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ABSTRACT

Recommendation is a prevalent application of machine learning that affects many
users; therefore, it is important for recommender models to be accurate and in-
terpretable. In this work, we propose a method to both interpret and augment
the predictions of black-box recommender systems. In particular, we propose to
interpret feature interactions from a source recommender model and explicitly en-
code these interactions in a target recommender model, where both source and
target models are black-boxes. By not assuming the structure of the recommender
system, our approach can be used in general settings. In our experiments, we fo-
cus on a prominent use of machine learning recommendation: ad-click prediction.
We found that our interaction interpretations are both informative and predictive,
e.g., significantly outperforming existing recommender models. What’s more, the
same approach to interpret interactions can provide new insights into domains
even beyond recommendation, such as text and image classification.

1 INTRODUCTION

Despite their impact on users, state-of-the-art recommender systems are becoming increasingly in-
scrutable. For example, the models that predict if a user will click on an online advertisement are
often based on function approximators that contain complex components in order to achieve optimal
recommendation accuracy. The complex components come in the form of modules for better learn-
ing relationships among features, such as interactions between user and ad features (Cheng et al.,
2016; Guo et al., 2017; Wang et al., 2017; Lian et al., 2018; Song et al., 2018). Although efforts
have been made to understand the feature relationships, there is still no method that can interpret
the feature interactions learned by a generic recommender system, nor is there a strong commercial
incentive to do so.

In this work, we identify and leverage feature interactions that represent how a recommender system
generally behaves. We propose a novel approach, Global Interaction Detection and Encoding for
Recommendation (GLIDER), which detects feature interactions that span globally across multiple
data-instances from a source recommender model, then explicitly encodes the interactions in a target
recommender model, both of which can be black-boxes. GLIDER achieves this by first utilizing
our ongoing work on Neural Interaction Detection (NID) (Tsang et al., 2017) with a data-instance
perturbation method called LIME (Ribeiro et al., 2016) over a batch of data samples. GLIDER then
explicitly encodes the collected global interactions into a target model via sparse feature crossing.

In our experiments on ad-click recommendation, we found that the interpretations generated by
GLIDER are illuminating, and the detected global interactions can significantly improve the target
model’s prediction performance. Because our interaction interpretation method is very general, we
also show that the interpretations are informative in other domains: text, image, graph, and dna
modeling.

Code is available at: https://github.com/mtsang/interaction_interpretability
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Figure 1: A simplified overview of GLIDER. 1 GLIDER utilizes Neural Interaction Detection
and LIME together to interpret feature interactions learned by a source black-box model at a data
instance, denoted by the large green plus sign. 2 GLIDER identifies interactions that consistently
appear over multiple data samples, then explicitly encodes these interactions in a target black-box
recommender model frec.

Our contributions are as follows:

1. We propose feature interaction interpretations of general prediction models via interaction
detection.

2. Based on this approach, we propose GLIDER to detect and explicitly encode global feature
interactions in black-box recommender systems. This process is a form of automatic feature
engineering.

3. Through experiments, we demonstrate the overall interpretability of detected feature inter-
actions on a variety of domains and show that the interactions can be leveraged to improve
recommendation accuracy.

2 NOTATIONS AND BACKGROUND

Notations: Vectors are represented by boldface lowercase letters, such as x or z. The i-th entry of a
vector x is denoted by xi. For a set S, its cardinality is denoted by |S|.
Let d be the number of features in a dataset. An interaction, I, is a subset of feature indices:
I ⊆ {1, 2, . . . , d}, where |I| is always ≥ 2. A higher-order interaction always has |I| ≥ 3. For a
vector x ∈ Rd, let xI ∈ R|I| be restricted to the dimensions of x specified by I.

Let a black-box model be f(·) : Rp → R. A black-box recommender model uses tabular feature
types, as discussed later in this section. In classification tasks, we assume f is a class logit. p and d
may be different depending on feature transformations.

Feature Interactions: By definition, a model f learns a statistical (non-additive) feature interaction
I if and only if f cannot be decomposed into a sum of |I| arbitrary subfunctions fi, each excluding a
corresponding interaction variable (Friedman et al., 2008; Sorokina et al., 2008; Tsang et al., 2017),
i.e., f(x) 6=

∑
i∈I fi(x{1,2,...,d}\i).

For example, a multiplication between two features, x1 and x2, is a feature interaction because it
cannot be represented as an addition of univariate functions, i.e., x1x2 6= f1(x2) + f2(x1).

Recommendation Systems: A recommender system, frec(·), is a model of two feature types: dense
numerical features and sparse categorical features. Since the one-hot encoding of categorical feature
xc can be high-dimensional, it is commonly represented in a low-dimensional embedding ec =
one hot(xc)Vc via embedding matrix Vc.

3 FEATURE INTERACTIONS IN BLACK-BOX MODELS

We start by explaining how to obtain a data-instance level (local) interpretation of feature interac-
tions by utilizing interaction detection on feature perturbations.
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3.1 FEATURE PERTURBATION AND INFERENCE

Given a data instance x ∈ Rp, LIME proposed to perturb the data instance by sampling a separate
binary representation x̃ ∈ {0, 1}d of the same data instance. Let ξ : {0, 1}d → Rp be the map from
the binary representation to the perturbed data instance. Starting from a binary vector of all ones
that map to the original features values in the data instance, LIME uniformly samples the number of
random features to switch to 0 or the “off” state. In the data instance, “off” could correspond to a
0 embedding vector for categorical features or mean value over a batch for numerical features. It is
possible for d < p by grouping features in the data instance to correspond to single binary features
in x̃. An important step is getting black-box predictions of the perturbed data instances to create a
dataset with binary inputs and prediction targets: D = {(x̃i, yi) | yi = f(ξ(x̃i)), x̃i ∈ {0, 1}d}.
Though we use LIME’s approach, the next section is agnostic to the instance perturbation method.

3.2 FEATURE INTERACTION DETECTION

Feature interaction detection is concerned with identifying feature interactions in a dataset (Bien
et al., 2013; Purushotham et al., 2014; Lou et al., 2013; Friedman et al., 2008). Typically, proper
interaction detection requires a pre-processing step to remove correlated features that adversely af-
fect detection performance (Sorokina et al., 2008). As long as features in dataset D are generated
in an uncorrelated fashion, e.g., through random sampling, we can directly use D to detect feature
interactions from black-box model f at data instance x.

3.2.1 NEURAL INTERACTION DETECTION

f can be an arbitrary function and can generate highly nonlinear targets in D, so we focus on de-
tecting interactions that could have generic forms. In light of this, we leverage our method, Neural
Interaction Detection (NID) (Tsang et al., 2017), which accurately and efficiently detects generic
non-additive and arbitrary-order statistical feature interactions. NID detects these interactions by
training a lasso-regularized multilayer perceptron (MLP) on a dataset, then identifying the features
that have high-magnitude weights to common hidden units. NID is efficient by greedily testing the
top-interaction candidates of every order at each of h first-layer hidden units, enabling arbitrary-
order interaction detection in O(hd) tests within one MLP.

3.2.2 GRADIENT-BASED NEURAL INTERACTION DETECTION

Besides the non-additive definition of statistical interaction, a gradient definition also exists based on
mixed partial derivatives (Friedman et al., 2008), i.e., a function F (·) exhibits statistical interaction
I among features zi indexed by i1, i2, . . . , i|I| ∈ I if

Ez

[
∂|I|F (z)

∂zi1∂zi2 . . . ∂zi|I|

]2
> 0.

The advantage of this definition is that it allows exact interaction detection from model gradients (Ai
& Norton, 2003); however, this definition contains a computationally expensive expectation, and
typical neural networks with ReLU activation functions do not permit mixed partial derivatives.
For the task of local interpretation, we only examine a single data instance x, which avoids the
expectation. We turn F into an MLP g(·) with smooth, infinitely-differentiable activation functions
such as softplus, which closely follows ReLU (Glorot et al., 2011). We then train the MLP with
the same purpose as §3.2.1 to faithfully capture interactions in perturbation dataset D. Given these
conditions, we define an alternate gradient-based neural interaction detector (GradientNID) as:

ω(I) =

(
∂|I|g(x̃)

∂x̃i1∂x̃i2 . . . ∂x̃i|I|

)2

,

where ω is the strength of the interaction I, x̃ is the representation of x, and the MLP g is trained
on D. While GradientNID exactly detects interactions from the explainer MLP, it needs to compute
interaction strengths ω for feature combinations that grow exponentially in number as |I| increases.
We recommend restricting GradientNID to low-order interactions.

3



Published as a conference paper at ICLR 2020

Algorithm 1 Global Interaction Detection in GLIDER

Input: dataset B, recommender model frec
Output: G = {(Ii, ci)}: global interactions Ii and their counts ci over the dataset

1: G ← initialize occurrence dictionary for global interactions
2: for each data sample x within dataset B do
3: S ← MADEX(frec,x)
4: G ← increment the occurrence count of Ij ∈ S, ∀j = 1, 2, . . . , |S|
5: sort G by most frequently occurring interactions
6: [optional] prune subset interactions in G within a target number of interactions K

3.3 SCOPE

Based on §3.1 and §3.2, we define a function, MADEX(f,x), that takes as inputs black-box f and data
instance x, and outputs S = {Ii}ki=1, a set of top-k detected feature interactions. MADEX stands for
“Model-Agnostic Dependency Explainer”.

In some cases, it is necessary to identify a k threshold. Because of the importance of speed for local
interpretations, we simply use a linear regression with additional multiplicative terms to approximate
the gains given by interactions in S, where k starts at 0 and is incremented until the linear model’s
predictions stop improving.

4 GLIDER: GLOBAL INTERACTION DETECTION AND ENCODING FOR
RECOMMENDATION

We now discuss the different components of GLIDER: detecting global interactions in §4.1, then
encoding these interactions in recommender systems in §4.2. Recommender systems are interesting
because they have pervasive application in real-world systems, and their features are often very
sparse. By sparse features, we mean features with many categories, e.g., millions of user IDs.
The sparsity makes interaction detection challenging especially when applied directly on raw data
because the one-hot encoding of sparse features creates an extremely large space of potential feature
combinations (Fan et al., 2015).

4.1 GLOBAL INTERACTION DETECTION

In this section, we explain the first step of GLIDER. As defined in §3.3, MADEX takes as input a black-
box model f and data instance x. In the context of this section, MADEX inputs a source recommender
system frec and data instance x = [x1, x2, . . . , xp]. xi is the i-th feature field and is either a dense or
sparse feature. p is both the total number of feature fields and the number of perturbation variables
(p = d). We define global interaction detection as repeatedly running MADEX over a batch of data
instances, then counting the occurrences of the same detected interactions, shown in Algorithm 1.
The occurrence counts are not only a useful way to rank global interaction detections, but also a
sanity check to rule out the chance that the detected feature combinations are random selections.

One potential concern with Alg. 1 is that it could be slow depending on the speed of MADEX. In our
experiments, the entire process took less than one hour when run in parallel over a batch of 1000
samples with ∼ 40 features on a 32-CPU server with 2 GPUs. This algorithm only needs to be run
once to obtain the summary of global interactions.

4.2 TRUNCATED FEATURE CROSSES

The global interaction Ii, outputted by Alg. 1, is used to create a synthetic feature xIi
for a target

recommender system. The synthetic feature xIi
is created by explicitly crossing sparse features

indexed in Ii. If interaction Ii involves dense features, we bucketize the dense features before
crossing them. The synthetic feature is sometimes called a cross feature (Wang et al., 2017; Luo
et al., 2019) or conjunction feature (Rosales et al., 2012; Chapelle et al., 2015).
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In this context, a cross feature is an n-ary Cartesian product among n sparse features. If we denote
X1,X2, . . . ,Xn as the set of IDs for each respective feature x1, x2, . . . , xn, then their cross feature
x{1,...,n} takes on all possible values in

X1 × · · · × Xn = {(x1, . . . , xn) | xi ∈ Xi,∀i = 1, . . . , n}
Accordingly, the cardinality of this cross feature is |X1|× · · ·× |Xn| and can be extremely large, yet
many combinations of values in the cross feature are likely unseen in the training data. Therefore,
we generate a truncated form of the cross feature with only seen combinations of values, x(j)

I , where
j is a sample index in the training data, and x

(j)
I is represented as a sparse ID in the cross feature xI .

We further reduce the cardinality by requiring the same cross feature ID to occur more than T times
in a batch of samples, or set to a default ID otherwise. These truncation steps significantly reduce
the embedding sizes of each cross feature while maintaining their representation power. Once cross
features {xIi

}i are included in a target recommender system, it can be trained as per usual.

4.3 MODEL DISTILLATION VS. ENHANCEMENT

There are dual perspectives of GLIDER: as a method for model distillation or model enhancement. If
a strong source model is used to detect global interactions which are then encoded in more resource-
constrained target models, then GLIDER adopts a teacher-student type distillation process. If inter-
action encoding augments the same model where the interactions were detected from, then GLIDER
tries to enhance the model’s ability to represent the interactions.

5 RELATED WORKS

Interaction Interpretations: A variety of methods exist to detect feature interactions learned in
specific models but not black-box models. For example, RuleFit (Friedman et al., 2008), Additive
Groves (Sorokina et al., 2008), and Tree-Shap (Lundberg et al., 2018) detect interactions specifi-
cally in trees; likewise PaD2 (Gevrey et al., 2006) and NID (Tsang et al., 2017) detect interactions
in multilayer perceptrons. Some methods have attempted to interpret feature groups in black-box
models, such as Anchors (Ribeiro et al., 2018), Agglomerative Contextual Decomposition (Singh
et al., 2019), and Context-Aware methods (Singla et al., 2019); however, these methods were not
intended to identify feature interactions.

Explicit Interaction Representation: There are increasingly methods for explicitly representing
interactions in models. Cheng et al. (2016), Guo et al. (2017), Wang et al. (2017), and Lian et al.
(2018) directly incorporate multiplicative cross terms in neural network architectures and Song et al.
(2018) use attention as an interaction module, all of which are intended to improve the neural net-
work’s function approximation. This line of work found that predictive performance can improve
with dedicated interaction modeling. Luo et al. (2019) followed up by proposing feature sets from
data then explicitly encoding them via feature crossing, but this method’s proposals are limited by
beam search. Our work approaches this problem from a model interpretation standpoint.

Black-Box Local vs. Global Interpretations: Data-instance level local interpretation methods
are more flexible at explaining general black-box models; however, global interpretations, which
cover multiple data instances, have become increasingly desirable to summarize model behavior.
Locally Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) and Integrated
Gradients (Sundararajan et al., 2017) are some of the most used methods to locally interpret any
classifier and neural predictor respectively. There are some methods for global black-box interpreta-
tions, such as shuffle-based feature importance (Fisher et al., 2018), submodular pick (Ribeiro et al.,
2016), and visual concept extraction (Kim et al., 2018). Our work offers a new tooling option.

6 EXPERIMENTS

6.1 SETUP

In our experiments, we study interaction interpretation and encoding on real-world data. The hyper-
parameters in MADEX are as follows. For all experiments, our perturbation datasets D contain 5000
training samples and 500 samples for each validation and testing. Our usage of NID or Gradient-
NID as the interaction detector (§3.2) depends on the experimental setting. For all experiments that
only examine single data instances, we use GradientNID for its exactness and pairwise interaction

5



Published as a conference paper at ICLR 2020

detection; otherwise, we use NID for its higher-order interaction detection. The MLPs for NID and
GradientNID have architectures of 256-128-64 first-to-last hidden layer sizes, and they are trained
with learning rate of 1e−2, batchsize of 100, and the ADAM optimizer. NID uses ReLU activa-
tions and an `1 regularization of λ1 = 1e−4, whereas GradientNID uses softplus activations and a
structural regularizer as MLP+linear regression, which we found offers strong test performance. In
general, models are trained with early stopping on validation sets.

For LIME perturbations, we need to establish what a binary 0 maps to via ξ in the raw data instance
(§3.1). In domains involving embeddings, i.e., sparse features and word embeddings, the 0 (“off”)
state is the zeroed embedding vector. For dense features, it is the mean feature value over a batch;
for images, the mean superpixel RGB of the image. For our DNA experiment, we use a random nu-
cleotide other than the original one. These settings correspond to what is used in literature (Ribeiro
et al., 2016; 2018). In our graph experiment, the nodes within the neighborhood of a test node are
perturbed, where each node is zeroed during perturbation.

6.2 EXPERIMENTS ON CTR RECOMMENDATION

Table 1: CTR dataset statistics

Dataset # Samples # Features Total # Sparse IDs

Criteo 45, 840, 617 39 998, 960
Avazu 40, 428, 967 23 1, 544, 428

In this section, we provide experiments
with GLIDER on models trained for click-
through-rate (CTR) prediction. The rec-
ommender models we study include com-
monly reported baselines, which all use
neural networks: Wide&Deep (Cheng
et al., 2016), DeepFM (Guo et al.,
2017), Deep&Cross (Wang et al., 2017),
xDeepFM (Lian et al., 2018), and AutoInt (Song et al., 2018).

AutoInt is the reported state-of-the-art in academic literature, so we use the model settings and data
splits provided by AutoInt’s official public repository1. For all other recommender models, we use
public implementations2 with the same original architectures reported in literature, set all embedding
sizes to 16, and tune the learning rate and optimizer to reach or surpass the test logloss reported by
the AutoInt paper (on AutoInt’s data splits). From tuning, we use the Adagrad optimizer (Duchi
et al., 2011) with learning rate of 0.01. All models use early stopping on validation sets.
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Figure 2: Occurrence counts (Total: 1000)
vs. rank of detected interactions from Au-
toInt on Criteo and Avazu datasets. * indi-
cates a higher-order interaction (details in
Appendix G).

The datasets we use are benchmark CTR datasets with
the largest number of features: Criteo3 and Avazu4,
whose data statistics are shown in Table 1. Criteo and
Avazu both contain 40+ millions of user records on
clicking ads, with Criteo being the primary benchmark
in CTR research (Cheng et al., 2016; Guo et al., 2017;
Wang et al., 2017; Lian et al., 2018; Song et al., 2018;
Luo et al., 2019).

6.2.1 GLOBAL INTERACTION DETECTION

For each dataset, we train a source AutoInt model,
frec, then run global interaction detection via Algo-
rithm 1 on a batch of 1000 samples from the valida-
tion set. A full global detection experiment finishes in
less than one hour when run in parallel on either Criteo
or Avazu datasets in a 32-CPU Intel Xeon E5-2640 v2
@ 2.00GHz server with 2 Nvidia 1080 Ti GPUs. The
detection results across datasets are shown in Figure 2
as plots of detection counts versus rank. Because the
Avazu dataset contains non-anonymized features, we
directly show its top-10 detected global interactions in Table 2a.

1https://github.com/shichence/AutoInt
2https://github.com/shenweichen/DeepCTR
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.kaggle.com/c/avazu-ctr-prediction
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Table 2: Understanding feature interactions: top global feature interactions for (a) an ad targeting
system via Algorithm 1 and (b) a text sentiment analyzer via §6.3.2 (later). The tables are juxtaposed
to assist in understanding feature interactions, i.e., nuanced changes among interacting variables lead
to significant changes in prediction probabilities. The prediction outcomes are ad-clicks by users for
(a) and text sentiment for (b).

(a) Explanation of an ad targeting system

Count
(Total:1000) Interaction

525 {device ip, hour}
235 {device id, device ip, hour}
217 {device id, app id}
203 {device ip, device model, hour}
194 {site id, site domain}
190 {site id, hour}
187 {device ip, site id, hour}
183 {site id, site domain, hour}
179 {device id, hour}
179 {device id, device ip, device model, hour}

(b) Explanation of a sentiment analyzer

Count
(Total:40) Interaction (ordered)

36 never, fails
30 suspend, disbelief
30 too, bad
29 very, funny
29 neither, nor
28 not, miss
27 recent, memory
27 not, good
26 no, denying
25 not, bad

From Figure 2, we see that the same interactions are detected very frequently across data instances,
and many of the interactions are higher-order interactions. The interaction counts are very signifi-
cant. For example, any top-1 occurrence count > 25 is significant for the Criteo dataset (p < 0.05),
and likewise > 71 for the Avazu dataset, assuming a conservative search space of only up to 3-way
interactions (|I| ≤ 3). Our top-1 occurrence counts are 691 (� 25) for Criteo and 525 (� 71) for
Avazu.

In Table 2a, the top-interactions are explainable. For example, the interaction between “device ip”
and “hour” (in UTC time) makes sense because users - here identified by IP addresses - have ad-click
behaviors dependent on their time zones. This is a general theme with many of the top-interactions5.
As another example, the interaction between “device id” and “app id” makes sense because ads are
targeted to users based on the app they’re in.

6.2.2 INTERACTION ENCODING

Based on our results from the previous section (§6.2.1), we turn our attention to explicitly encoding
the detected global interactions in target baseline models via truncated feature crosses (detailed
in §4.2). In order to generate valid cross feature IDs, we bucketize dense features into a maximum
of 100 bins before crossing them and require that final cross feature IDs occur more than T = 100
times over a training batch of one million samples.

We take AutoInt’s top-K global interactions on each dataset from §6.2.1 with subset interactions
excluded (Algorithm 1, line 6) and encode the interactions in each baseline model including AutoInt
itself. K is tuned on valiation sets, and model hyperparameters are the same between a baseline and
one with encoded interactions. We set K = 40 for Criteo and K = 10 for Avazu.

In Table 3, we found that GLIDER often obtains significant gains in performance based on stan-
dard deviation, and GLIDER often reaches or exceeds a desired 0.001 improvement for the Criteo
dataset (Cheng et al., 2016; Guo et al., 2017; Wang et al., 2017; Song et al., 2018). The improve-
ments are especially visible with DeepFM on Criteo. We show how this model’s test performance
varies with different K in Figure 3. All performance gains are obtained at limited cost of extra
model parameters (Table 4) thanks to the truncations applied to our cross features. To avoid extra
parameters entirely, we recommend feature selection on the new and existing features.

One one hand, the evidence that AutoInt’s detected interactions can improve other baselines’ perfor-
mance suggests the viability of interaction distillation. On the other hand, evidence that AutoInt’s
performance on Criteo can improve using its own detected interactions suggests that AutoInt may
benefit from learning interactions more explicitly. In either model distillation or enhancement set-

5“device ip” and “device id” identify different sets of users (https://www.csie.ntu.edu.tw/
˜r01922136/slides/kaggle-avazu.pdf)
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Table 3: Test prediction performance by encoding top-K global interactions in baseline recom-
mender systems on the Criteo and Avazu datasets (5 trials). K are 40 and 10 for Criteo and Avazu
respectively. “+ GLIDER” means the inclusion of detected global interactions to corresponding
baselines. The “Setting” column is labeled relative to the source of detected interactions: AutoInt.
* scores by Song et al. (2018).

Setting Model Criteo Avazu

AUC logloss AUC logloss

Distillation Wide&Deep 0.8069± 5e−4 0.4446± 4e−4 0.7794± 3e−4 0.3804± 2e−4
+ GLIDER 0.8080± 3e−4 0.4436± 3e−4 0.7795± 1e−4 0.3802± 9e−5
DeepFM 0.8079± 3e−4 0.4436± 2e−4 0.7792± 3e−4 0.3804± 9e−5
+ GLIDER 0.8097± 2e−4 0.4420± 2e−4 0.7795± 2e−4 0.3802± 2e−4
Deep&Cross 0.8076± 2e−4 0.4438± 2e−4 0.7791± 2e−4 0.3805± 1e−4
+ GLIDER 0.8086± 3e−4 0.4428± 2e−4 0.7792± 2e−4 0.3803± 9e−5
xDeepFM 0.8084± 2e−4 0.4433± 2e−4 0.7785± 3e−4 0.3808± 2e−4
+ GLIDER 0.8097± 3e−4 0.4421± 3e−4 0.7787± 4e−4 0.3806± 1e−4

Enhancement AutoInt * 0.8083 0.4434 0.7774 0.3811
+ GLIDER 0.8090± 2e−4 0.4426± 2e−4 0.7773± 1e−4 0.3811± 5e−5

Table 4: # parameters of the models in Table 3. M
denotes million.

Model Criteo Avazu

Wide&Deep 18.1M 27.3M
+ GLIDER 19.3M (+6.8%) 27.6M (+1.0%)

DeepFM 17.5M 26.7M
+ GLIDER 18.3M (+4.8%) 26.9M (+0.6%)

Deep&Cross 17.5M 26.1M
+ GLIDER 18.7M (+6.9%) 26.4M (+1.0%)

xDeepFM 18.5M 27.6M
+ GLIDER 21.7M (+17.2%) 28.3M (+2.5%)

AutoInt 16.4M 25.1M
+ GLIDER 17.3M (+5.1%) 25.2M (+0.6%)
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Figure 3: Test logloss vs. K of DeepFM
on the Criteo dataset (5 trials).

tings, we found that GLIDER performs especially well on industry production models trained on
large private datasets with thousands of features.

6.3 INTERPRETATIONS ON OTHER DOMAINS

Since the proposed interaction interpretations are not entirely limited to recommender systems, we
demonstrate interpretations on more general black-box models. Specifically, we experiment with the
function MADEX(·) defined in §3.3, which inputs a black-box f , data-instance x, and outputs a set of
top-k interactions. The models we use are trained on very different tasks, i.e., ResNet152: an image
classifier pretrained on ImageNet ‘14 (Russakovsky et al., 2015; He et al., 2016), Sentiment-LSTM:
a 2-layer bi-directional long short-term memory network (LSTM) trained on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013; Tai et al., 2015), DNA-CNN: a 2-layer 1D convolutional neural
network (CNN) trained on MYC-DNA binding data6 (Mordelet et al., 2013; Yang et al., 2013;
Alipanahi et al., 2015; Zeng et al., 2016; Wang et al., 2018; Barrett et al., 2012), and GCN: a 3-layer
Graph Convolutional Network trained on the Cora dataset (Kipf & Welling, 2016; Sen et al., 2008).
In order to make informative comparisons to the linear LIME baseline, we use LIME’s sample
weighting strategy and kernel size (0.25) in this section. We first provide quantitative validation for
the detected interactions of all four models in §6.3.1, followed by qualitative results for ResNet152,
Sentiment-LSTM, and DNA-CNN in §6.3.2.

6.3.1 QUANTITATIVE

To quantitatively validate our interaction interpretations of general black-box models, we measure
the local explanation fidelity of the interactions via prediction performance. As suggested in §3.3 and

6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47026
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Table 5: Prediction performance (mean-squared error; lower is better) with (k > 0) and without
(k = 0) interactions for random data instances in the test sets of respective black-box models.
k = L corresponds to the interaction at a rank threshold. 2 ≤ k < L are excluded because not all
instances have 2 or more interactions. Only results with detected interactions are shown. At least
94% (≥ 188) of the data instances had interactions across 5 trials for each model and score statistic.

k DNA-CNN Sentiment-LSTM ResNet152 GCN

linear LIME 0 10e−3± 1e−3 8.0e−2± 6e−3 1.9± 0.1 7.1e3± 7e2
MADEX (ours) 1 8e−3± 2e−3 3.8e−2± 6e−3 1.7± 0.1 5.7e3± 7e2
MADEX (ours) L 5.0e−3± 8e−4 0.4e−2± 3e−3 0.9± 0.2 2e3± 1e3

§4.2, encoding feature interactions is a way to increase a model’s function representation, but this
also means that prediction performance gains over simpler first-order models (e.g., linear regression)
is a way to test the significance of the detected interactions. In this section, we use neural network
function approximators for each top-interaction from the ranking {Ii} given by MADEX’s interaction
detector (in this case NID). Similar to the k-thresholding description in §3.3, we start at k = 0,
which is a linear regression, then increment k with added MLPs for each Ii among {Ii}ki=1 until
validation performance stops improving, denoted at k = L. The MLPs all have architectures of
64-32-16 first-to-last hidden layer sizes and use the binary perturbation dataset D (from §3.1).

top prediction: hammerhead, hammerhead shark

top prediction: viaduct

top prediction: Brittany spaniel

top prediction: trolleybus, trolley coach, trackless trolley

Interactions (ours)Original
image Main effects

I1 I2

(a) ResNet152 interpretations

Original
sentence

Predi-
ction

Main
effects

Interactions (ours)

I1 I2
It never fails
to engage us. pos. never,

us never, fails

The movie
makes absolutely

no sense.
neg. no,

sense
absolutely,

no no, sense

The central story
lacks punch. neg. lacks story, lacks lacks,

punch

(b) Sentiment-LSTM interpretations

Figure 4: Qualitative examples (more in Appendix D & E)

Test prediction performances are
shown in Table 5 for k ∈ {0, 1, L}.
The average number of features of D
among the black-box models ranges
from 18 to 112. Our quantitative val-
idation shows that adding feature in-
teractions for DNA-CNN, Sentiment-
LSTM, and ResNet152, and adding
node interactions for GCN result in
significant performance gains when
averaged over 40 randomly selected
data instances in the test set.

6.3.2 QUALITATIVE

For our qualitative analysis, we pro-
vide interaction interpretations via
MADEX(·) of ResNet152, Sentiment-
LSTM, and DNA-CNN on test sam-
ples. The interpretations are given by
S = {Ii}ki=1, a set of k detected in-
teractions, which are shown in Fig-
ure 4 for ResNet152 and Sentiment-
LSTM. For reference, we also show
the top “main effects” by LIME’s
original linear regression, which se-
lect the top-5 features that attribute
towards the predicted class7.

In Figure 4a, the “interaction”
columns show selected features from
MADEX’s interactions between Quick-
shift superpixels (Vedaldi & Soatto,
2008; Ribeiro et al., 2016). To
reduce the number of interactions per
image, we merged interactions that
have overlap coefficient ≥ 0.5 (Vi-
jaymeena & Kavitha, 2016). From

7Based on official code: https://github.com/marcotcr/lime
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the figure, we see that the interactions form a single region or multiple regions of the image. They
also tend to be complementary to LIME’s main effects and are sometimes more informative. For
example, the interpretations of the “shark” classification show that interaction detection finds the
shark fin whereas main effects do not. Interpretations of Sentiment-LSTM are shown in Figure 4b,
excluding common stop words (Appendix C). We again see the value of MADEX’s interactions, which
show salient combinations of words, such as “never, fails”, “absolutely, no”, and “lacks, punch”.

In our experiments on DNA-CNN, we consistently detected the interaction between “CACGTG”
nucleotides, which form a canonical DNA sequence (Staiger et al., 1989). The interaction was
detected 97.3% out of 187 CACGTG appearances in the test set.

In order to run consistency experiments now on Sentiment-LSTM, word interactions need to be
detected consistently across different sentences, which naı̈vely would require an exorbitant amount
of sentences. Instead, we initially collect interaction candidates by running MADEX over all sentences
in the SST test set, then select the word interactions that appear multiple times. We assume that word
interactions are ordered but not necessarily adjacent or positionally bound, e.g., (not, good) 6= (good,
not), but their exact positions don’t matter. We use the larger IMDB dataset (Maas et al., 2011) to
collect different sets of sentences that contain the same ordered words as each interaction candidate
(but the sentences are otherwise random). The ranked detection counts of the target interactions on
their individual sets of sentences are shown in Table 2b. The average sentence length is 33 words,
and interaction occurrences are separated by 2 words on average.

7 CONCLUSION

We proposed a way to interpret feature interactions in general prediction models, and we proposed
GLIDER to detect and encode these interactions in black-box recommender systems. In our ex-
periments on recommendation, we found that our detected global interactions are explainable and
that explicitly encoding them can improve predictions. We further validated our interaction inter-
pretations on image, text, graph, and dna models. We hope the interpretations encourage investiga-
tion into the complex behaviors of prediction models, especially models with large societal impact.
Some opportunities for future work are generating correct attributions for interaction interpretations,
preventing false-positive interactions from out-of-distribution feature perturbations, and performing
interaction distillation from multiple models rather than just one.
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A EFFECT OF EXTRA PARAMETERS BY INTERACTION ENCODINGS VS.
ENLARGED EMBEDDINGS

In this section, we study whether increasing embedding size can obtain similar prediction perfor-
mance gains as explicitly encoding interactions via GLIDER. We increase the embedding dimension
sizes of every sparse feature in baseline recommender models to match the total number of model
parameters of baseline + GLIDER as close as possible. The embedding sizes we used to obtain sim-
ilar parameter counts are shown in Table 6. For the Avazu dataset, all of the embedding sizes remain
unchanged because they were already the target size. The corresponding prediction performances of
all models are shown in Table 7. We observed that directly increasing embedding size / parameter
counts generally did not give the same level of performance gains that GLIDER provided.

Table 6: Comparison of # model parameters between baseline models with enlarged embeddings
and original baselines + GLIDER (from Tables 3 and 4). The models with enlarged embeddings
are denoted by the asterick (*). The embedding dimension of sparse features is denoted by “emb.
size”. Percent differences are relative to baseline* models. M denotes million, and the ditto mark
(”) means no change in the above line.

Model Criteo Avazu

emb. size # params emb. size # params

Wide&Deep* 17 19.1M 16 27.3M
Wide&Deep 16 18.1M 16 ”
+ GLIDER 16 19.3M (+1.1%) 16 27.6M (+1.0%)

DeepFM* 17 18.5M 16 26.7M
DeepFM 16 17.5M 16 ”
+ GLIDER 16 18.3M (−0.9%) 16 26.9M (+0.6%)

Deep&Cross* 17 18.5M 16 26.1M
Deep&Cross 16 17.5M 16 ”
+ GLIDER 16 18.7M (+1.0%) 16 26.4M (+1.0%)

xDeepFM* 19 21.5M 16 27.6M
xDeepFM 16 18.5M 16 ”
+ GLIDER 16 21.7M (+0.7%) 16 28.3M (+2.5%)

AutoInt* 17 17.4M 16 25.1M
AutoInt 16 16.4M 16 ”
+ GLIDER 16 17.3M (−1.0%) 16 25.2M (+0.6%)

Table 7: Test prediction performance corresponding to the models shown in Table 6

Model Criteo Avazu

AUC logloss AUC logloss

Wide&Deep* 0.8072± 3e−4 0.4443± 2e−4 0.7794± 3e−4 0.3804± 2e−4
Wide&Deep 0.8069± 5e−4 0.4446± 4e−4 ” ”
+ GLIDER 0.8080± 3e−4 0.4436± 3e−4 0.7795± 1e−4 0.3802± 9e−5
DeepFM* 0.8080± 4e−4 0.4435± 4e−4 0.7792± 3e−4 0.3804± 9e−5
DeepFM 0.8079± 3e−4 0.4436± 2e−4 ” ”
+ GLIDER 0.8097± 2e−4 0.4420± 2e−4 0.7795± 2e−4 0.3802± 2e−4
Deep&Cross* 0.8081± 2e−4 0.4434± 2e−4 0.7791± 2e−4 0.3805± 1e−4
Deep&Cross 0.8076± 2e−4 0.4438± 2e−4 ” ”
+ GLIDER 0.8086± 3e−4 0.4428± 2e−4 0.7792± 2e−4 0.3803± 9e−5
xDeepFM* 0.8088± 1e−4 0.4429± 1e−4 0.7785± 3e−4 0.3808± 2e−4
xDeepFM 0.8084± 2e−4 0.4433± 2e−4 ” ”
+ GLIDER 0.8097± 3e−4 0.4421± 3e−4 0.7787± 4e−4 0.3806± 1e−4
AutoInt* 0.8087± 2e−4 0.4431± 1e−4 0.7774± 1e−4 0.3811± 8e−5
AutoInt 0.8083 0.4434 ” ”
+ GLIDER 0.8090± 2e−4 0.4426± 2e−4 0.7773± 1e−4 0.3811± 5e−5
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B EFFECT OF DENSE FEATURE BUCKETIZATION

We examine the effect of dense feature bucketization on cross feature parameter efficiency for the
Criteo dataset, which contains 13 dense features. Figure 5 shows the effects of varying the number of
dense buckets on the embedding sizes of the cross features involving dense features. Both the effects
on the average and individual embedding size are shown. 14 out of 40 of the cross features involved
a dense feature. Different cross features show different parameter patterns as the number of buckets
increases (Figure 5b). One one hand, the parameter count sometimes increases then asymptotes.
Our requirement that a valid cross feature ID occurs more than T times (§4.2) restricts the growth
in parameters. On the other hand, the parameter count sometimes decreases, which happens when
the dense bucket size becomes too small to satisfy the T occurrence restriction. In all cases, the
parameter counts are kept limited, which is important for overall parameter efficiency.
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Figure 5: The effects of varying the number of buckets on (a) on the average embedding size of cross
features involving dense features and (b) the individual embedding sizes of the same cross features.
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C STOP WORDS

For all qualitative interpretations on text (in §6.3.2 and Appendix D), we preprocessed sentences to
remove stop words. We use the same stop words suggested by Manning et al. (2008), i.e., {a, an,
and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with}.

D QUALITATIVE RESULTS ON SENTIMENT-LSTM VS. BERT

In this section, we compare the word interactions discovered by MADEX on Sentiment-LSTM versus
BERT. These models perform with accuracies of 87% and 92% respectively on the SST test set.
We use a public pre-trained BERT, i.e., DistilBERT (Sanh et al., 2019), which is available online8.
The interaction detector we use is GradientNID (§3.2.2), and sample weighting is disabled for this
comparison. The top-2 interactions for each model are shown in Table 8 on random sentences from
the SST test set.

Table 8: Top-ranked word interactions Ii from Sentiment-LSTM and BERT on randomly selected
sentences in the SST test set.

Original sentence Sentiment-LSTM BERT

I1 I2 I1 I2
An intelligent, earnest, intimate film that

drops the ball only when it pauses for
blunt exposition to make sure you’re

getting its metaphysical point.

intelligent,
metaphysical

metaphysical,
point

intelligent,
earnest drops, ball

It’s not so much enjoyable to watch as it
is enlightening to listen to new sides of a
previous reality, and to visit with some
of the people who were able to make an

impact in the theater world.

not,
enjoyable not, so not, much not,

enlightening

Uneasy mishmash of styles and genres. uneasy,
mishmash

mishmash,
genres

uneasy,
mishmash

uneasy,
styles

You’re better off staying home and
watching the X-Files. x, files off, x better, off you, off

If this is the Danish idea of a good time,
prospective tourists might want to consider
a different destination – some jolly country
embroiled in a bloody civil war, perhaps.

if, this if, good if, jolly jolly, country

We can see the wheels turning, and we
might resent it sometimes, but this is still
a nice little picture, made by bright and
friendly souls with a lot of good cheer.

resent, nice we, resent nice, good nice, made

One of the greatest family-oriented,
fantasy-adventure movies ever.

family,
oriented

greatest,
family

greatest,
family

adventure,
movies

It’s so full of wrong choices that all you
can do is shake your head in disbelief –

and worry about what classic Oliver Parker
intends to mangle next time.

so, wrong full, wrong so, wrong so, full

Its mysteries are transparently obvious, and
it’s too slowly paced to be a thriller.

mysteries,
transparently

paced,
thriller too, thriller too, paced

This miserable excuse of a movie runs on
empty, believing flatbush machismo will

get it through.

miserable,
runs excuse, get runs, empty miserable,

runs

8https://github.com/huggingface/transformers
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E ADDITIONAL QUALITATIVE RESULTS FOR RESNET152

top prediction: bolo tie, bolo, bola tie, bola

Original image Main effects I1 I2 I3

top prediction: wooden spoon

top prediction: rhinoceros beetle

top prediction: jellyfish

top prediction: potpie

top prediction: tick

top prediction: jackfruit, jak, jack

top prediction: cauliflower

top prediction: menu

top prediction: yurt

top prediction: pill bottle

top prediction: dome

top prediction: fur coat

top prediction: soccer ball

top prediction: bluetick

Figure 6: Additional qualitative results, following Figure 4a, on random test images in ImageNet.
Interactions are denoted by Ii and are unordered. Overlapping interactions with overlap coefficient
≥ 0.5 are merged to reduce |{Ii}| per test image.
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F DETECTION PERFORMANCE OF MADEX VS. BASELINES

We compare the detection performances between MADEX and baselines on identifying feature inter-
actions learned by complex models, i.e., XGBoost (Chen & Guestrin, 2016), Multilayer Perceptron
(MLP), and Long Short-Term Memory Network (LSTM) (Hochreiter & Schmidhuber, 1997). The
baselines are Tree-Shap: a method to identify interactions in tree-based models like XGBoost (Lund-
berg et al., 2018), MLP-ACD+: a modified version of ACD (Singh et al., 2019; Murdoch et al., 2018)
to search all pairs of features in MLP to find the best interaction candidate, and LSTM-ACD+: the
same as MLP-ACD+ but for LSTMs. All baselines are local interpretation methods. For MADEX,
we sample continuous features from a truncated normal distribution N (x, σ2I) centered at a spec-
ified data instance x and truncated at σ. Our MADEX experiments consist of two methods, NID and
GradNID (shorthand for GradientNID).

Table 9: Data generating functions
with interactions

F1(x) = 10x1x2 +
∑10

i=3 xi

F2(x) = x1x2 +
∑10

i=3 xi

F3(x) = exp(|x1 + x2|) +
∑10

i=3 xi

F4(x) = 10x1x2x3 +
∑10

i=4 xi

We evaluate interaction detection performance by us-
ing synthetic data where ground truth interactions are
known (Hooker, 2004; Sorokina et al., 2008). We generate
10e3 samples of synthetic data using functions F1 − F4 (Ta-
ble 9) with continuous features uniformly distributed between
−1 to 1. Next, we train complex models (XGBoost, MLP, and
LSTM) on this data. Lastly, we run MADEX and the baselines
on 10 trials of 20 data instances at randomly sampled loca-
tions on the synthetic function domain. Between trials, the
complex models are trained with different random initializa-
tion to test the stability of each interpretation method. Inter-
action detection performance is computed by the average R-precision (Manning et al., 2008)9 of
interaction rankings across the sampled data instances.

Results are shown in Table 10. MADEX (NID and GradNID) performs well compared to the baselines.
On the tree-based model, MADEX can compete with the tree-specific baseline Tree-Shap, which only
detects pairwise interactions. On MLP and LSTM, MADEX performs significantly better than ACD+.
The performance gain is especially large in the LSTM setting. Comparing NID and GradNID, NID
tends to perform better in this experiment because it takes its entire sampling region into account
whereas GradNID examines a single data instance.

Table 10: Detection Performance in R-Precision (higher the better). σ = 0.6 (max: 3.2). “Tree” is
XGBoost. *Does not detect higher-order interactions. †Requires an exhaustive search of all feature
combinations.

Tree MLP LSTM

Tree-Shap NID GradNID MLP-ACD+ NID GradNID LSTM-ACD+ NID GradNID

F1(x) 1± 0 1± 0 0.96± 0.04 0.63± 0.08 1± 0 1± 0 0.3± 0.2 1± 0 1± 0
F2(x) 1± 0 0.3± 0.4 0.6± 0.4 0.41± 0.06 1± 0 0.95± 0.04 0.01± 0.02 0.99± 0.02 0.95± 0.04
F3(x) 1± 0 1± 0 1± 0 0.3± 0.2 1± 0 1± 0 0.05± 0.08 1± 0 1± 0
F4(x) * 1± 0 † † 1± 0 † † 1± 0 †

9R-precision is the percentage of the top-R items in a ranking that are correct out of R, the number of
correct items. R = 1 in these experiments.
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G HIGHER-ORDER INTERACTIONS

This section shows how often different orders of higher-order interactions are identified by GLIDER
/ MADEX. Figure 7 plots the occurrence counts of global interactions detected in AutoInt for the
Criteo and Avazu dataset, which correspond to the results in Figure 2. Here we show the occurrence
counts of higher-order interactions, where the exact interaction cardinality is annotated besides each
data point. 3-way interactions are the most common type, followed by 4-, then 5-way interactions.

Figure 8 plots histograms of interaction cardinalities for all interactions detected from ResNet152
and Sentiment-LSTM across 1000 random samples in their test sets. The average number of fea-
tures are 66 and 18 for ResNet152 and Sentiment-LSTM respectively. Higher-order interactions are
common in both models.
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Figure 7: Occurrence counts (total: 1000) vs. rank of interactions detected from AutoInt on (a)
Criteo and (b) Avazu datasets. Each higher-order interaction is annotated with its interaction cardi-
nality.
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Figure 8: Histograms of interaction sizes for interactions detected in (a) ResNet152 and (b)
Sentiment-LSTM across 1000 random samples in respective test sets.
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