ously used in experiments on sparse rewards environments
(Houthooft et al., 2016; Plappert et al., 2017). In the orig-
inal version of MountainCar-v0, a reward of -1 is given
at every time-step until the goal is reached. Solving the
original version is not a challenging task: by giving a re-
ward of -1 we actually encourage the agent to move away
from the initial state distribution, which points the agent
towards the goal and simplifies the learning process. In

2The code for all experiments is available in the following
repository: https://github.com/mklissa/davf

https://github.com/mklissa/davf
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Figure 3. Cumulative steps for each of the configuration of the FourRooms domain (13x13, 22x22 and 29x29) and the Maze domain.

Figure 4. Cumulative rewards (number of episodes solved) for the
sparse-rewards version of MountainCar-v0.

this modified version (SparseMountainCar-v0) we give a
reward of 0 for every time-step and a reward of 1 when the
goal is reached, which results in a truly sparse environment.
In the case of SparseHalfCheetah-v0, no reward is given
to the agent until it reaches a distance of 5 units from the
starting position. Afterwards, a reward of 1 is given for
each time-step spent beyond the 5 units mark. In figure 4,
we plot the average rewards for both environments. In the
case of SparseMountainCar-v0, we use standard actor-critic,
while on SparseHalfCheetah-v0 we use the Proximal Policy
Optimization algorithm (Schulman et al., 2017).

Without the additional signal provided by diffusion-based
approximate value functions, agents will sometimes visit
the goal, but will rarely remember the path leading to

it. We notice that this behaviour is corrected on both do-
mains, given that the agent visits the goal at least once. In
SparseHalfCheetah-v0, despite the fact that no other reward
than the one given for crossing a distance is available to the
agent, it will still learn to move forward in a peculiar gait,
reaching distances beyond the goal mark.3

5. Conclusion
We presented a model-based approach inspired by spectral
graph theory and deep geometric learning (Chung, 1997;
Bronstein et al., 2016; Kipf & Welling, 2016). Our work is
closely related to the Proto-Value Function framework (Ma-
hadevan & Maggioni, 2007) as it uses the graph Laplacian to
approximate the transition matrix of a given MDP. By using
the graph Laplacian as a difference operator, it is possible to
diffuse the reward signal in a sparse rewards environment,
which leads to significant improvements. In this work we
have focused only on sparse rewards environments, however
approximating the value function of any MDP is possible
through a similar process.

We have performed experiments on environments with state-
space dimensionality that were reasonable (up to 17D). How-
ever, high dimensionality can lead to many complications
(Beyer et al., 1999; Houle et al., 2010), such as the fact that
as the dimensionality tends to infinity, the distance between
the farthest point and the nearest point reaches a ratio of
1. Therefore, for very high dimensional environments, a
possible avenue would be to perform distance queries on
the feature-space of a neural network’s last layer. Another
possibility would be to directly try to reduce the dimension-
ality through Variational Autoencoders (Kingma & Welling,
2013; Rezende et al., 2014).

We have focused on diffusing the reward signal through
GCNs for sparse rewards environments, exploiting the en-
vironment’s information in a more efficient way. However,
by taking a deeper look into the Graph Convolutional Net-
work architecture, we notice that they also take as input a
feature vector for each node. In our implementation, we

3A video of the learning process is available at https://
www.youtube.com/watch?v=Wl_MlIR5HOg .

https://www.youtube.com/watch?v=Wl_MlIR5HOg
https://www.youtube.com/watch?v=Wl_MlIR5HOg
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used a one-hot encoding vector of length |S| (the number of
nodes), therefore leading to a diffusion process only guided
by the adjacency matrix. However, using information ex-
tracted from the environment as features for each node could
modify this diffusion process. In an setting where rarely
visited states are of importance, their different feature rep-
resentation could be exploited, possibly leading to better
exploration. This is left as future work.
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