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ABSTRACT

Modeling sequential data has become more and more important in practice. Some
applications are autonomous driving, virtual sensors and weather forecasting. To
model such systems, so called recurrent models are frequently used. In this pa-
per we introduce several new Deep Recurrent Gaussian Process (DRGP) models
based on the Sparse Spectrum Gaussian Process (SSGP) and the improved ver-
sion, called Variational Sparse Spectrum Gaussian Process (VSSGP). We follow
the recurrent structure given by an existing DRGP based on a specific variational
sparse Nyström approximation, the recurrent Gaussian Process (RGP). Similar to
previous work, we also variationally integrate out the input-space and hence can
propagate uncertainty through the Gaussian Process (GP) layers. Our approach
can deal with a larger class of covariance functions than the RGP, because its
spectral nature allows variational integration in all stationary cases. Furthermore,
we combine the (Variational) Sparse Spectrum ((V)SS) approximations with a
well known inducing-input regularization framework. For the DRGP extension of
these combined approximations and the simple (V)SS approximations an optimal
variational distribution exists. We improve over current state of the art methods in
prediction accuracy for experimental data-sets used for their evaluation and intro-
duce a new data-set for engine control, named Emission.

1 INTRODUCTION

Modeling sequential data for simulation tasks in the context of machine learning is hard for sev-
eral reasons. Their internal structure poses the problem of modeling short term behavior and long
term behavior together for different types of data variables, where the data variables themselves
might differ in the information gain in the chosen time frequency. Recurrent models (Hochreiter &
Schmidhuber, 1997; Nelles, 2013; Pascanu et al., 2013) have proven to perform well on these tasks.
They consist of output-data and input-data structured sequentially for shifted discrete time steps.
The general form of a recurrent model is given by

hi = ζ(hi−1, . . . ,hi−H ,xi−1, . . . ,xi−H) + εhi ,

yi = ψ(hi, . . . ,hi−H) + εyi ,

(1)
(2)

where xi is an external input, yi is an output observation, hi is a latent hidden representation or state
at time i = H + 1, . . . , N , where N ∈ N is the number of data samples, H ∈ N is the chosen time
horizon, ζ,ψ are non-linear functions modeling transition and observation and εhi , ε

y
i are transition

and observation noise, which are adjusted for the specific problem (details on dimensions and ranges
will be specified in upcoming sections).
In control and dynamical system identification previous work on Bayesian recurrent approaches for
modeling sequential data usually makes use of (non-)linear auto-regressive with exogenous inputs
models ((N)ARX) and state-space models (SSM), for both see Nelles (2013). The general recurrent
model given in Equation (1) and (2) represents both cases. This can be recognized by its general
recurrent and hierarchical structure. This work deals with deep learning in a recurrent fashion for
modeling sequential data in a Bayesian non-parametric approach by using GPs. To make a connec-
tion to the general recurrent model, the deep structure arises by defining ζ in Equation (1) in a deep
manner (Pascanu et al., 2013, Section 3).
To achieve scalability, GPs normally make use of sparse approximations for the covariance function.
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This paper proposes DRGP models based on (V)SS approximations, denoted by DRGP-(V)SS. For
reproducibility of the experimental results, we provide the code online1. Therefore, we follow the
same deep recurrent structure as introduced in Mattos et al. (2016). To summarize, the contributions
of this paper are the following:

• Extension of the sparse GP based on the SS approximation introduced by Lázaro-Gredilla
et al. (2010) and the improved VSS approximation by Gal & Turner (2015) to DRGPs;

• Improvement of regularization properties of the variational bounds through the combina-
tion of the (V)SS approximations with the inducing-point (IP) regularization of Titsias &
Lawrence (2010);

• Propagation of uncertainty through the hidden layers of our DGPs by variationally integrat-
ing out the input-space;

• The existence of an optimal variational distribution in the sense of a functional local opti-
mum of the variational bounds of our DRGPs models is established.

The DRGP of Mattos et al. (2016) is limited to a small class of deterministic covariance functions,
because the covariance functions variational expectation has to be analytically tractable. Using the
(V)SS approximations instead, we can derive a valid approximation for every stationary covariance
function, because the basis functions expectation is always tractable. We show that this approach
improves over state of the art approaches in prediction accuracy on several cases of the experimental
data-sets used in Mattos et al. (2016); Svensson et al. (2016); Al-Shedivat et al. (2017); Salim-
beni & Deisenroth (2017); Dörr et al. (2018) in a simulation setting. For scalability, Distributed
Variational Inference (DVI) (Gal et al., 2014) is recommended and can lower the complexity from
O(NM2Qmax(L+ 1)) down toO(M3) for N ≤M , M the sparsity parameter, (L+ 1) the amount
of GPs and Qmax is the maximum over all input dimensions used in our defined deep structure for ζ
and ψ. Therefore, the number of cores must scale suitably with the number of training-data.

2 RELATED WORK TO GAUSSIAN PROCESSES WITH SSM AND DGPS

An SSM with GPs (GP-SSM) for transition and observation functions is used by Wang et al.
(2005), where the uncertainty in the latent states is not accounted for, which can lead to overcon-
fidence. Turner et al. (2010) solved this problem, but they have complicated approximate training
and inference stages and the model is hard to scale. Frigola et al. (2014) used a GP for transition,
while the observation is parametric. Svensson et al. (2016) used an approximation of the spectral
representation by Bochner’s theorem in a particular form and with a reduced rank structure for the
transition function. They realize inference in a fully Bayesian approach over the amplitudes and the
noise parameters. The construction of Eleftheriadis et al. (2017) involves a variational posterior that
follows the same Markov properties as the true state with rich representational capacity and which
has a simple, linear, time-varying structure. Dörr et al. (2018) introduced a GP-SSM with scalable
training based on doubly stochastic variational inference for robust training. Our models extend
the GP-SSM framework by defining the transition as a DRGP based on our newly derived (V)SS
approximations in the Sections 3.3, 3.4, where the latent (non-observed) output-data is learned as a
hidden state. We refer to the report Föll et al. (2017)2 for a detailed but preliminary formulation of
our models and experiments.
Following Damianou & Lawrence (2013), a Deep Gaussian Process (DGP) is a model assuming

yi = f(L+1)(f(L)(f(L−1)(. . . (f(1)(xi) + εh
(1)

i ) . . . ) + εh
(L−1)

i ) + εh
(L)

i ) + εyi ,

where the index i = 1, . . . , N is not necessarily the time and where we define h
(1)
i

def
= f(1)(xi) +

εh
(1)

i , h
(l+1)
i

def
= f(l)(h

(l)
i ) + εh

(l)

i , for l = 2 . . . , L − 1, where L ∈ N is the number of hidden
layers. The noise εh

(l)

i , εyi is assumed Gaussian and the functions f(l) are modeled with GPs for
l = 1, . . . , L+ 1. To obtain computational tractability, in most cases variational approximation and
inference is used. Damianou & Lawrence (2013) introduced these kind of DGPs based on the sparse
variational approximation following Titsias (2009); Titsias & Lawrence (2010). Based on this,

1DRGP-(V)SS code available from http://github.com/RomanFoell/DRGP-VSS.
2Available on the website https://arxiv.org/.
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Dai et al. (2016) introduced a DGP with a variationally auto-encoded inference mechanism and
which scales on larger data-sets. Cutajar et al. (2016) introduced a DGP for the so called Random
Fourier Features (RFF) approach (Rahimi & Recht, 2008), where the variational weights for each
GPs are optimized along with the hyperparameters. This approach does not variationally integrate
out the latent inputs to carry through the uncertainty and no existence of an optimal variational
distribution for the weights is proven to reduce the amount of parameters to optimize in training.
Furthermore, Salimbeni & Deisenroth (2017) introduced an approximation framework for DGPs,
which is similar to the single GP of Hensman & Lawrence (2014), but does not force independence
between the GP layers and which scales to billions of data.
Two state of the art approaches for DRGPs have been introduced by Mattos et al. (2016), the RGP,
which we call DRGP-Nyström, based on the variational sparse Nyström/inducing-point approx-
imation introduced by Titsias (2009); Titsias & Lawrence (2010), as well as Al-Shedivat et al.
(2017), which we call GP-LSTM, based on deep kernels via a Long-short term memory (LSTM)
network (Hochreiter & Schmidhuber, 1997), a special type of Recurrent Neural Network (RNN).
DRGP-Nyström uses a recurrent construction, where the auto-regressive structure is not realized
directly with the observed output-data, but with the GPs latent output-data and uses a Variational
Inference (VI) framework, named Recurrent Variational Bayes (REVARB). The structure acts like
a standard RNN, where every parametric layer is a GP. So additionally uncertainty information can
be carried through the hidden layers.
GP-LSTM is a combination of GPs and LSTMs. LSTMs have proven to perform well on modeling
sequential data. LSTMs try to overcome vanishing gradients by placing a memory cell into each
hidden unit. GP-LSTM uses special update rules for the hidden representations and the hyperpa-
rameters through a semi-stochastic optimization scheme. It combines a GP with the advantages of
LSTMs by defining structured recurrent deep covariance functions, also called deep kernels, which
reduces the time and memory complexities of the linear algebraic operations (Wilson et al., 2016).

3 GAUSSIAN PROCESSES AND VARIATIONAL SPARSE SPECTRUM GP

Loosely speaking, a GP can be seen as a Gaussian distribution over functions. We will first in-
troduce GPs and GP regression and then recall the SSGP by (Lázaro-Gredilla et al., 2010) and its
improved version VSSGP by (Gal & Turner, 2015). Based on these, we derive new variational ap-
proximations. We use the notation a, fx, y, (italic) for random variables, a, f(x), y (upright) for
realizations/samples and data.

3.1 GAUSSIAN PROCESSES

A stochastic process f is a GP if and only if any finite collection of random variables fX
def
=

[fx1 , . . . , fxN
]
T forms a Gaussian random vector (Rasmussen, 2006). A GP is completely defined

by its mean function m : RQ → R,x 7→ m(x), Q ∈ N the input-dimension, and covariance
function k : RQ × RQ → R, (x,x′) 7→ k(x,x′) (Kallenberg, 2006, Lemma 11.1), where

m(x)
def
= E [fx] , k(x,x′)

def
= cov(fx, fx′) = E [(fx −m(x))(fx′ −m(x′))] ,

and the GP will be written as f ∼ GP(m, k). Be aware of that a valid covariance function must
produce a positive definite matrixKNN

def
= (k(xi,xj))

N
i,j=1 ∈ RN×N , when filling in combinations

of data-input points xi, i = 1, . . . , N .
Let y

def
= [y1, . . . , yN ]T ∈ RN , X

def
= [x1, . . . ,xN ]T ∈ RN×Q and we assume yi = f(xi) + εyi ,

where εyi ∼ N (0,σ2
noise), for i = 1, . . . , N , and our aim is to model any set of function values

f
def
= [f(x1), . . . , f(xN )]T ∈ RN at X as samples from a random vector fX. Moreover, we assume

the prior fX|X ∼ N (0,KNN ), meaning that any set of function values f given X are jointly Gaus-
sian distributed with mean 0 ∈ RN and a covariance matrix KNN .
The predictive distribution pfx∗ |x∗,X,y for a test point x∗ ∈ RQ, where KN∗

def
= (k(xi,x

∗))Ni=1 ∈
RN , and analogously K∗∗, K∗N , can be derived through the joint probability model and condition-
ing as

fx∗ |x∗,X,y ∼ N (K∗N (KNN + σ2
noiseIN )−1y,K∗∗ −K∗N (KNN + σ2

noiseIN )−1KN∗).
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In preview of our experiments in Section 5 and the following sections, we choose a specific covari-
ance function, the spectral mixture (SM) covariance function (Wilson & Adams, 2013)

k(x,x′) = σ2
power

(∏Q

q=1
exp

(
−1

2
l−2
q (xq − x′q)

2

))
cos

(
2π
∑Q

q=1
p−1
q (xq − x′q)

)
, (3)

with an amplitude σ2
power and length scales lq , pq ∈ R, q = 1, . . . , Q. As pq →∞, this corresponds

to the squared exponential (SE) covariance function in the limit (Gal & Turner, 2015).

3.2 VARIATIONAL SPARSE SPECTRUM GP

We introduce the SSGP following Gal & Turner (2015). For a stationary covariance function k on
RQ × RQ there exists a function ρ : RQ → R, τ 7→ ρ(τ ), such that k(x,x′) = ρ(x − x′) for
x,x′ ∈ RQ. Bochner’s theorem states that any stationary covariance function k can be represented
as the Fourier transform of a positive finite measure µ (Stein, 2012). Then ρ(τ ), using τ = x− x′,
can be expressed via Monte Carlo Approximation (MCA) following Gal & Turner (2015), Section
2, as

ρ(τ ) =

∫
RQ

e2πizT τdµ(z)

≈
σ2

power

M

∑M

m=1
2 cos(2πzTm(x− um) + bm) cos(2πzTm(x′ − um) + bm)

def
= k̃(x,x′).

(4)

We refer to zm as the spectral points, bm as the spectral phases and um as the pseudo-input/inducing
points form = 1, . . . ,M . Choosing the probability density like in Gal & Turner (2015), Proposition
2, we approximate the SM covariance function with a scaling matrix L

def
= diag([2πlq]

Q
q=1) ∈

RQ×Q, a scaling vector p
def
= [p−1

1 , . . . ,p−1
Q ]T ∈ RQ and Z

def
= [z1, . . . , zM ]T ∈ RQ×M via

φ(x,Z)
def
=
√

2σ2
powerM

−1
[
cos(2π(L−1z1 + p)T (x− u1) + b1), . . . ,

cos(2π(L−1zM + p)T (x− uM ) + bM )
]T ∈ RM .

(5)

Here we sample b ∼ Unif [0, 2π], z ∼ N (0, IQ) and we set K̃(SM)
NN

def
= ΦΦT with Φ

def
=

[φ(x1,Z), . . . , φ(xN ,Z)]
T ∈ RN×M .

In Gal & Turner (2015) the SSGP was improved to VSSGP by variationally integrating out the
spectral points and instead of optimizing the spectral points, additionally optimizing the variational
parameters. We follow the scheme of Gal & Turner (2015), Section 4, for the 1-dimensional output
case y ∈ RN×1. By replacing the covariance function with the sparse covariance function k̃(SM) and
setting the priors to

pZ
def
=
∏M

m=1
pzm , where zm ∼ N (0, IQ), pa, where a ∼ N (0, IM ), (6)

for m = 1, . . . ,M , where we have y|a,Z,U ,X ∼ N (Φa,σ2
noiseIN ) with U

def
= [u1, . . . ,uM ]T ∈

RQ×M (we do not define priors on p, L−1, U, b
def
= [b1, . . . ,bM ]T ∈ RM ), we can expand the

marginal likelihood (ML) to

p(y|X) =

∫
p(y|a,Z,U,X)p(a)p(Z)dadZ, (7)

highlighting U just in the integral, to be notationally conform to Gal & Turner (2015), Section 3.
Now, to improve the SSGP to VSSGP, variational distributions are introduced in terms of

qZ
def
=
∏M

m=1
qzm , where zm ∼ N (αm,βm), qa, where a ∼ N (m, s),

with βm ∈ RQ×Q diagonal, for m = 1, . . . ,M , and s ∈ RM×M diagonal. From here on we use
variational mean-field approximation to derive the approximate models with different lower bounds
to the log ML introduced by Gal & Turner (2015):

log(p(y|X)) ≥ EqaqZ [log(p(y|a,Z,U,X))]−KL(qa||pa)−KL(qZ ||pZ)). (8)
As usual, KL defines the Kullback-Leibler (KL) divergence. By proving the existence of an optimal
distribution qopt

a for a Gal & Turner (2015), Proposition 3, in the sense of a functional local optimum
of the right hand side of (8), where a ∼ N (A−1ΨT

1 y,σ2
noiseA

−1), with A = Ψ2 + σ2
noiseIM ,

Ψ1 = EqZ [Φ] ∈ RN×M , Ψ2 = EqZ

[
ΦTΦ

]
∈ RM×M , we can derive the optimal bound case.

4
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3.3 (V)SSGP WITH REGULARIZATION PROPERTIES VIA INDUCING POINTS (IP)

As a first contribution of this paper we combine two approximation schemes to two new methods
(V)SSGP-IP. We want to point out that the (V)SSGP does not have the same regularization proper-
ties as the GP of Titsias & Lawrence (2010), when optimizing the parameters U, because the prior
in (6) of the weights a is defined generically via Bishop (2006), Equations (2.113) - (2.115). These
parameters U, following Gal & Turner (2015), are similar to the sparse pseudo-input approxima-
tion Titsias (2009), but in the lower bound in (8) they are simply used without being linked to the
weights a.
We now define them as

pa|U , where a|U ∼ N (0,KMM ),

py|a,Z,U ,X , where y|a,Z,U ,X ∼ N (ΦK−1
MMa,KNN −KNMK

−1
MMKMN + σ2

noiseIN ),

(9)

(10)

where KNN , KNM , KMM are defined through the given covariance function in Equation (3).
We can show that for these definitions the integral in Equation (7) can be marginalized straight-
forward for the weights a. We then obtain that our data-samples y are coming from a Gaussian
distribution with mean 0 and the true covariance matrix KNN , plus the discrepancy of the two well-
known sparse covariance matrices for the Sparse Spectrum (not exactly, as we have ΦK−1

MMΦT )
and the Nyström case, plus the noise assumption. This expression can not be calculated efficiently,
but shows that we obtain a GP approximation, which can be seen as a trade-off between these two
sparse approximations.
Following Titsias & Lawrence (2010), Section 3.1, the optimal variational distribution for a col-
lapses by reversing Jensen’s inequality and is similar to the one obtained in Titsias & Lawrence
(2010). The resulting bounds (SSGP-IP without KL(qZ ||pZ) and Ψ1 = Φ, Ψ2 = ΦTΦ) can be
calculated in the same way as Titsias & Lawrence (2010) until Equation (14) in closed form:

log(p(y|X)) ≥ − (N −M)

2
log(σ2

noise)−
N

2
log(2π)− yTy

2σ2
noise

+
log(|KMM |

∣∣A−1
∣∣)

2

+
yTΨ1A

−1ΨT
1 y

2σ2
noise

− tr(KNN )

2σ2
noise

+
tr(K−1

MMKMNKNM )

2σ2
noise

−KL(qZ ||pZ).

(11)

Consequently, the resulting bound in (11) has an extra regularization property compared to the right
hand side of (8), which is reflected in the different form of A = Ψ2 + σ2

noiseKMM , which involves
KMM , the chosen covariance matrix filled in with the pseudo-input points U, and three extra terms

log(|KMM |)
2

,
tr(KNN )

2σ2
noise

,
tr(K−1

MMKMNKNM )

2σ2
noise

.

3.4 VARIATIONAL APPROXIMATION OF THE INPUT-SPACE FOR (V)SSGP(-IP)

As a second contribution of this paper we marginalize also the input-space. This is not straight-
forward, as it is not clear whether for the (V)SS covariance function in Equation (4) and (5)
these expressions even exist. To prevent misunderstanding, we will write from now on H =
[h1, . . . ,hN ]T ∈ RN×Q instead of X, to highlight that H is now a set of latent variables (later
on the hidden states of the DGP). Therefore, we introduce priors and variational distributions

pH
def
=
∏N

i=1
phi , where hi ∼ N (0, IQ), qH

def
=
∏N

i=1
qhi , where hi ∼ N (µi,λi),

λi ∈ RQ×Q diagonal, for i = 1, . . . , N .
As a consequence, for VSSGP-IP we overall derive statistics Ψ0 = tr (EqH [KNN ]) = Nσ2

power,
Ψ1 = EqZqH [Φ] ∈ RN×M , Ψ2 = EqZqH

[
ΦTΦ

]
∈ RM×M and Ψreg = EqH [KMNKNM ] as

defined in the Appendix 6.3. These statistics are essentially the given matrices Φ, ΦTΦ,KMNKNM

from the beginning, but every input hi and every spectral point zm is now replaced by a mean µi, αm
and a variance λi, βm resulting in matrices of the same size. The property of positive definiteness
is preserved. The SSGP-IP model derives by being not variational over the spectral points.
This extra step allows to propagate uncertainty between the hidden layers of a DGP, as we gain an

5
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extra variance parameter for the inputs. For the IP case we get the lower bound:

log(p(y|H)) ≥ − (N −M)

2
log(σ2

noise)−
N

2
log(2π)− yTy

2σ2
noise

+
log(|KMM |

∣∣A−1
∣∣)

2

+
yTΨ1A

−1ΨT
1 y

2σ2
noise

− Ψ0

2σ2
noise

+
tr(K−1

MMΨreg)

2σ2
noise

−KL(qZ ||pZ)−KL(qH ||pH).

(12)

For the extension of the SSGP and VSSGP in the optimal bound case in (8) (we only focus on
this case in the following), we again have A = Ψ2 + σ2

noiseIM and eliminate log(|KMM |)
2 , Ψ0

2σ2
noise

,
tr(K−1

MMΨreg)

2σ2
noise

in the lower bound (12).

4 DRGP WITH VARIATIONAL SPARSE SPECTRUM APPROXIMATION

In this section we want to combine our newly derived (V)SS-(IP) approximations in the Sec-
tions 3.3, 3.4, overall resulting in four GP cases: SSGP, VSSGP, SSGP-IP, VSSGP-IP, with the
framework introduced in Mattos et al. (2016), to derive our DRGP models: DRGP-SS, DRGP-VSS,
DRGP-SS-IP, DRGP-VSS-IP.

4.1 DRGP-(V)SS(-IP) MODEL DEFINITION

Choosing the same recurrent structure as in Mattos et al. (2016), where now i represents the time,
yHx+1: = [yHx+1, . . . , yN ]T ∈ RN̂ , we have

ζ : h
(l)
i = f(l)(ĥ

(l)
i ) + εh

(l)

i , with prior f
(l)

Ĥ(l)
|Ĥ(l) ∼ N (0,K

(l)

N̂N̂
), l = 1, . . . , L

ψ : yi = f(l)(ĥ
(l)
i ) + εyi , with prior f

(l)

Ĥ(l)
|Ĥ(l) ∼ N (0,K

(l)

N̂N̂
), l = L+ 1,

with ζ, ψ in Equation (1) and (2), εh
(l)

i ∼ N (0, (σ
(l)
noise)

2), εyi ∼ N (0, (σ
(L+1)
noise )2) and N̂ = N−Hx,

for i = Hx + 1, . . . , N . The matrix K(l)

N̂N̂
represents a covariance matrix coming from our chosen

k̃ in Equation (4) and (5). A set of input-data Ĥ(l) = [ĥ
(l)
Hx+1, . . . , ĥ

(l)
N ]T is specified as

ĥ
(l)
i

def
=



[
h

(1)

i−1,xi−1

]T def
=
[[

h
(1)
i−1, . . . ,h

(1)
i−Hh

]
, [xi−1, . . . ,xi−Hx ]

]T
, l = 1[

h
(l)

i−1,h
(l−1)

i

]T def
=
[[

h
(l)
i−1, . . . ,h

(l)
i−Hh

]
,
[
h

(l−1)
i , . . . ,h

(l−1)
i−Hh+1

]]T
, l = 2, . . . , L

h
(L)

i
def
=
[
h

(L)
i , . . . ,h

(L)
i−Hh+1

]T
, l = L+ 1,

(13)

where ĥ
(1)
i ∈ RHh+HxQ, ĥ

(l)
i ∈ R2Hh for l = 2, . . . , L, ĥ

(L+1)
i ∈ RHh , for i = Hx + 1, . . . , N .

For simplification we set H def
= Hx = Hh in our experiments.

Now we use the new approximations in the Sections 3.3, 3.4, to derive first, for the setting (V)SSGP,
the new joint probability density

p
yHx+1:[a(l),Z(l),h(l),U(l)]

L+1

l=1
|X =

∏L+1

l=1
p
h

(l)
Hx+1:|a(l),Z(l),Ĥ(l),U(l)pa(l)pZ(l)ph̃(l) ,

with ph̃(L+1) = 1, h
(L+1)
Hx+1:

def
= yHx+1:, h(L+1) = {} and h̃(l) = [h

(l)
1+Hx−Hh

, . . . ,h
(l)
Hh

]T ∈
R2Hh−Hx . Here the priors are

pa(l) , where a(l) ∼ N (0, IM ), pZ(l)
def
=
∏M

m=1
p
z
(l)
m
, where z(l)

m ∼ N (0, IQ),

ph̃(l) , where h̃(l) ∼ N (0, I2Hh−Hx),

the product of them is defined as PREVARB, and the variational distributions are

qa(l) , where a(l) ∼ N (m(l), s(l)), qZ(l)
def
=
∏M

m=1
q
z
(l)
m
, where z(l)

m ∼ N (α(l)
m ,β

(l)
m ),

qh(l)
def
=
∏N

i=1+Hh−Hx

q
h
(l)
i
, where h(l)

i ∼ N (µ
(l)
i , λ

(l)
i ),

6
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the product of them is defined as QREVARB, and where β(l)
m ∈ RQ×Q is diagonal, for i =

1 +Hx −Hh, . . . , N , m = 1 . . . ,M , l = 1, . . . , L+ 1.
For the setting (V)SSGP-IP we choose no variational distribution for a(l), but, similar to the as-
sumptions in (9), (10) for l = 1, . . . , L+ 1, the prior assumptions

pa(l)|U(l) , where a(l)|U (l) ∼ N (0,K
(l)
MM ),

p
h

(l)
Hx+1:|a(l),Z(l),Ĥ(l),U(l) , where h(l)

Hx+1:|a
(l),Z(l), Ĥ(l),U (l) ∼

N (Φ(l)(K
(l)
MM )−1a(l),K

(l)
NN −K

(l)
NM (K

(l)
MM )−1K

(l)
MN + (σ

(l)
noise)

2IN ).

This defines our models for the cases DRGP-VSS, DRGP-VSS-IP. In the case, where we are not
variational over the spectral-points, we derive the simplified versions DRGP-SS, DRGP-SS-IP.

4.2 DRGP-(V)SS(-IP) VARIATIONAL EVIDENCE LOWER BOUND (ELBO)

Using standard variational approximation techniques (Blei et al., 2017), the Recurrent Variational
Bayes lower bound for the (V)SS approximations, denoted as REVARB-(V)SS, is given by

log(p(yHx+1:|X)) ≥

EQREVARB [
∑L+1

l=1
log(p(h

(l)
Hx+1:|a

(l),Z(l), Ĥ(l),U(l)))]−KL(QREVARB||PREVARB)
def
= LREVARB

(V)SS , (14)

and for the (V)SS-IP approximations, denoted as REVARB-(V)SS-IP, is given by

log(p(yHx+1:|X)) ≥

Ep
a(l)|U(l)

[
∑L+1

l=1
exp(〈log(N (h

(l)
Hx+1:|Φ

(l)(K
(l)
MM )−1a(l), (σ

(l)
noise)

2IN ))〉QREVARB )]

−
∑L+1

l=1

Ψ
(l)
0

2(σ(l)
noise)

2
−

tr((K(l)
MM )−1Ψ

(l)
reg)

2(σ(l)
noise)

2
−KL(QREVARB||PREVARB)

def
= LREVARB

(V)SS(-IP), (15)

where 〈·, ·〉 means, taking the expectation under the integral.
Additionally, for the simple (V)SS approximations in 14, the optimal bound LREVARB

(V)SS-opt can be obtained
immediately, analogously to Gal & Turner (2015), Proposition 3, and by the fact that the bound
decomposes into a sum of independent terms for a(l). Maximizing the lower bounds is equivalent to
minimizing the KL-divergence of QREVARB and the true posterior. Therefore, this is a way to optimize
the approximated model parameter distribution with respect to the intractable, true model parameter
posterior. Calculating LREVARB

(V)SS-opt/IP requires O(NM2Qmax(L+ 1)), where Qmax = maxl=1...,L+1Q
(l),

Q(l) def
= dim(ĥ

(l)
i ) and ĥ

(l)
i from Equation (13). DVI can reduce the complexity to O(M3) if the

number of cores scales suitably with the number of training-data, see Appendix 6.3.6 for a detailed
description. A detailed derivation of the REVARB-(V)SS(-IP) lower bounds can be found in the
Appendix 6.3.4.

4.3 MODEL PREDICTIONS

After model optimization based on the lower bounds in the Equation (14) and (15), model predic-
tions for new ĥ

(l)
∗ in the REVARB-(V)SS(-IP) framework can be obtained based on the approx-

imate, variational posterior distribution QREVARB. They are performed iteratively with approximate
uncertainty propagation between each GP layer. We derive q

h
(l)
∗

from previous time-steps and it is
per definition Gaussian with mean and variance derived from previous predictions for l = 1, . . . , L.
These kind of models propagate the uncertainty of the hidden GP layers’ outputs, not of the ob-
served output-data and are relevant for good model predictions. The detailed expressions for the
mean and variance of the predictive distribution involved during the predictions can be found in the
Appendix 6.3.5.
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Figure 1: Simulation results visualized for the data-sets Drive (first row) and Actuator (second row)
for the method DRGP-VSS. First column represents the initial hidden states, blue: first layer, and
red: second layer. The second column represents the learned hidden states. The third column shows
the simulation results, blue: real data, black: simulation, grey: ±2 times Standard Deviation (SD)
and the fourth column the predicted hidden states.

5 EXPERIMENTS

In this section we want to compare our methods DRGP-SS, DRGP-VSS (optimal bound case) and
DRGP-SS-IP, DRGP-VSS-IP, against other well known sparse GPs and the full GP with NARX
structure, the DRGP-Nyström of Mattos et al. (2016), the GP-LSTM of Al-Shedivat et al. (2017), the
LSTM of Hochreiter & Schmidhuber (1997), a simple RNN, the DGP-DS of Salimbeni & Deisen-
roth (2017) and the DGP-RFF of Cutajar et al. (2016), both with NARX structure for the first layer,
the GP-SSM of Svensson et al. (2016) and the PR-SSM Dörr et al. (2018). The full GP is named
GP-full, the FITC approximation of Snelson & Ghahramani (2006) is named GP-FITC, the DTC
approximation of Williams & Seeger (2000) is named GP-DTC, the SSGP of Lázaro-Gredilla et al.
(2010) is named GP-SS, the VSSGP of Gal & Turner (2015) is named GP-VSS. The setting in this
system identification task is simulation. This means that, together with past exogenous inputs, no
past measured output observations (but perhaps predicted output observations) are used to predict
next output observations. To enable a fair comparison, all methods are given access to a predefined
amount of data. Details about the methods, their configuration, as well as the benchmark data-sets
can be found in the Appendix 6.1 and 6.2.

5.1 IMPLEMENTATION

Our methods DRGP-(V)SS(-IP) were implemented in Python, using the library Theano, and in Mat-
lab R2016b. For the optimization/training we used Python, Theano. Theano allows us to take full
advantage of the automatic differentiation to calculate the gradients. For simulation and visualiza-
tion we used Matlab R2016b.
We further implemented in Matlab R2016b the methods DRGP-Nyström, GP-SS, GP-DTC, GP-
FITC, GP-full and used these implementations for the experiments. For GP-VSS, GP-LSTM,
LSTM, RNN, DGP-RFF and DGP-DS we used the published code3456. For GP-SSM the published
code is only applicable for small range of state dimension and a small time horizon, so we just show
the results from their paper. For PR-SSM we also show the results from their paper.

3GP-VSS code available from https://github.com/yaringal/VSSGP.
4GP-LSTM, LSTM, RNN code available from https://github.com/alshedivat/keras-gp.
5DGP-DS code available from https://github.com/ICL-SML/Doubly-Stochastic-DGP.
6DGP-RFF code available from https://github.com/mauriziofilippone/deep_gp_

random_features.
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Table 1: Summary of RMSE values for the free simulation results on test data. Best values per data-
set are bold. All values are calculated on the original data, unless the data-set Power Load, where
the RMSE is shown for the normalized data. Here we have full recurrence for our methods, DRGP-
Nyström and GP-LSTM, LSTM, RNN and with auto-regressive part (first layer) for all other GPs.
For the column non-rec we turned off the auto-regressive part in the first layer for our methods,
DRGP-Nyström and GP-LSTM, LSTM, RNN and also turned off the auto-regressive part (first
layer) for all other GPs.

methods-data Emission non-rec Power Load Damper Actuator non-rec Ballbeam Dryer Drive non-rec

DRGP-VSS 0.104 0.062 0.457 5.825 0.357 0.388 0.084 0.109 0.229 0.268
DRGP-VSS-IP 0.119 0.064 0.544 6.112 0.441 0.546 0.071 0.107 0.302 0.293

DRGP-SS 0.108 0.062 0.497 5.277 0.329 0.563 0.081 0.108 0.226 0.253
DRGP-SS-IP 0.118 0.065 0.631 5.129 0.534 0.547 0.076 0.107 0.297 0.261

DRGP-Nyström 0.109 0.059 0.493 6.344 0.368 0.415 0.082 0.109 0.249 0.289
GP-LSTM 0.096 0.091 0.529 9.083 0.430 0.730 0.062 0.108 0.320 0.530

LSTM 0.098 0.061 0.530 9.370 0.440 0.640 0.062 0.090 0.400 0.570
RNN 0.098 0.066 0.548 9.012 0.680 0.690 0.063 0.121 0.560 0.590

DGP-DS 0.106 0.062 0.543 6.267 0.590 0.576 0.066 0.085 0.422 0.571
DGP-RFF 0.092 0.069 0.550 5.415 0.520 0.750 0.074 0.093 0.446 0.732

PR-SSM N/A N/A N/A N/A 0.502 N/A 0.073 0.140 0.492 N/A
GP-SSM N/A N/A N/A 8.170 N/A N/A N/A N/A N/A N/A
GP-VSS 0.130 0.058 0.514 6.554 0.449 0.767 0.120 0.112 0.401 0.549

GP-SS 0.128 0.060 0.539 6.730 0.439 0.777 0.077 0.106 0.358 0.556
GP-DTC 0.137 0.061 0.566 7.474 0.458 0.864 0.122 0.105 0.408 0.540
GP-FITC 0.126 0.057 0.536 6.754 0.433 0.860 0.084 0.108 0.403 0.539

GP-full 0.122 0.066 0.696 9.890 0.449 1.037 0.128 0.106 0.444 0.542

5.2 BENCHMARK DATA-SETS MODEL LEARNING AND COMPARISON

In Figure 1 we show a comparison of the latent model states before and after training, the simulation
results, as well as the simulated latent states for two data-sets, Drive and Actuator, for the model
DRGP-VSS. We initialize the states with the output training-data for all layers with minor noise (first
column) and after training we obtain a trained state (second column). Unlike Mattos et al. (2016)
Figure 2, (l), we get good variance predictions for all data-sets. We used our own implementation
for Mattos et al. (2016), which gave the same good results as for our methods. Therefore, we think
it is an implementation issue. The test RMSE results for all methods are summarized in Table 1.
The results show, that on most data-sets DRGP-(V)SS(-IP) improve slightly in comparison to other
methods. In order to evaluate the reproducing quality of our results, we provide a robustness test
for our methods and DRGP-Nyström on the data-sets Drive and Damper in Figure 2, 3. We run the
optimization for different time horizons. For every method we visualized a boxplot with whiskers
from minimum to maximum with 10 independent runs. For our models we obtain good results
compared with DRGP-Nyström on these data-sets, in particular for the setting of time horizons of
Table 1 with H = 10. In Figure 4 the RMSE results for different layers L on the data-sets Drive,
Actuator and Damper are shown. We can observe that different layers L are favored.
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Figure 2: Data-set Drive, Boxplot, 10 runs.
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Figure 3: Data-set Damper, Boxplot, 10 runs.
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Figure 4: RMSE values for different number of layers L for the data-sets Drive, Actuator, Damper.

5.3 CONCLUSION

In this paper we introduced four new DRGPs based on the SS approximation introduced by Lázaro-
Gredilla et al. (2010) and the improved VSS approximation by Gal & Turner (2015). We com-
bined the (V)SS approximations with the variational inducing-point approximation from Titsias &
Lawrence (2010), also integrated variationally over the input-space and established the existence
of an optimal variational distribution for a(l) in the sense of a functional local optimum of the
variational bounds REVARB-(V)SS-(IP). We could show that our methods slightly improve on the
data-sets used in this paper compared to the RGP from Mattos et al. (2016) and other state-of-the-art
methods, where moreover our sparse approximations are also practical for dimensionality reduction
as shown in Titsias & Lawrence (2010) and can be further expanded to a deep version in this appli-
cation (Damianou & Lawrence, 2013). Furthermore, Hoang et al. (2017) introduced a generalized
version of the (V)SS approximation, which should be adaptable for our case.
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6 APPENDIX

This additional material provides details about the derivations and configurations of the proposed
DRGP-(V)SS(-IP) in the Sections 3-4. and elaborates on the methods and the employed data-sets in
the experiments in Section 5.

6.1 DATA-SET DESCRIPTION

Table 2: Summary of the data-sets for the system identification tasks

parameters input
dimension

output
dimension\ N Ntrain Ntest

data-sets
Drive 500 250 250 1 1
Dryer 1000 500 500 1 1

Ballbeam 1000 500 500 1 1
Actuator 1024 512 512 2 1
Damper 3499 2000 1499 1 1

Power Load 9518 7139 2379 11 1
Emission 12500 10000 2500 6 1

In this section we introduce the data-sets we used in our experiments. We chose a large number
of data-sets in training size going from 250 to 12500 data-points in order to show the performance
for a wide range. We will begin with the smallest, the Drive data-set, which was first introduced
by Wigren (2010). It is based on a system which has two electric motors that drive a pulley using a
flexible belt. The input is the sum of voltages applied to the motors and the output is the speed of
the belt. The data-set Dryer7 describes a system where air is fanned through a tube and heated at
an inlet. The input is the voltage over the heating device (a mesh of resistor wires). The output is
the air temperature measured by a thermocouple. The third data-set Ballbeam78 describes a system
where the input is the angle of a beam and the output the position of a ball. Actuator is the name of
the fourth data-set, which was described by Sjöberg et al. (1995) and which stems from an hydraulic
actuator that controls a robot arm, where the input is the size of the actuator’s valve opening and the
output is its oil pressure. The Damper data-set, introduced by Wang et al. (2009), poses the problem
of modeling the input–output behavior of a magneto-rheological fluid damper and is also used as a
case study in the System Identification Toolbox of Mathworks Matlab. The data-set Power Load9,
used in Al-Shedivat et al. (2017), consists of data where the power load should be predicted from the
historical temperature data. This data-set was used for 1-step ahead prediction, where past measured
output observations are used to predict current or next output observations, but we will use it here
for free simulation. We down-sampled by starting with the first sample and choosing every 4th data-
point, because the original data-set with a size of 38064 samples and a chosen time-horizon of 48
is too large for our implementation, which is not parallelized so far. The newly provided data-set
Emission10 contains an emission-level of nitrogen oxide from a driving car as output and as inputs
the indicated torque, boost pressure, EGR (exhaust gas recirculation) rate, injection, rail pressure
and speed. The numerical characteristics of all data-sets are summarized in Table 2. The separation
of the data-sets Drive, Dryer, Ballbeam, Actuator, Damper, Power Load in training- and test-data
was given by the papers we use for comparison. The separation of the Emission data-set was chosen
by ourself.

7Received from http://homes.esat.kuleuven.be/˜tokka/daisydata.html.
8Description can be found under http://forums.ni.com/t5/NI-myRIO/

myBall-Beam-Classic-Control-Experiment/ta-p/3498079.
9Originally received from Global Energy Forecasting Kaggle competitions organized in 2012.

10Available from http://github.com/RomanFoell/DRGP-VSS.
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6.2 NONLINEAR SYSTEM IDENTIFICATION

Table 3: Summary of the methods for the system identification tasks

method references
DRGP-VSS introduced in this paper

DRGP-VSS-IP introduced in this paper
DRGP-SS introduced in this paper

DRGP-SS-IP introduced in this paper
DRGP-Nyström (Mattos et al., 2016)

GP-LSTM (Al-Shedivat et al., 2017)
LSTM (Hochreiter & Schmidhuber, 1997)

RNN see e.g. (Al-Shedivat et al., 2017)
DGP-DS (Salimbeni & Deisenroth, 2017)

DGP-RFF Cutajar et al. (2016)
PR-SSM (Dörr et al., 2018)
GP-SSM (Svensson et al., 2016)
GP-VSS (Gal & Turner, 2015)

GP-SS (Lázaro-Gredilla et al., 2010)
GP-DTC (Williams & Seeger, 2000)
GP-FITC (Snelson & Ghahramani, 2006)

GP-full (Rasmussen, 2006)

The methods for the system identification tasks and their references are summarized in Table 2.
For the data-sets Drive and Actuator we chose for our methods DRGP-(V)SS(-IP) the setting L = 2
hidden layers, M = 100 spectral-points and time-horizon Hh = Hx = 10, which was also used
in Mattos et al. (2016), Al-Shedivat et al. (2017) and Dörr et al. (2018) for free simulation (us-
ing M pseudo-input points instead of spectral-points). For these two data-sets we filled the results
from Mattos et al. (2016); Al-Shedivat et al. (2017) into Table 1. Further, for our methods DRGP-
(V)SS(-IP) and DRGP-Nyström we chose on the data-sets Ballbeam and Dryer L = 1, M = 100
and Hh = Hx = 10. For the data-set Damper we chose L = 2, M = 125 and Hh = Hx = 10. For
the data-set Power Load we chose L = 1, M = 125 and Hh = Hx = 12. For the data-set Emission
we chose L = 1, M = 125 and Hh = Hx = 10.
The other sparse GP, the full GP, DGP-RFF and DGP-DS were trained with NARX structure
Hx = Hy (for the first layer) with the same time horizon as for our DRGPs and with the same
amount of pseudo-input points or spectral points.
For LSTM, RNN we chose the same setting for the amount of hidden layers and time horizon as for
our DRGPs. We used Adam optimizer with a learning rate of 0.01. As activation function we chose
tanh and NARX structure Hx = Hy for the first layer. We tested with 8, 16, 32, 64, 128 hidden
units (every hidden layer of a RNN is specified by a hidden unit parameter) for all training data-sets.
For GP-LSTM we chose the same setting for the amount of hidden layers, pseudo-input points and
time horizon as for our DRGPs. We used Adam optimizer with a learning rate of 0.01. As activation
function we chose tanh and NARX structure Hx = Hy for the first layer. We tested with 8, 16,
32, 64, 128 hidden units (every hidden layer of a RNN is specified by a hidden unit parameter) for
all training data-sets. For the data-sets with training size smaller or equal to 2000 we chose the
version GP-LSTM in Al-Shedivat et al. (2017) and for the ones larger than 2000 the scalable version
MSGP-LSTM. We did not pre-train the weights.
For DGP-RFF we tested for L = 1, . . . , 3 number of GPs. We used Adam optimizer with a learning
rate of 0.01. The batch size was chosen to be the training data-size and the dimensions of the GP
layers to be 5. We set the flags q Omega fixed=1000 and learn Omega fixed=var fixed, so fixing
the spectral-point parameters, and iterated until 2000 just for this GP.
For DGP-DS we tested for L = 1, . . . , 3 number of GPs. We used natural gradients for the last GP
with gamma 0.1 and Adam optimizer for the others with a learning rate of 0.01. The batch size was
chosen to be the training data-size and the dimensions of the GP layers to be 5.
All GPs which use the Nyström approximation were initialized for the pseudo-inputs points with a
random subset of size M from the input-data and trained with SE covariance function. For the ones
which use the (V)SS approximations, which includes our methods, we trained with a spectral-point
initialization sampled from N (0, IQ(l)), an initialization for the pseudo-input points with a random
subset of sizeM from the input-data (or setting them all to zero; not in the IP case). For our methods
DRGP-(V)SS(-IP) and GP-VSS we fixed the length scales p

(l)
q = ∞, for all q, l. So all GPs with
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(V)SS approximations were also initialized as SE covariance function, see Equation 5.
For all methods we used automatic relevance determination, so each input dimension has its own
length scale. For our methods DRGP-(V)SS(-IP) and DRGP-Nyström the noise parameters and
the hyperparameters were initialized by σ(l)

noise = 0.1, σ(l)
power = 1 and the length scales by either

l
(l)
q =

√
max(Ĥ

(l)
q )−min(Ĥ

(l)
q ) or l

(l)
q = max(Ĥ

(l)
q ) −min(Ĥ

(l)
q ), for all q, l, where Ĥ

(l)
q is the

data-vector containing the q-th input-dimension values of every input-data point ĥ
(l)
i , for all i. Fur-

thermore, we initialized the latent hidden GP states with the output-observation data y.
The other standard GPs were also initialized with σnoise = 0.1, σpower = 1 and the same initialization
for length scales with respect to the NARX structure input data as before.
For LSTM, RNN we used the initialization for the weights provided by Keras, a Deep Learning
library for Theano and TensorFlow.
For GP-LSTM we used the initialization for the weights provided by Keras and σnoise = 0.1,
σpower = 1 and for the length scale initialization we chose lq = 1 for all input-dimensions.
For DGP-RFF we used the initialization coming from the implementation with σ(l)

power = 1 and for
the length scale initialization with l

(l)
q = 0.5 log(Q(l)) for all l, q. To our knowledge DGP-RFF has

no parameter σ(l)
noise for all l.

For DGP-DS we used the initialization σ(l)
noise = 0.1 and σ(l)

power = 1 and for the length scale initial-
ization we chose l

(l)
q = 1 for all l, q.

For all our implementations, see Section 5.1, we used the positive transformation x′ = log(1 +
exp(x))2 for the calculation of the gradients in order for the parameters to be constrained positive
and with L-BFGS optimizer, either from Matlab R2016b with fmincon, or Python 2.7.12 with scipy
optimize.
All methods were trained on the normalized data x 7→ x−µ

σ2 (for every dimension independently),
several times (same amount per data-set: the initializations are still not deterministic, e.g. for
pseudo-inputs points and spectral points) with about 50 to 100 iterations and the best results in
RMSE value on the test-data are shown in Table 1.
For our methods DRGP-(V)SS(-IP) and DRGP-Nyström we fixed σ(l)

noise, σ(l)
power for all l (optional

the spectral points/pseudo-input points for DRGP-(V)SS; for the IP case we never excluded the
pseudo-input points because we would fall back to the DRGP-(V)SS case; for DRGP-Nyström we
always included the pseudo-input points) during the first iterations to independently train the latent
states. For all other GPs we also tested with fixed and not fixed σnoise = 0.1, except GP-LSTM and
DGP-DS. For DRGP-VSS(-IP) we fixed β(l)

m for all m, l to small value around 0.001, as well as the
spectral phases bm for all m, l sampling from Unif [0, 2π] (this seems to work better in practice).
The limitations for β(l)

m also holds for GP-VSS as well.
We want to remark at this point that setting um = 0 for all m = 1, . . . ,M worked sometimes better
than choosing a subset from the input-data (not in the IP case). This seems to be different to Gal &
Turner (2015), who pointed out: ’These are necessary to the approximation. Without these points
(or equivalently, setting these to 0), the features would decay quickly for data points far from the
origin (the fixed point 0).’
For GP-SSM we show the result of the data-set Damper from their paper in Table 1.
For PR-SSM we show the results from their paper in Table 1.
We show additional results for the data-sets Drive, Actuator and Emission with missing auto-
regressive part for the first layer for our methods DRGP-(V)SS(-IP) and DRGP-Nyström in Table 1,
named non-rec. For the sparse GP, the full GP, GP-LSTM, DGP-RFF and DGP-DS and the data-sets
Drive, Actuator and Emission we show the results with missing auto-regressive part in Table 1, just
modeling the data with exogenous inputs. Here we want to examine the effect of the auto-regressive
part of the first layer for the DRGP models on the RMSE. GP-SSM and PR-SSM are not listed for
this setting of recurrence.
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6.3 VARIATIONAL APPROXIMATION AND INFERENCE FOR DRGP-(V)SS(-IP)

In the Sections 6.3.1-6.3.3 we derive the statistics Ψ0, Ψ1, Ψ2 and Ψreg for the four model cases
DRGP-(V)SS(-IP). In Section 6.3.4 we derive the resulting variational lower bounds. In Sec-
tion 6.3.5 we show the mean and variance expressions of the predictive distributions of our DRGP
models.

In the following we use the abbreviations and formulas

• B.1, (Gal & Turner, 2015, see Section 4.1),

• B.2, (Rasmussen, 2006, see A.7.),

• 1
2 (cos(a− b+ x− y) + cos(a+ b+ x+ y)) = cos(x+ a) cos(y + b).

• JI, for Jensen’s inequality.

6.3.1 DRGP-VSS(-IP), THE STATISTICS Ψ1, Ψ2

For the versions DRGP-VSS(-IP) the statistics are

(Ψ1)nm = Eqzmqhn
[Φnm]

B.1
= Eqhn

[√
2σ2

power(M)−1e−
1
2 h̄

T
nmβmh̄nm cos(α̂

T
m(hn − um) + bm)

]
B.2
= Σ1

mZnme
− 1

2 α̂
T
mCnmα̂m cos(α̂

T
m(cnm − um) + bm),

for m,= 1, . . . ,M , n = 1, . . . , N with

h̄nm = 2πL−1(hn − um),

α̂m = 2π(L−1αm + p),

cnm = Cnm(βm(2π)2L−2um + λ−1
n µn),

Cnm = (βm(2π)2L−2 + λ−1
n )−1,

vnm = um − µn,

Vnm = (2π)−2L2β−1
m + λn,

Znm =
1√
|Vnm|

e−
1
2v

T
nmV−1

nmvnm ,

Σ1
m =

√
2σ2

power

∏Q

q=1

(
l2q
βmq

)
(M)−1,

and

Ψ2 =
∑N
n=1(Ψ2)n, where

(Ψ2)nmm′ = Eqzmqzm′
qhn

[
ΦTnmΦnm′

]
B.1
= Eqhn

[
2σ2

power(M)−1e−
1
2 (h̄T

nmβmh̄nm+h̄T
nm′βm′ h̄nm′ )

cos(α̂
T
m(hn − um) + bm) cos(α̂

T
m′(hn − um′) + bm′)

]
B.2
= Σ2

mm′Z
n
mm′

(
e−

1
2 ᾱ

T
mm′D

n
mm′ ᾱmm′ cos(ᾱTmm′d

n
mm′ − τ̄mm′ + b̄mm′)

+e−
1
2

+
α

T

mm′D
n
mm′

+
αmm′ cos(

+
α
T

mm′d
n
mm′ −

+
τmm′ +

+

bmm′)

)
.
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for m,m′ = 1, . . . ,M , m 6= m′, with

bmm′ = bm − bm′ ,
+

bmm′ = bm + bm′ ,

τ̄mm′ = α̂
T
mum − α̂

T
m′um′ ,

+
τmm′ = α̂

T
mum + α̂

T
m′um′ ,

ᾱmm′ = α̂m − α̂m′ ,
+
αmm′ = α̂m + α̂m′ ,

bmm′ = Bmm′(2π)2L−2(βmum + βm′um′),

βmm′ = βm + βm′ ,

Bmm′ = (2π)−2L2β−1
mm′ ,

dnmm′ = Dn
mm′(B

−1
mm′bmm′ + λ−1

n µn),

Dn
mm′ = (B−1

mm′ + λ−1
n )−1,

wn
mm′ = bmm′ − µn,

Wn
mm′ = Bmm′ + λn,

umm′ = um − um′ ,

Umm′ = (2π)−2L2(β−1
m + β−1

m′ ),

Znmm′ =
1√

|Wn
mm′ | |Umm′ |

e−
1
2 (wn

mm′
T Wn

mm′
−1wn

mm′+uT
mm′U

−1

mm′umm′ ),

Σ2
mm′ = σ2

power

∏Q

q=1

(
l2q√

βmq
βm′q

)
(M)−1,

and

(Ψ2)nmm = Eqzmqhn

[
ΦTnmΦnm

]
B.1
= Eqhn

[
2σ2

power(M)−1(
1

2
+

1

2
e−2h̄T

nmβmh̄nm cos(2(α̂
T
m(hn − um) + bm))

]
B.2
= σ2

power(M)−1
(

1 + Σ̃2
mZ̃nme

−2α̂T
mC̃nmα̂m cos(2(α̂

T
m(cnm − um) + bm))

)
,

for m,m′ = 1, . . . ,M , m = m′, with

Σ̃2
m =

√∏Q

q=1

(
l2q
βmq

)
2−Q.

6.3.2 DRGP-SS(-IP), THE STATISTICS Ψ1, Ψ2

For the versions DRGP-SS(-IP) the statistics are

(Ψ1)nm = Eqhn
[Φnm]

= Eqhn

[√
2σ2

power(M)−1 cos(ẑTm(hn − um) + bm)
]

B.2
=
√

2σ2
power(M)−1e−

1
2 ẑ

T
mλnẑm cos(ẑTm(µn − um) + bm),

for m = 1, . . . ,M , n = 1, . . . , N with

ẑm = 2π(L−1zm + p),

and
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Ψ2 =
∑N
n=1(Ψ2)n, where

(Ψ2)nmm′ = Eqhn

[
ΦTnmΦnm′

]
B.1
= Eqhn

[
2σ2

power(M)−1 cos(ẑTm(hn − um) + bm) cos(ẑTm′(hn − um′) + bm′)
]

= σ2
power(M)−1

(
e−

1
2 z̄

T
mm′λnz̄mm′ cos(z̄Tmm′µn − ρ̄mm′ + b̄mm′)

+e−
1
2

+
z
T

mm′λn
+
zmm′ cos(

+
z
T

mm′µn −
+
ρmm′ +

+

bmm′))

)
,

for m,m′ = 1, . . . ,M with
ρ̄mm′ = ẑTmum − ẑTm′um′ ,
+
ρmm′ = ẑTmum + ẑTm′um′ ,

z̄mm′ = ẑm − ẑm′ ,
+
zmm′ = ẑm + ẑm′ ,

for the other variables, see the defined variables in the DRGP-VSS case.

6.3.3 DRGP-(V)SS-IP, THE STATISTICS Ψreg AND Ψ0

For Ψreg = EqH [KMNKNM ] see Ψ2 in Section 6.3.1 but setting bm = 0, αm = 0 and βm = 1
for all m = 1, . . . ,M .

Ψ0 naturally is given by Ψ0 = tr (EqH [KNN ]) = Nσ2
power because of the chosen SE covari-

ance function.
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6.3.4 DRGP-(V)SS(-IP), LOWER BOUNDS

In this section we derive the different variational lower bounds for our models DRGP-(V)SS(-IP).
We first show the bound LREVARB

(V)SS without optimal variational distribution for a(l). Then the bounds
LREVARB

(V)SS-opt with optimal variational distribution for a(l) follows, as well as the LREVARB
(V)SS-IP case.

We use the simplified notation dAdZdH = da(1) . . . da(L+1)dZ(1) . . . dZ(L+1)dh(1) . . . dh(L).

log(p(yHx+1:|X))

= log

(∫
p

(
yHx+1:,

[
a(l),Z(l),h(l),U (l)

]L+1

l=1
|X
)
dAdZdH

)
= log

(∫
QREVARB

QREVARB

p

(
yHx+1:,a

(L+1),Z(L+1),U (L+1),
[
a(l),Z(l),h(l),U (l)

]L
l=1
|X
)
dAdZdH

)
JI
≥
∫
QREVARB log

p
(
yHx+1:,a

(L+1),Z(L+1),U (L+1),
[
a(l),Z(l),h(l),U (l)

]L
l=1
|X
)

QREVARB

 dAdZdH

=

L+1∑
l=1

∫
q(a(l))q(Z(l))q(h(l))p(h

(l)
Hx+1:|a

(l),Z(l), Ĥ(l),U (l))da(l)dZ(l)dh(l)

−
L∑
l=1

N̂2 −
N∑

i=1+Hx−Hh

log(2πλ
(l)
i )

2
+

Hh∑
i=1+Hx−Hh

log(2π)

2
+

(
λ

(l)
i +

(
µ

(l)
i

)2
)

2


−
L+1∑
l=1

KL(qa(l) ||pa(l))−KL(qZ(l) ||pZ(l))

= −N̂
2

L+1∑
l=1

log(2π(σ
(l)
noise)

2)−
yTHx+1:yHx+1:

2
(
σ(L+1)

noise

)2

+
yTHx+1:Ψ

(L+1)
1 m(L+1)(

σ(L+1)
noise

)2 −
tr
(

Ψ(L+1)
2 (s(L+1) + m(L+1)(m(L+1))T )

)
2
(
σ(L+1)

noise

)2

+

L∑
l=1

− 1

2
(
σ

(l)
noise

)2

((
N∑

i=Hx+1

λ
(l)
i

)
+ (µ(l))THx+1:µ

(l)
Hx+1:

)

+

(
(µ

(l)
Hx+1:)

TΨ
(l)
1 m(l)

)
(
σ

(l)
noise

)2 −
tr
(

Ψ
(l)
2 (s(l) + m(l)(m(l))T )

)
2
(
σ

(l)
noise

)2

−N̂
2

+

N∑
i=1+Hx−Hh

log(2πλ
(l)
i )

2
−

Hh∑
i=1+Hx−Hh

log(2π)

2
−

(
λ

(l)
i +

(
µ

(l)
i

)2
)

2


−
L+1∑
l=1

KL(qa(l) ||pa(l))−KL(qZ(l) ||pZ(l))

def
= LREVARB

VSS ,

where we derive LREVARB
SS by being not variational overZ(l). Using the optimal distribution for a(l) ∼

N ((A(l))−1(Ψ
(l)
1 )Tµ

(l)
Hx+1:, (σ

(l)
noise)

2(A(l))−1), with A(l) = Ψ
(l)
2 + (σ

(l)
noise)

2IM , respective yHx+1:
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for L+ 1 we obtain

≥ −N̂ −M
2

L+1∑
l=1

log

((
σ

(l)
noise

)2
)
−

yTHx+1:yHx+1:

2
(
σ(L+1)

noise

)2

+
yTHx+1:Ψ

(L+1)
1 (A(L+1))−1(Ψ(L+1)

1 )TyHx+1:

2
(
σ(L+1)

noise

)2 +
log(|(A(L+1))−1|)

2

+

L∑
l=1

− 1

2
(
σ

(l)
noise

)2

((
N∑

i=Hx+1

λ
(l)
i

)
+ (µ

(l)
Hx+1:)

Tµ
(l)
Hx+1:

)

+
(µ

(l)
Hx+1:)

TΨ
(l)
1 (A(l))−1(Ψ

(l)
1 )Tµ

(l)
Hx+1:

2
(
σ

(l)
noise

)2 +
log(|(A(l))−1|)

2

−N̂
2

+

N∑
i=1+Hx−Hh

log(2πλ
(l)
i )

2
−

Hh∑
i=1+Hx−Hh

log(2π)

2
−

(
λ

(l)
i +

(
µ

(l)
i

)2
)

2


− (L+ 1)N̂

2
log(2π)−

L+1∑
l=1

KL(qZ(l) ||pZ(l))

def
= LREVARB

VSS-opt ,

where we derive LREVARB
SS-opt by being not variational over Z(l).
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The IP regularization case with A(l) = Ψ
(l)
2 + (σ

(l)
noise)

2K
(l)
MM and QREVARB, PREVARB just defined with

the priors and variational distributions for Z(l) and H(l), is given by:

log(p(yHx+1:|X))

= . . . see Titsias & Lawrence (2010) until Equation 14,
JI
≥ Ep

a(l)|U(l)
[
∑L+1

l=1
exp(〈log(N (h

(l)
Hx+1:|Φ

(l)(K
(l)
MM )−1a(l), (σ

(l)
noise)

2IN ))〉QREVARB )]

−
(

2
(
σ(l)

noise

)2
)−1∑L+1

l=1
Ψ

(l)
0 − tr((K(l)

MM )−1Ψ(l)
reg)−KL(QREVARB||PREVARB)

= −N̂ −M
2

L+1∑
l=1

log

((
σ

(l)
noise

)2
)
−

yTHx+1:yHx+1:

2
(
σ(L+1)

noise

)2 +
log(|K(L+1)

MM |)
2

+
yTHx+1:Ψ

(L+1)
1 (A(L+1))−1(Ψ(L+1)

1 )TyHx+1:

2
(
σ(L+1)

noise

)2 +
log(|(A(L+1))−1|)

2

−
Ψ

(L+1)
0 + tr((K(L+1)

MM )−1Ψ
(L+1)
reg )

2
(
σ(L+1)

noise

)2

−
L∑
l=1

− 1

2
(
σ

(l)
noise

)2

((
N∑

i=Hx+1

λ
(l)
i

)
+ (µ

(l)
Hx+1:)

Tµ
(l)
Hx+1:

)
+

log(|K(l)
MM |)

2

+
(µ

(l)
Hx+1:)

TΨ
(l)
1 (A(l))−1(Ψ

(l)
1 )Tµ

(l)
Hx+1:

2
(
σ

(l)
noise

)2 +
log(|(A(l))−1|)

2

−
Ψ

(l)
0 + tr((K(l)

MM )−1Ψ
(l)
reg)

2
(
σ(l)

noise

)2 − N̂

2
+

N∑
i=1+Hx−Hh

log(2πλ
(l)
i )

2

−
Hh∑

i=1+Hx−Hh

log(2π)

2
−

(
λ

(l)
i +

(
µ

(l)
i

)2
)

2

− (L+ 1)N̂

2
log(2π)−

L+1∑
l=1

KL(qZ(l) ||pZ(l))

def
= LREVARB

VSS-IP ,

where again we derive LREVARB
SS-IP by being not variational over Z(l).
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6.3.5 PREDICTIONS

Predictions for each layer l and new ĥ
(l)
∗ are performed in the simple DRGP-(V)SS case with

Eq
f∗(l)

[
f∗(l)

]
= Ψ

(l)
1∗m

(l),

Vq
f∗(l)

[
f∗(l)

]
=
(
m(l)

)T (
Ψ

(l)
2∗ −

(
Ψ

(l)
1∗

)T
Ψ

(l)
1∗

)
m(l) + tr

(
s(l)Ψ

(l)
2∗

)
,

where for the optimal distribution case for a(l) we have with A(l) = Ψ
(l)
2 + (σ

(l)
noise)

2IM

m(l) opt
=
(
A(l)

)−1 (
Ψ

(l)
1

)T
µ

(l)
Hx+1:, s(l) opt

= (σ
(l)
noise)

2
(
A(l)

)−1

,

for 1, . . . , L, and fully analog for l = L+ 1 by replacing µ
(l)
Hx+1: with yHx+1:.

In the DRGP-(V)SS-IP case we make predictions for each layer l and new ĥ
(l)
∗ through

Eq
f∗(l)

[
f∗(l)

]
= Ψ

(l)
1∗Λ

(l),

Vq
f∗(l)

[
f∗(l)

]
=
(
Λ(l)

)T (
Ψ

(l)
2∗ −

(
Ψ

(l)
1∗

)T
Ψ

(l)
1∗

)
Λ(l)

+ Ψ0 − tr
(

(K
(l)
MM )−1Ψ

(l)
reg∗ − (σ

(l)
noise)

2
(
A(l)

)−1

Ψ
(l)
2∗

)
,

where A(l) = Ψ
(l)
2 + (σ

(l)
noise)

2K
(l)
MM and

Λ(l) opt
=
(
A(l)

)−1 (
Ψ

(l)
1

)T
µ

(l)
Hx+1:,

for 1, . . . , L, and fully analog for l = L+ 1 by replacing µ
(l)
Hx+1: with yHx+1:.

Prediction for a new input in all cases has time complexity O((L + 1)M3), which comes from the
iterative prediction through all GP layers and the calculation of the statistics, see Appendix 6.3.6.
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6.3.6 DISTRIBUTED VARIATIONAL INFERENCE FOR DRGP-(V)SS(-IP)

We refer to (Gal et al., 2014), Equation (4.3), for a comparison.
Calculating the optimal REVARB-(V)SS and REVARB-(V)SS-IP requires O(NM2Qmax(L + 1)),

where Qmax = max
l=1...,L+1

Q(l), Q(l) def
= dim(ĥi

(l)
) and ĥ

(l)
i is coming from the Equations in (13) for

a fixed chosen i and l = 1, . . . , L+ 1. In this section we show how we can reduce the complexity of
inference in the REVARB-(V)SS(-IP) setting with distributed inference to O(M3) if the number of
cores scales suitably with the number of training-data. We show this for LREVARB

(V)SS-IP , because this is the
most complex bound, and all other bounds reduce to special cases of this.
LREVARB

(V)SS-IP in Appendix 6.3.4, separated for each hidden layer and the output layer (µHx+1: and λHx+1:

replaced by yHx+1:), can be written as LREVARB
(V)SS-IP =

L+1∑
l=1

Bl, where we have the KL terms

KL(qZ(l) ||pZ(l)) =
1

2

∑M

m=1
tr
(
β(l)
m + α(l)

m (α(l)
m )T

)
− 1

2

∑M

m=1
log(|β(l)

m |)−
MQ(l)

2
,

for l = 1, . . . , L+ 1, the terms

−N̂
2

+
∑N

i=1+Hx−Hh

log(2πλ
(l)
i )

2
−
∑Hh

i=1+Hx−Hh

log(2π)

2
−

(
λ

(l)
i +

(
µ

(l)
i

)2
)

2
,

for l = 1, . . . , L and

Bl = −N̂ −M
2

log

((
σ

(l)
noise

)2
)
−

(∑N
i=Hx+1 λ

(l)
i

)
+ µTHx+1:µHx+1:

2
(
σ

(l)
noise

)2 +
log(|K(L+1)

MM |)
2

+
µTHx+1:Ψ

(l)
1

(
A(l)

)−1
(Ψ

(l)
1 )TµHx+1:

2
(
σ

(l)
noise

)2 +
log(|(A(l))−1|)

2
−

Ψ
(l)
0 + tr((K(l)

MM )−1Ψ
(l)
reg)

2
(
σ(l)

noise

)2

− N̂

2
log(2π),

for all l = 1, . . . , L + 1 and which can be separated further into Bl =
∑N
i=Hx+1Bli, a sum of

N̂ = N −Hx independent terms, extracting
log(|(A(l))

−1|)
2 , log(|K(l)

MM |)
2 and

tr((K(l)
MM )−1Ψ(l)

reg)

2(σ(l)
noise)

2 , by

Bli = −
1− M

N̂

2
log

((
σ

(l)
noise

)2
)
−

(
σ

(l)
power

)2

+ λ
(l)
i + µ

(l)
i µ

(l)
i

2
(
σ

(l)
noise

)2

+
µ

(l)
i (Ψ

(l)
1 )·i(A(l))−1(Ψ

(l)
1 )T·iµ

(l)
i

2
(
σ

(l)
noise

)2 +
log(2πλ

(l)
i )

2
− log(2π)

2
,

where (Ψ
(l)
1 )·i means, taking the i-th column of Ψ

(l)
1 for l = 1, . . . , L+ 1, i = Hx + 1 . . . , N . We

further inspect

A(l) = Ψ
(l)
2 + (σ

(l)
noise)

2K
(l)
MM =

∑N

i=Hx+1

(
Ψi

2

)(l)
+ (σ

(l)
noise)

2K
(l)
MM ,

and
Ψ(l)
reg =

∑N

i=Hx+1

(
Ψi
reg

)(l)
.

These terms and the sums of Ψ
(l)
2 and Ψ

(l)
reg can be computed on different cores in parallel without

communication. Only the 3(L+ 1) inversions and determinants of A(l) and K(l)
MM now are respon-

sible for the complexity, which can also be computed on 3(L+ 1) cores. Summing this bound over
i and l, we obtain the total complexity of O(M3) per single iteration with N̂(L+ 1) cores.
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