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PoPSGD: DECENTRALIZED STOCHASTIC GRADIENT
DESCENT IN THE POPULATION MODEL

ABSTRACT

The population model is a standard way to represent large-scale decentralized
distributed systems, in which agents with limited computational power interact in
randomly chosen pairs, in order to collectively solve global computational tasks. In
contrast with synchronous gossip models, nodes are anonymous, lack a common
notion of time, and have no control over their scheduling. In this paper, we examine
whether large-scale distributed optimization can be performed in this extremely
restrictive setting.

We introduce and analyze a natural decentralized variant of stochastic gradient
descent (SGD), called PopSGD, in which every node maintains a local parameter,
and is able to compute stochastic gradients with respect to this parameter. Every
pair-wise node interaction performs a stochastic gradient step at each agent, fol-
lowed by averaging of the two models. We prove that, under standard assumptions,
SGD can converge even in this extremely loose, decentralized setting, for both
convex and non-convex objectives. Moreover, surprisingly, in the former case,
the algorithm can achieve linear speedup in the number of nodes n. Our analysis
leverages a new technical connection between decentralized SGD and randomized
load-balancing, which enables us to tightly bound the concentration of node pa-
rameters. We validate our analysis through experiments, showing that PopSGD
can achieve convergence and speedup for large-scale distributed learning tasks in a
supercomputing environment.

1 INTRODUCTION

Distributed machine learning has become commonplace, and it is not unusual to encounter systems
which distribute model training among tens or even hundreds of nodes. In this paper, we take this
trend to the extreme, and ask: would it be possible to distribute basic optimization procedures such as
stochastic gradient descent (SGD) to thousands of agents? How could the dynamics be implemented
in such a large-scale setting, and what would be with the resulting convergence and speedup behavior?

To get some intuition, let us consider the classical data-parallel distribution strategy for SGD Bottou
(2010). We are in the classical empirical risk minimization setting, where we have a set of samples S
from a distribution, and wish to minimize the function f : R? — R, which is the average of losses
over samples from S by finding 2* = argmin , > g fs(x)/[S|. Assume that we have P compute
nodes which can process samples in parallel. Data-parallel SGD consists of parallel iterations, in
which each node computes the gradient for one sample, followed by a gradient exchange. Globally,
this leads to the iteration:

P
T =w = Y G (w),
=1

where 1, is the learning rate, x; is the value of the global parameter, initially 0¢, and g (z) is the
stochastic gradient with respect to the parameter obtained by node i at time ¢.

When extending this strategy to high node counts, two major bottlenecks are communication and
synchronization. In particular, to maintain a consistent view of the parameter x;, the nodes would
need to broadcast and receive all gradients, and would need to synchronize with all other nodes, at the
end of every iteration. Recently, a tremendous amount of work has been dedicated to address these
two barriers. In particular, there has been significant progress on communication-reduced variants
of SGD (e.g.|Seide et al.|(2014); Strom| (2015); |Alistarh et al.| (2017b); [Wen et al.| (2017); |Aji and
Heafield (2017); Dryden et al.|(2016); |Grubic et al.|(2018))), asynchronous variants (e.g. Recht et al.
(2011);/Sa et al.|(2015);|Duchi et al.|(2015); |Alistarh et al.|(2018b))), as well as large-batch or periodic
model averaging methods, which aim to reduce the frequency of communication(e.g. |Goyal et al.
(2017);|You et al.[(2017) and |Chen and Huo|(2016); Stich|(2018)), or even decentralized synchronous
1



Under review as a conference paper at ICLR 2020

variants(e.g. |[Lian et al.|(2017a)); Tang et al.|(2018)); [Koloskova et al.|(2019)). Using such techniques,
it is possible to scale SGD to hundreds of nodes, even for complex objectives such as the training of
deep neural networks. However, in systems with node counts in the thousands or larger, some of the
communication and synchronization requirements of these algorithms become infeasible.

In this paper, we consider the classic population model of distributed computing |Angluin et al.
(2006), defined as follows. We are given a population of n compute agents, each with its own input,
which cooperate to perform some globally meaningful computation with respect to their inputs.
Interactions occur pairwise, where the two interaction partners are randomly chosen in every step.
Thus, algorithms are specified in terms of the agents’ state transitions upon an interaction. The
basic unit of time is a single pairwise interaction between two nodes, whereas global (parallel)
time is measured as the total number of interactions divided by n, the number of nodes. Parallel
time corresponds intuitively to the average number of interactions per node to reach convergence.
Population protocols have a rich history in distributed computing (e.g. /Angluin et al.| (2006; 2007}
2008azbic); |Alistarh et al.|(2017a; 2018a))), and are standard in modelling distributed systems with
millions or billions of nodes, such as Chemical Reaction Networks (CRNs) Bower and Bolouri
(2004); |Chen et al.| (2017)) and synthetic DNA strand displacement cascades (Chen et al.|(2013). The
key difference between population protocols and the synchronous gossip models (e.g.|Xiao and Boyd
(2004); Lian et al.| (2017a); [Koloskova et al.|(2019))) previously used to analyze decentralized SGD is
that nodes are not synchronized: since interactions occur randomly at arbitrary times, there are no
global rounds, and nodes lack a common notion of time.

While the population model is a theoretical construct, we show that it can be efficiently mapped to
large-scale super-computing scenarios, with large numbers of compute nodes connected by a fast
point-to-point interconnect, where we can avoid the high costs of global synchronization.

An immediate instantiation of SGD in the population model would be to initially assign one sample
s* from the distribution to each node 7, and have each node maintain its own parameter estimate Xt
Whenever two nodes interact, they exchange samples, and each performs a gradient update with
respect to the other’s sample. If we assume interaction pairs are uniform random (with replacement),
each node would obtain a stochastic gradient upon each interaction, and therefore each model would
converge locally. However, this instance would not have any parallel speedup, since the SGD instances
at each node are essentially independent.

In this context, a natural change to the above procedure is to have nodes ¢ and j first perform a
gradient step, and then also average their resulting models upon every interaction. Effectively, if
node ¢ interacts with node j, node ¢’s updated model becomes

i, attalg(at) 4+ (a7)
2 )

(1.1

where j is the interaction partner, and the stochastic gradients §° and g7 are taken with respect to each
other’s samples. The update for node j is symmetric. In this paper, we analyze a variant of the above
protocol, which we call PopSGD, in the population protocol model.

We show that, perhaps surprisingly, this simple decentralized SGD averaging dynamic provides
strong convergence guarantees for both convex and non-convex objectives. First, we prove that,
under standard convexity and smoothness assumptions, PopSGD has convergence speedup that linear
in the number of nodes n. Second, we show that, if the objective is non-convex but satisfies the
Polyak-t.ojasiewicz (PL) assumption, PopSGD can still ensure linear convergence in the number of
nodes. Third, we show a ©(y/n) speedup in the non-convex case in the absence of this assumption,
matching or slightly improving results from previous work which considered similar models (Lian
et al.,[2017b).

On the practical side, we provide convergence and speedup results using an efficient implementation
of PopSGD using Pytorch/MPI applied to regression tasks, but also to the standard CIFAR/ImageNet
classification tasks for deployments on a multi-GPU nodes, and on the Piz Daint supercomputer (Piz).
Experiments confirm the scalability of PopSGD. We also observe an improvement in convergence
versus number of SGD iterations per model at higher node counts, in both convex and non-convex
settings. In particular, using PopSGD, we are able to train the ResNet18 and ResNet50 He et al.
(2016) models to full accuracy using only 1/8 the number of SGD updates per model, compared to
the sequential baseline, resulting in fast convergence with nearly linear scalability.
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This suggests that, even though interactions occur only pairwise, uniformly at random, and in an
uncoordinated manner, as long as the convergence time is large enough to amortize the information
propagation, the protocol enjoys the full parallel speedup of mini-batch SGD with a batch size
proportional to the number of nodes. While similar speedup behaviour has been observed in various
synchronous models for the convex case— e.g.|Stich| (2018)); [Koloskova et al.|(2019), or for complex
accelerated algorithms Hendrikx et al.| (2018)—we are the first to show that SGD does not require the
existence of globally synchronized rounds or global communication.

Central to our analytic approach is a new technical connection between averaging decentralized
SGD and the line of research studying load-balancing processes in computer science (e.g. Azar et al.
(1999); Mitzenmacher| (2000); Talwar and Wieder| (2007)); Peres et al.|(2015a); [Boyd et al.| (2006)).
Intuitively, we show PopSGD can be viewed as a composition between a set of instances of SGD—each
corresponding to one of the local parameters z*~which are loosely coupled via pairwise averaging,
whose role is to “balance” the models by keeping them well concentrated around their mean, despite
the random nature of the pairwise interactions. Our analysis characterizes this concentration, showing
that, in essence, the averaging process propagates enough information to globally “simulate” SGD
with a batch of size ©(n), even though communication is only performed pairwise. We emphasize
that the convexity of the objective function in isolation would not be sufficient to prove this fact:
simply averaging n independent SGD models at the end of training would not lead to speedup in
the objective (please see e.g.|Stich|(2018]) for a detailed discussion). Along the way, we overcome
non-trivial technical difficulties, such as the lack of a common notion of time among nodes, or the fact
that, due to the structure of SGD, this novel load-balancing process exhibits non-trivial correlations
within the same round.

Related Work. The study of decentralized optimization algorithms dates back to [Tsitsiklis| (1984)),
and is related to the study of gossip algorithms for information dissemination Kempe et al.| (2003));
Xiao and Boyd| (2004)); Boyd et al.|(2006). Gossip is usually studied in one of two models Boyd et al.
(2006)): synchronous, structured in global rounds, where each node interacts with a randomly chosen
neighbor, and asynchronous, where each node wakes up at times given by a local Poisson clock, and
picks a random neighbor to interact with. The population model is functionally equivalent to the
asynchronous gossip model, since the interaction times in the latter model can be “discretized” to
lead to pairwise uniform interactions. The key difference between our work and averaging in the
gossip model, e.g. Boyd et al.|(2006), is that their input model is static (node inputs are fixed, and
node estimates must converge to the true mean), whereas we study the a dynamic setting, where the
models are updated in each round by SGD, and should remain concentrated around the parameter
mean as it converges towards the optimum. Several optimization algorithms have been analyzed in
this setting |[Nedic and Ozdaglar| (2009); [Johansson et al.|(2009); |Shamir and Srebro| (2014)). Tang
et al.| (2018); [Koloskova et al.|(2019) analyze quantization in the synchronous gossip model.

Lian et al.| (2017ajb); |/Assran et al.| (2018)) consider SGD-type algorithms in the gossip model.
Specifically, they analyze the same SGD averaging dynamic in the non-convex setting. Table [2]
in the appendix summarizes their assumptions, results, and rates. Their results are phrased in the
synchronous gossip model, in which nodes interact in a sequence of perfect matchings, for which
they provide O(1/+/Tn) convergence rates (under analytical assumptions). Further, they extend their
results to a variant of the gossip model where updates can be performed based on stale information.

Upon careful examination, we find that their results can be extended to the population proto-
col/asynchronous gossip model, although at the cost of slower convergence relative to the synchronous
case. For|Lian et al.|(2017b), the convergence rate bound requires that the total number of iterations
is Q(nS), while in our case only O(n?) iterations are needed. The difference comes from the fact that
our bound on the potential I" is tighter. For|Assran et al.| (2018)), speedup with respect to the number
of nodes depends on the parameter C'. Which in turn, depends on the dimension of the objective
function, number iterations for the graph given by edge sets of all matrices used in averaging to
be connected and the diameter of aforementioned graph. Unfortunately, in the population model
parameter C' will not be a constant and this will eliminate the speedup. Further, these references
present scalability results for training neural networks using both synchronous and asynchronous
variants of their algorithms, thereby slightly relaxing their analytic assumptions.

Relative to this prior work, our contributions are as follows. First, we consider both convex and
non-convex objectives. We are the first to show linear speedup in the objective for convex objectives
in this decentralized asynchronous model. Our bounds in the non-convex case match or slightly
improve those presented above, under similar assumptions. Furthermore, under the PL condition,
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we are the first to show linear convergence speedup in the non-convex case. Our analysis technique
relies on a fine-grained analysis of individual interactions, which is different than that of previous
work. From the implementation perspective, the performance of our algorithm is competitive with
that of previous methods, notably DA-PSGD [Lian et al.|(2017b) and SGP |Assran et al.| (2018).

Other instances in the literature which consider dynamic interaction models are Nedic et al. |Nedic
et al.| (2017), who present a gradient tracking algorithm in a different dynamic graph model, and
Hendrickx et al. Hendrikx et al.|(2018)), who achieve exponential convergence rates in a gossip model
where transmissions are synchronized across edges. The algorithm they consider is a more complex
instance of accelerated coordinate descent, and is therefore quite different from the simple dynamics
we consider. Neither reference considers large-scale deployments for non-convex objectives.

2 PRELIMINARIES

The Population Protocol Model. We consider a variant of the population protocol model which
consists of a set of n > 2 anonymous agents, or nodes, each executing a local state machine. (Our
analysis will make use of node identifiers only for exposition purposes.) Since our application
is continuous optimization, we will assume that the agents’ states may store real numbers. The
execution proceeds in discrete steps, where in each step a new pair of agents is selected uniformly
at random to interact from the set of all possible pairs. (To preserve symmetry of the protocols, we
will assume that a process may interact with a copy of itself, with low probability.) Each of the two
chosen agents updates its state according to a state update function, specified by the algorithm. The
basic unit of time is a single pairwise interaction between two nodes. Notice however that in a real
system ©(n) of these interactions could occur in parallel. Thus, a standard global measure is parallel
time, defined as the total number of interactions divided by n, the number of nodes. Parallel time
intuitively corresponds to the average number of interactions per node to convergence.

Stochastic Optimization. We assume that the agents wish to minimize a d-dimensional, differen-
tiable and strongly convex function f : R — R with parameter ¢ > 0, that is:

(z—y)" (Vf(z) = Vf(y) > L]z —y|?* Yo,y € R @.1)

Specifically, we will assume the empirical risk minimization setting, in which agents are given access
to a set of data samples S = {s1, ..., S, } coming from some underlying distribution D, to a function
fi : R — R which encodes the loss of the argument at the sample s;. The goal of the agents is to
converge on a model z* which minimizes the empirical loss, that is

x* = argmin, f(x) = argmin_(1/m) Z fi(x). (2.2)

i=1

In this paper, we assume that the agents employ these samples to run a decentralized variant of SGD,
described in detail in the next section. For this, we will assume that agents have access to stochastic
gradients g of the function f, which are functions such that E[g(z)] = V f(x). Stochastic gradients
can be computed by each agent by sampling i.i.d. the distribution D, and computing the gradient of
f at @ with respect to that sample. In the population model, we could implement this by procedure
either by allowing agents to sample in each step, or by assigning a sample s; to each agent ¢, and
having agents compute gradients of their local models with respect to each others’ samples. We will
assume the following about the gradients:

¢ Smooth Gradients: The gradient V f(x) is L-Lipschitz continuous for some L > 0, i.e. for all

z,y € R%:
IVf(z) = VIl < Lz -yl 2.3)
e Bounded Variance: The variance of the stochastic gradients is bounded by some o? > 0, i.e. for
all z € R%:
2
E[§ (@) - Eg@)|| <o 24)

e Bounded Second Moment: The second moment of the stochastic gradients is bounded by some
M? > 0,i.e. forall x € R%:

Ellg(z) | < M. (2.5)
4
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3 THE POPULATION SGD ALGORITHM

Algorithm Description. We now describe a decentralized variant of SGD, designed to be executed
by a population of n nodes, interacting in uniform random pairs as per the population protocol model.
We assume that each node 7 has access to local stochastic gradients §i, and maintains a model estimate
X*, as well as a local learning rate n°. For simplicity, we will assume that this initial estimate is
0¢ at each agent, although its value may be arbitrary. We detail the way in which the learning rates
are updated below. Specifically, upon every interaction, the interacting agents ¢ and j perform the
following steps:

o

% ¢ and j are chosen uniformly at random, with replacement
upon each interaction between agents ¢ and j
% each agent performs a local SGD step

X X' — niﬁi(X’)

XJ «— X7 7T]j§j(Xj)

% agents average their estimates coordinate-wise
avg + (X' + X9)/2

Xt avg

X7« avg

Algorithm 1: Population SGD pseudocode for each interaction between arbitrary nodes ¢ and j.

We are interested in the convergence of local models : X!, X2, ..., X™ after T interactions occur in
total. For the theoretical reasons, in the case when f is convex, we derive convergence for y7 which
is weighted average of average values of local models per step(See Theorem[.T)). In the beginning of
section [5] we show that by performing single global averaging step at time step 0 < ¢ < T, which
is carefully chosen from specified distribution, we can make sure that in expectation local models
converge with the same rate as yr.

Estimating Time and the Learning Rate. In parallel with the above algorithm, each agent maintains
a local time value V¢, which is estimated using a local “phase clock” protocol. These local times are
defined and updated as follows. The initial value at each agent is V* = 0. Upon each interaction,
the interacting agents ¢ and j exchange their time values. The agent with a lower time value, say
V' < V7, will increment its value by 1(ties are broken arbitrarily). The other agent keeps its local
value unchanged. (We break ties arbitrarily.) Although intuitively simple, the above procedure
provides strong probabilistic guarantees on how far individual values may stray from the mean: with
high probability/'|all the estimates V¢ are in the interval [t/n — clog T, t/n + clog T, where cis a
constant.

Given the current value of V' at the agent, the value of the learning rate at i is simply n° = b/(nVi+a),
where a and b are constant parameters which we will fix later. This will ensure that the gap between
two agents’ learning rates will be in the interval [0.5, 2], w.h.p. (See Lemma )

4 THE CONVERGENCE OF POPSGD IN THE CONVEX CASE
This section is dedicated to proving that the following result holds with high probability:

Theorem 4.1. Let f be an L-smooth, {-strongly convex function satisfying conditions (2.3)—
(2.5), whose minimum x* we are trying to find via the PopSGD procedure given in Algorithm [I}
Let the learning rate for process i at local time t' = nV/ be ni = b/(t' + a), where a =
max(2cnlog T, 18n,256L/¢) and b = 4n/l are fixed(for some constant c). Let the sequence

of weights wy be given by w; = (a + t)%. Define s = >, X{, St = ZtT:_Ol wy > T3 and
yr = é Zz:ol wept. Then, for any time T, we have with probability 1 — O(1/ poly T') that

a0 GAT(T +2a) , 9216Tn?
E — N < _ 2
[f(yr) — f(2")] < 2STIIAto i + 75

Discussion. We first emphasize that, in the above bound, the time 7' refers to the number of
interactions (as opposed to parallel time). With this in mind, we focus on the bound in the case
where T' > n, and the parameters M, L, and ¢ are assumed to be well-behaved. In this case, since
St > T3/3, the first and third terms are vanishing as 7' grows, and we get that convergence is

o ||? + M?L. 4.1)

! An event holds with high probability (w.h.p.) if it occurs with probability > 1 — 1 /T, for constant y > 0
and the total number of interactions - 7.
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dominated by the second term, which can be bounded as O(c?/T). It is tempting to think that this is
roughly the same rate as sequential SGD; however, our notion of time is different, as we are counting
the total number of SGD steps executed in total at all the models. (In fact, the total number of SGD
steps up to 7" is 27, since each interaction performs two SGD steps.)

It is interesting to interpret this from the perspective of an arbitrary local model. For this, notice
that the parallel time corresponding to the number of total interactions 7°, which is by definition
T, = T/n, corresponds (up to constants) to the average number of interactions and SGD steps
performed by each node up to time 7'. Thus, for any single model, convergence with respect to its
number of performed SGD steps 7}, would be O(a?/(nT})), which would correspond to running
SGD with a batch size of n. Notice that this reduction in convergence time is solely thanks to the
averaging step: in the absence of averaging, each local model would converge independently at a
rate of O(c02 /T,,). We note that our discussion assumes a batch size of 1, but it would generalize to
arbitrary batch size b, replacing o with 02 /b. We note that, due to the concentration properties of
the averaging process, the claim above can be extended to show convergence behavior for arbitrary
individual models (instead of the average of models pi7).

Proof Overview. The argument, given in full in the Additional Material, can be split into two steps.
The first step aims to bound the variance of the local models X at each time ¢ and node i with
respect to the mean p; = Y., X;/n. It views this quantity as a potential I';, which we show has
supermartingale-like behavior, which enables us to bound its expected value as O(n?n). This shows
that the variance of the parameters is always bounded with respect to the number of nodes, but also,
importantly, that it can be controlled via the learning rate. The key technical step here is Lemma[.3]
which provides a careful bound for the evolution of the potential at a step, by modelling SGD as
a dynamic load balancing process: each interaction corresponds to a weight generation step (in
which gradients are generated) and a load balancing step, in which the “loads” of the two nodes
(corresponding to their model values) are balanced through averaging.

In the second step of the proof, we first bound the rate at which the mean p; converges towards x*,
where we crucially (and carefully) leverage the variance bound obtained above. This is our second
key technical lemma. Next, with this in hand, we can apply a standard argument to characterize the
rate at which the quantity E[f(yr) — f(z*)] converges towards 0.

Notation and Preliminaries. In this section, we overview the analysis of the PopSGD protocol. We
begin with some notation. Recall that n is the number of nodes. We will analyze a sequence of time
stepst =1,2,...,T, each corresponding to an individual interaction between two nodes, which are
usually denoted by 7 and j. Recall the definition of parallel time T, = T /n, where T counts the
number of pairwise interactions. For any time ¢, define by 1, = b/(a + t) the “true” learning rate at
time t, where a and b are constants to be fixed later, such that a > 2cn log n for some constant c. We
denote by z* the optimum of the function f.

Learning Rate Estimates. Our first technical result characterizes the gap between the “global”
learning rate 7, = b/(a + t) (in terms of the true time ¢), and the individual learning rates at an
arbitrary agent ¢ at the same time, denoted by 7;.

Lemma4.2. Let n_ti = b/(a+nV}}), be the learning rate estimate of agent i at time step t, in terms of
its time estimate V. Then, there exists a constant v > 1 such that, with probability at least 1 — 1/T7
(Here, T is a total number of steps our algorithms takes), the following holds for everyT' >t > 0
and agent i:

<t -9 (4.2)
77t

Step 1: Parameter Concentration. Next, let Xt be a vector of model estimates at time step ¢, that
is Xy = (X}, X?,..., X["). Also, let yuy = + Z X!, be an average estimate at time step ¢. The

following potential function measures the concentratlon of the models around the average:
i 2
Iy = Z [ X¢ — pel]”
i=1

With this in place, one of our key technical results is to provide a supermartingale-type bound on the
evolution of the potential I', in terms of M, 7;, and the number of nodes 7.
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Lemma 4.3. For any time step t and fixed learning rate n; used at t, we have the bound
1 I\ 1/2
E[T,1|Ty] < (1 - 5)rt + 47,tM(;t) + 82 M2,

Next, we unroll this recurrence to upper bound I'; in expectation for any time step ¢, by choosing an
appropriate series of non-constant learning rates.

Lemma 4.4. Ifa > 18n, then the potential is bounded as follows
E[Ty] < 36nb?/(t + a)*M? = 36nn? M>.

Step 2: Convergence of the Mean and Risk Bound. The above result allows us to characterize how
well the individual parameters are concentrated around their mean, in terms of the second moment
of the gradients, the number of nodes, and the learning rate. In turn, this will allow us to provide
a recurrence for how fast the parameter average is moving towards the optimum, in terms of the
variance and second-moment bounds of the gradients:

Lemma 4.5. For n, we have that

n
S wr

it1 — T H (] _L> E” — || _%E[f('ut)_ f(x )]+ - o tn .

B

Finally, we wish to phrase this bound as a recurrence which will allow us to bound the expected risk
of the weighted sum average. We aim to use the following standard result (see e.g.|Stich|(2018))):

Lemma 4.6. Let {a;}i>0, ar > 0, {e;}1>0, ex > 0 be sequences satisfying
a1 < <1 - Eat)at are A+ atB + af’C

for oy = A>0,B,C>0,¢>0 then

_4
(t+a)

a3 27(T + 2a) 16T
il E < = .
ST Wil = 45 Qg + EST B + £2ST C, (4 3)

forw, = (a +t)? andST—Zt o wr > T3

To use the above lemma, we set 7, = noy = and the parameter b = 4n/l. We also

4n
(t+a)’
use A = 1/2, B = 160% and C' = 288M*Ln?. Let yr = -7 S 1w X, Also, let
2
ev = Elf () = f(a")] and a; = E| [ - *
Using convexity and Lemma@]above we obtain the following final bound:

647 (T + 2a) 921672
]E _ * * 2 2

[f(yr) = f(z")] < 25 L — a2 + 5, 75
To complete the proof of the Theorem, we only need to find the appropriate value of the parameter

a. For that, we list all the constraints on a: a > 2cnlogT,a > 18n and Z(tJra) < 64L These

M?L. (4.4)

inequalities can be satisfied by setting a = max (2cn log T, 18n, 256%). This concludes our proof.

5 EXTENSIONS

Convergence of local models and alternative to computing yr. Notice that Theoremd. I measures

T-1 X} T-1
convergence of f(yr), where yr = 3, g”—;z’Tl =D i—0 §-H is a weighted average of

we-s per step. Notice that actually computing yr can be expenswe since we need values of local
models over T steps and it does not necessarily guarantee convergence of each individual model. In
order to circumvent this issue, we can look at the following inequality, which in combination with the
Jensen’s inequality gives us the proof of Theorem [.1] (Please see Appendix for details) :

T-1
1 647 (T + 2a) 921672
- E E _ * z* 2 SRS T A 2 JarbL i
ST vt Wt [f(/’(‘t) f(l‘ )] — 25 ||/’l/ || + KST g gst

What we can do is, instead of computing y7, we just sample time step 0 < ¢ < T"— 1 with probability
5+ and compute f(p:) = f (>°i, X/ /n), by using single global averaging procedure. Observe that
E[E,, [f (k)] is exactly the left hand side of the above inequality.

7
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Hence, we get the convergence identical to the one in Theorem 4.1] and additionally, since we are
using global averaging, we also guarantee the same convergence for each local model. Finally, we
would like to emphasize that in practice there is no need to compute y7 or to use global averaging,
since local models are already converged after 7" interactions.

General Interaction Graphs. Our analysis can be extended to more general interaction graphs by
tying the evolution of the potential in this case. In the following, we present the results for a cycle,
leaving the exact derivations for more general classes of expander graphs for the full version. In
particular, we assume that each agent is a node on a cycle, and that it is allowed to interact only with
its neighbouring nodes. Again, the scheduler chooses interaction edges uniformly at random. In this
setting, we can show the following result, which is similar to Theorem @

Theorem 5.1. Let f be an L-smooth, {-strongly convex function satisfying conditions (2.3)—(2.5),
whose minimum x* we are trying to find via the PopSGD procedure on a cycle. Let the learning rate
for process i at local time t' = nV,! ben! = b/(t'+a), where a = max(2cn log T, 18n, 256 L /{) and
b = 4n/{ are fixed(for some constant c). Let the sequence of weights w; be given by wy = (a + t)2.
Define py = >y X{, St = ZtT:_Ol wy > +T% and yr = é ZtT:_Ol wypig. Then, for any time T,
we have with probability 1 — O(1/ poly T') that

a*l o 2 4 647 (T 4+ 2a) o = 256007n°

Blf(yr) = f@)] < gl = 2| 5y 0 T T Bsy

M?IL2.

Notice that for T >> n3, the second term dominates convergence and we can repeat the same argument
as for Theorem [4. 1] - to show O(0?/T) convergence (where T is the total number of interactions).
Next we provide the sketch of a proof for the PopSGD on a cycle case. See section ?? in the appendix
for the proof sketch.

The Non-Convex Case. Next, we show convergence for non-convex, but smooth functions. The
Following theorem deals with the bounded gradient case:

Theorem 5.2. Let f be an non-convex, L-smooth, function satisfying assumption whose
minimum x* we are trying to find via the PopSGD procedure given in Algorithm[l| Let the learning
rate we use be n = n/\/> Then, for any T > n*:

2 (f(uo) — f(z*))  36LM? 2LM?
ZEHW )? < Vs R iR

Next, we show the similar result for the case when gradient is not bounded, but it’s variance is. This
can be achieved by carefully following steps given in the Lian et al.|(2017b).

Theorem 5.3. Let f be an non-convex, L-smooth, function satisfying condition 2.4} whose minimum
x* we are trying to find via the PopSGD procedure given in Algorithm[I} Let the learning rate we use
ben = n/\/> Then, for any T > 4624 max{1/L?, 1}n*, we have

2 o Elf(po)] — E[f(z7)] 402  32L%02 T768L2%02
ZTE”f =< \/T +ﬁ+ \/T + \/T .

Observe that, since T’ is the total number of interactions and is equal to nTp, where T, is a parallel
time, in both theorems, we get convergence O(1/vVT) = O(1//T,n). Which gives us 1//n

speedup over O(1/+/T) convergence of the sequential version. (Note that in the sequential case
parallel time and the total number of interactions are the same.)

Finally, we derive convergence for the case where gradient is bounded and function we are trying to
optimize satisfies the Polyak-t.ojasiewicz (PL) assumption with constant o. More formally, function
f satisfies the PL assumption with constant « if :

SEIVF()l? > af(ue) ~ F(2). 52)

We use a similar approach to|Haddadpour et al.| (2019)), but, our tighter analysis of I" potential allows
us to remove global synchronization.

Theorem 5.4. Let [ be an non-convex, L-smooth, function satisfying assumption and PL-
assumption with constant «([5.2), whose minimum x* we are trying to find via the PopSGD procedure
8
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given in Algorithm Let the learning rate at time step t be 1, = ﬁ@ocal learning rates at time
T; are n} = %) Then for a > 2cnlog T and time T, with probability 1 — O(1/ poly T') we
have
a? 4608 L2 M?>n>T 64LM?
E —flx") < ——=(E — * .
[f(MT)] f(l ) = (G+T)3( [f(/u’())] f(.T )) + a3(T+a)3 + Oég(T—‘rG,)

Observe that as in Theorem[4.1] this gives us a linear speedup over the sequential version.

6 EXPERIMENTAL RESULTS

In this section, we validate our results numerically by implementing PopSGD in Pytorch, using
MPI for inter-node communication [MPI. We are interested in the convergence behavior of the
algorithm, and in the scalability with respect to the number of nodes. Our study is split into simulated
experiments for convex objectives—to examine the validity of our analysis as n increases—and large-
scale real-world experiments for non-convex objectives (training neural networks), aimed to examine
whether PopSGD can provide scalability and convergence for such objectives.

Convex Objectives. To validate our analysis in the convex case, we evaluated the performance
of PopSGD on three datasets: (1) a real-world linear regression problem (the Year Prediction
dataset |Chang and Lin| (2011)) with a 463,715/51, 630 test/train split, and d = 90; (2) a real-
world classification problem (gisetfe Chang and Lin| (2011)) with 6,000/1, 000 test/train split, and
d = 5000; (3) a synthetic least-squares problem of the form with f(z) = 1||Az — b||?, where
A c R™*4 and b € R™, with m = 10* and variable d. As a baseline, we employ vanilla SGD with
manual learning rate tuning. The learning rate is adjusted in terms of the number of local steps each
node has taken, similar to our analysis.

PopSGD Year Prediction batch size=256 PopSGD Gisette batch size=128

S e N 0.5

PopSGD-n=10
—— POpSGD-n=100
POPSGD-n=1000

—— PopSGD-n=10000
—— sGD

o
i

135

Test Loss
—
W
=y
Test Loss
o
w

o
N

POpSGD-n=10
—— PopSGD-n=100

POpSGD-n=1000
—— PopSGD-n=10000
—— sGD

2 5 10 15 20 5 10 15
Epochs Epochs

0.1

(a) PopSGD test loss vs. n on Year Prediction. (b) PopSGD test loss vs. n on Gisette.

Figure 1: PopSGD convergence (test loss at the step versus parallel time) for various node counts n on a real
linear regression (left) and logistic regression (right) datasets. The baseline is sequential SGD, which
is identical to PopSGD with node count 1.

Our first set of experiments examines train and test loss for PopSGD on the real-world tasks specified
above. We examine the test loss behavior with respect to the number of nodes n, and execute
for powers of 10 between 1 and 10000. Each node obtains a stochastic gradient by sampling 128
elements from the training set in a batch. We tuned the learning rate parameter for each instance
independently, through line search, and obtained learning rates in the interval [0.0005, 0.015] for
Gisette, and [0.05,0.2] for Year Prediction.

Please see Figure [I(b)|for the results.(The number of epochs is cropped to maintain visibility, but
the trends are maintained in general.) The results confirm our analysis; notice in particular the clear
separation between instances for different n, which follows exactly the increase in the number of
nodes, although the X axis values correspond to the same number of gradient steps for the local
model. In Appendix [B| we present additional experiments which precisely examine the reduction in
variance versus the number of nodes on the synthetic regression task, confirming our analysis.

Training Neural Networks. Our second set of experiments tests PopSGD on the CSCS Piz Daint
supercomputer, which is composed of Cray XC50 nodes, each with a Xeon E5-2690v3 CPU and
an NVIDIA Tesla P100 GPU, using a state-of-the-art Aries interconnect. For this, we implemented

9



Under review as a conference paper at ICLR 2020

PopSGD in Pytorch using MPI one-sided primitives [MPI, which allow nodes to read eachothers’
models for averaging without explicit synchronization. We used PopSGD to train ResNets on the
classic CIFAR-10 and ImageNet datasets.

Training proceeds in epochs, each of which is structured as follows. At the beginning of each epoch,
we shuffle the dataset and partition it among processes. Notice that, in data-parallel SGD, an epoch
ends after each process iterates exactly once over its partition, i.e. each sample is seen once. However,
Theorem [ T] suggests that, for PopSGD, processes should iterate several times over their partitions,
for the corresponding gradient information to be propagated. To match this, we introduce a multiplier
constant mult, which counts the number of times each process will iterate through its partition before
an epoch is complete. At the same time, we scale down the total number of epochs executed by n,
the number of nodes. In practical terms, if sequential SGD trains ResNet50 in 90 epochs, decreasing
the learning rate at 30 and 60 epochs, then PopSGD with 32 nodes and multiplier 4 would use
90 * 4/32 ~ 12 epochs per node, decreasing the learning rate at 4 and 8 epochs.

Since PopSGD scales almost linearly in terms of time per epoch (see Figure 2, middle), this should
ensure end-to-end speedup for PopSGD. In particular, for ResNet50, we obtain a 2x end-to-end
time-to-convergence speedup versus data-parallel SGD. Figure 2]shows the test and train accuracies
for the ResNet18 model trained on the ImageNet dataset, with 32 Piz Daint nodes and mult = 4, as
well as scalability versus number of nodes. The hyperparameters used for model training are identical
to the standard sequential recipe (batch size 128 per node), with the number of epochs scaled down to
12 per node.

Test accuracy Scalability graph Timing comparison

—e— Timefbatcn
100 Y=001X +08

Accuracy (%)

5
Time per batch (s)

Time per batch (s)

—e— popsgd-32
- baseline

0 10000 20000 30000 40000 50000 > 4 6 6 W 2oL 2 ) » 2
Steps Number of workers

Figure 2: PopSGD test accuracy using 32 nodes on Piz Daint, measured at a fixed arbitrary node. The X axis
measures SGD steps per model, whereas the Y axis measures Top-1 accuracy. The dotted red line
is the accuracy of the Torchvision baseline. PopSGD surpasses the test accuracy of the baseline by
0.34%, although it processes each sample 4 x less times, and each model sees 8 X less gradient updates.
The third graph shows the average runtime per batch for PopSGD (center) versus DA-PSGD

and SGP on the same setup.

The results suggest that PopSGD can indeed preserve convergence, while being scalable and
competitive with state-of-the-art algorithms. Appendix [B| presents additional experiments for
ResNet50/Imagenet and ResNet20/CIFAR-10, which further substantiate this claim.

7 DISCUSSION AND FUTURE WORK

We have analyzed the convergence of decentralized SGD in the population model of distributed
computing. We have shown that SGD is able to still converge in this restrictive setting, and moreover,
under parameter and objective assumptions, can even achieve linear speedup in the number of agents
n in terms of parallel time. The empirical results confirmed our analytical findings. The main
surprising result is that PopSGD presents speedup behavior roughly similar to mini-batch SGD, even
though a node only sees one gradient update and a single model at a time. Our work opens several
avenues for extensions. One natural direction is to study PopSGD with quantized communication,
or allowing the interactions to present inconsistent (stale) model views to the two agents. Another
avenue is to tighten the bounds in terms of their dependence on the problem conditioning, and on the
objective assumptions.
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A SUMMARY AND COMPARISON OF RESULTS

In this section we compare convergence rates of existing algorithms, while specifying the bounds
they require for convergence. In the tables T-corresponds to the parallel time and n is a number of
processes. We use the following notations for needed bounds:

o2 - bound on the variance of gradient.

M2 - bound on the second moment of gradient.

PL - Polyak-t.ojasiewicz assumption.

d - bounded dimension.

p - bounded spectral gap of the averaging matrix.

T - bounded message delay.

AN o e

Global synchronization ~ Assumptions Convergance
Rate
PopSGD NO %, M? O(1/Tn)
Local SGD YES %, M? O(1/Tn)

Table 1: convex case

Global synchronization =~ Assumptions Convergance
Rate
PopSGD NO o2, M? O(1/V/Tn)
PopSGD NO o, M? PL O(1/Tn)
PopSGD NO o? O(1/V/Tn)
LUPA-SGD YES 0%, M?, PL O(1/Tn)
AD-SGD NO o2, p,T O(1/V/Tn)
SGP NO o?,d,T O(1/V/Tn)

Table 2: non-convex case

B ADDITIONAL EXPERIMENTS

Convex Losses. In these experiments, we examine the convergence of PopSGD versus parallel time
for different node counts, and compared it with the sequential baseline. More precisely, for PopSGD,
we execute the protocol by simulating the entire sequence of interactions sequentially, and track the
evolution of train and test loss at an arbitrary fixed model z? with respect to the number of SGD steps
it performs. Notice that this is practically equivalent to tracking with respect to parallel time. In this
case, the theory suggests that loss convergence and variance should both improve when increasing
the number of nodes. Figure presents the results for the synthetic linear regression example with
d = 32, for various values of n, for constant learning rate = 0.001 across all models, and batch
size 1 for each local gradient. Figure [3(b)compares PopSGD convergence (with local batch size 1)
against sequential mini-batch SGD with batch size equal to the number of nodes n.

Examining Figure [3(a)] we observe that both the convergence and loss variance improve as we
increase the number of nodes n, even though the target model executes exactly the same number of
gradient steps at the same point on the x axis. Of note, variance decreases proportionally with the
number of nodes, with n = 128 having the smallest variance. Compared to mini-batch SGD with
batch size = n (Figure[3(b)), PopSGD with n = 128 has similar, but notably higher variance, which
follows the analytical bound in Theorem 4.1}

CIFAR-10 Experiments. We illustrate convergence and scaling results for non-convex objectives
by using PopSGD to train a standard ResNet20 DNN model on CIFAR-10 in Pytorch, using 8 GPU
nodes, comparing against vanilla and local SGD performing global averaging every 100 batches (we
found this value necessary for the model to converge). We measure the error/loss at an arbitrary
process for PopSGD. We run the parallel versions at 4 and 8 nodes.
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(a) PopSGD convergence vs. n. (b) PopSGD convergence vs. mini-batch SGD.

Figure 3: PopSGD convergence (training loss at the step versus parallel time) on the synthetic regression task
versus the number of nodes n (left), and versus sequential SGD with different batch sizes (right).
Sequential SGD is identical to PopSGD with node count 1. The cutouts represent zoomed views.
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The results in Figure show that (a,b) PopSGD does indeed converge faster as we increase
population size, tracking the trend from the convex case; and (c) PopSGD can provide non-trivial
scalability, comparable or better than data-parallel and local SGD.

Training ResNet50 on ImageNet. Figure ] shows the test and train accuracies for the ResNet50
model trained on the ImageNet dataset, with 32 Piz Daint nodes and mult = 4. PopSGD achieves
test accuracy within < 0.5% relative to the Torchvision baseline, despite the vastly inferior number
of iterations, in a total of 29 hours. By way of comparison, end-to-end training using standard
data-parallel SGD takes approximately 48h on the same setup.

C COMPLETE CORRECTNESS ARGUMENT

Lemma Let 17_2 = b/(a+nV}}), be the learning rate estimate of agent i at time step t, in terms of
its time estimate V. Then, there exists a constant v > 1 such that, with probability at least 1 — 1/T7
15



Under review as a conference paper at ICLR 2020
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Figure 4: PopSGD train and test accuracy using 32 nodes on Piz Daint, measured at a fixed arbitrary node, for
training ResNet50 on ImageNet. The round multipler value is mult = 4. The X axis measures SGD
steps per model, whereas the Y axis measures Top-1 accuracy. The dotted red line is the accuracy of
the Torchvision baseline (Marcel and Rodriguez, |2010). PopSGD is below the test accuracy of the
baseline by < 0.5%.

(Here, T' is a total number of steps our algorithms takes), the following holds for every T' > t > 0
and agent i:

< <2 (C.1)

3‘3

N | =
=

Proof. Let Gt = Z exp ( (v )) + Z exp ( (Vv — %)) for some fixed constant . The

following lemma i 1s proved as Theorem 2. 10 1n Peres et al.| (2015b):

Lemma C.1. For anyt > 0, and some fixed constants € and 9, E[G;] < Ce

Subsequently, we can show that for any ¢ > 0 and agent 4:

Markov 40 n
< —_——
- (eT1
Hence, for large enough constant g, using union bound over 7" steps, we can show that there exists a
constant y > 0 such that for every T > ¢ > 0 and agent i, | £ — V} [< ¢ log T', with probability at
least 1 — 1/77.

Let c be %, thus a > 2cnlogT = Z%n log T'. This allows us to finish the proof of the lemma:

Pr | — V=2 logT < Pr[G' > T (C2)

g aq
<a+t CnlogT e a+t+cn10gT<

—— < (C.3)
a-+t gl a+t

]

| =

This allows us to bound the per step change of potential T, in terms of global learning rate 7;.

Lemma[.3] For any time step t and fixed learning rate 1, used at t, we have the bound

1 N2,
E[l,41|T] < (1 _ E)Ft +4ntM<;) + 82 M2.

Proof. First we bound change in potential Ay = I'; 1 — I'; for some time step ¢ > 0. Let Ai’j be
a change in potential when we choose different agents ¢ and j at random and let A} be a change in
potential when we select the same node 7. We get that

E[alx] =3 LE[aMx] + 3 E[Allx,]. oz
i=1

i i
16



Under review as a conference paper at ICLR 2020

We proceed by boundmg a change in potentlal for fixed i # j. Observe, that in this case

Hir1 = Mt — (mgz(X ) + mgy( ))/n and Xt+1 = Xt+1 = (X + XJ)/2 - (mgl(X ) +
1.9;(X7))/2.

Hence,

i j i 2 i j~ j
Xipr = perr = Xy — ey = (X] + X7)/2 - T(ntgz(Xt) +0{9;(X7)) — pe
For k ¢ {i,j}, since X, ; = X} we get that
Lo iv iy j~ (i
Xter = ey = XE 4 — (016 (X7) + {5, (X7)) = pe-

This gives us that
E[A1X] = B[]+ X7)/2 = "= 05 (X + g (X)) — el = 1 = pu

+ || (X + X7)/2 = "2 i (X)) + 0l (X)) — a2 = X7 — e

. o 2
£ (Bt + g xh g o) — | - IxE - wl?)
k¢{i.g}
= 20X = )2+ (X] = ) 20 = X = gull? = 1XT = 2

N=2 iy i~ (i i j
E(migi(X1) + 07 g5 (X7), (X¢ — pe) + (X] — )
n—2 o
2( ")l () + o (5 P

o 1 o o
+ Z( (ngi( )+nigj(X£),Xf—ut>+ﬁEllmgi(Xt)+mgj(X§)||2)

k¢{i.j}
Observe that
i @ . Lemma[2

Ellnigi (X)) 4m s (XD < 200G (XD 20m 2l (XD < 20 () +0)?) " 1602007,
and

D E(mgi(X7) + nig;(XT), XE — ) = 0.

k=1
Thus, we have that

E[AVIX] < 2] = m)/2+ (X = o) /2017 = X = el = 1T =

— E(nigi(X{) +mlg;(X7), (X} — o) + (X] = o))
16
2 2 M2
+ 3207 (“ = ) M+ Y oM
k¢ {i, J}
—1X7 = /2 = 1 X7 = gl /2 + (X7 = e, X7 — o)
— E(nigs(X]) +nl 95 (X]), (X] = pe) + (X] — o))
L8 B
similarly we can prove that
E[A11X:] < ~Emigi(X0) +nii(X7), (X; = o) + (X] = o) +8n2M% @€
By using inequalities [C.6|and [C.7]in inequality [C.4] we get that

Bladx] = 3 LE[arix] + Y Le[anx]
i=1

IN

i iAg
1 i j 1 ’ )
= _Zzﬁ(||xt_ut”2/2+nxg_ut‘|2/2)+ZZE<Xt—Mt,Xf_MQ
i itj ralwy

17



Under review as a conference paper at ICLR 2020

722 E(nig:(X7) +mi 95 (X7), (X{ = pe) + (X] — o)) + 80 M.

Observe that
1, "1 1 ;
ZZE<Xt_Ut; Zﬁ Mt,ZX _EZ_HXI{_MtHZZ_i
i itj i=1 i i
and
1 i 2 j 2 2 -1
SO (1 = lPr2+ 17 — ell?/2) = = — el = “=T.

i i

Hence, we get that
E[AlX] < 7—722 E(0ig: (X0 + 03 (X7, (X3 =) + (X7 = ) + 872 M2 (C.9)

Further, we have that

ZZ E(nig: (X7) +nl 95 (X7]), (X] = ) + (X] — o))

:ZZ%W@(“ — ) +ZZ B3, (05). (X] = ) + 3 TG (X0 X = )

n 277 » ; ; Cauchy-Schwarz n 277 _ i i
=3 P xi ) S P () - 16 — gl

i=1 i=1

- 2i Jensen 277 i n 277iM
~ i i X 2 i i
= > g ] 1 — a2 S0 2 (Rl 1 — el < 30 2 — el
=1 =1 =1
Cauchy-Schwarz 477t M n

pll S (3o = pel) = s ()
i=1

By plugging above inequality in inequality@ we get that

Lemmd 477tM i
> -

T T\ 1/2
E[A]X,] < —;t +4ntM<;t) + 82 M2,

Hence, considering the definition of A; and the fact that the above inequality implies
1 Li\1/2 9 9
E[AL)) < ——T +4ntM<Z) + 82 M

we get the proof of the Lemma. U]

Lemma[@d.d] Ifa > 18n, then the potential is bounded as follows
E[T;] < 36nb?/(t + a)*>M? = 36nn? M?.

Proof. We prove the lemma using induction. Base case ¢t = 0 tr1v1a11y holds, since I'y = 0. For
induction step, we assume that at time step ¢, E[I';] < 36nb*M?/(t + a)?. Our goal is to prove that
E[l41] < 36nb2M?2/(t +a+ 1)2.

BIL 1) = BBl S (

I\ 1/2
1 7>E[I‘t] +4mM1E[( ) } + 82 M?
Jensen 1 T, 1/2 9
< (1-= 1t
<1 n)]E[m +4ntM<E[nD +82M
1\ 36nb>M? 242 M? 8b2 M2
<(1--) —+ _ _
n/ (t+a) (t+a) (t+a)
36nb%M?> (3611sz2 36nb2M? ) 4b> M2
“(t+ta+1)? (t+a)?2 (t+a+1)? (t+a)?
18
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3662 M2 36nb>M? (Q(t +a)+ 1) Ab2 M2
(t+a+1)2 (t+a)2t+a+1)2  (t+a)?
36nb2M? 200’ M (t+a+1) 4P M?
T (t+a+1)?  (t+a)l(t+a+1)2  (t+a)?
Using the fact that t + a + 1 > a > 18n in the above inequality allows us to get
36nb>M? 4b2 M*? 4b% M2 36nb>M?
E[lt ] < z T 2 2 = 2°
(t+a+1) (t+a) (t+a) (t+a+1)

Lemma@ For ny < g4, we have that

2
Bl — 2| < (1= BV Bl 2P -

160%n? 28803 M?L
5 +
n n

SE[f () = f(@)] +

Proof Let F}; be the amount by which p; decreases at step t. So, Fy is a sum of gl(X ‘) and

7 g(X tj) for agents ¢ and j, which interact at step ¢. Also, let F} be the amount by which ; would
decrease if interacting agents used true gradients. That is, for agents 7 and j which interact at step ¢,

F/is sum of "V f(X}) and "2V f(X7).

2 2 2
]EHMH—I*H :]EHut—Ft—x*H :EHut—Ft—x*—FHFt’

2
+2E(p — o ~ F/,F/~ F) (CI0)

Observe that E[F}] = F}, hence the last term in the equation above is 0. This means that in order to

2
:]E‘utfx*th'

¢ — Fi

2 2 2
upper bound EHMtH —a*|| , we need to upper bound JE‘ e —a* — Ff — FtH .
For the latter, we get that
2 J 2
i un
B|r - R = L S B B - v + 25 - v
1=1 j=1
J
~ xri i Ui ~ j j
§n222<( B Ellgixh) - vree P+ (1) E||gj<Xz>Vf<Xz>||2)
1=1 j=1
4 & ni 2 i Fact 4 ni 2 Lemma[D 0—2772
=S () mlm ) - v ET Ay (1) g e T
i=1 i=1

For the former, we have that

2
Bl —2* — B[ =Bl — 27| + BIFI? - 2B — 2, F)

— Bl — 2| + ZZEH”tw )+ m el

=1 j=1

_ = Z2E<,ut—:v* ntVf( )+7vaf(Xg)>

11]1

< Bl — | + Z (i EIV (XD~ — ZE<‘“ — V(X))

n

=Bl — 2*|? + Znt VEIVS(X]) ~ V()] - Z< — X{+ X[ = iV (X))

19
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= Bl — 7| + Zm 2|V f(X]) — V(") - anﬂa< - X[, VIXD)

S E(X KD oy
=1

In order to bound ||V f (X])—V f(z*)||? we can use the L—smoothness property for convex functions,
in the following form

1
fy) = f(@) + (Vf(2),y = 2) + 57 V) = V@) (C.12)
By setting y = X} and x = x* we get
IVF(XD) = V@@)I* < 2L(F(X) = f(=7)). (C.13)
Additionally, by /—strong convexity, we have that
. . . ‘.
= (Xi—a" VKD ) < —(F(XD) - @) = 51X - a7 (C14)

By Cauchy-Schwarz inequality, we get that
~2(pn — X}, VI(X])) < 2LIX] — ol + VS XD/ 2L)

= 2L|| X} — we|® + [V F(X]) = V f(2)|IP/(2L)
Using L—smoothness property (C.13) in the above inequality gives us that

=2 = X{, VX)) < 2LIXE = il + (F(XD) = f(@"). (C.15)
By plugging inequalities (C-13)), (C-14) and (C.T3) in inequality (C.IT)), we get

* 2 * 4L - 7 i
Bl - 2* — F| <Ellu - ||2+ﬁzntu<:nxt — el
i=1
8L 2 % * 2 - A i *
to3 (m) E[f(X}) — f(z )}—ﬁZmE[f(Xt)—f(x )]
i=1 i=1

T2 E nE||X; —z H2
i=1

Observe that E|| X} — z*||%, E|| X} — u]|? and E[f(X}) — f(«*)] are non-negative terms, Thus, by
using Lemma[4.2]in the above inequality we have that:

py — 2" — Ff

2 * 8L77t - i
< Eflp — 2| + 2 D EIXE - pe?
i=1

2 n -
# 5 SR < 1) = 5 DB - )

77t€ i
ZEHX ||

B

% 8L77t i
= Bl + O S B
i=1

2 <(32Lm ~ DB (X — Fla)] - X - mﬁ).

n

By using 7, < g77 in the above inequality we get that

20
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]E‘,utfx*—Ft'

2 * 8‘[/’715 - 7
< Ellpe — ¥ + 2 ZEHXt — e|?
=1

n

o (— SELF(XD) — )] — (B X - x*||2>.

By Jensen’s inequality and convexity of f and square of norm we have that

Bl — o = LF| < Bllu - 2" 2+ 257 > EIIX] - pull?
=1
n 1 . .
+ nt<_ QE[f(Mt) = f@")] — Bl — = |2>
et - " g Sl
= (1= L)l — 211 = JEELf () — fla™)] + —5 EIL)
Lemmaid] 77756 z* 2 Nt *
< _ =
< (1= LBl — 22 = LB () — £@)]
28812 M2L
4o A
n
Finally, by using the above inequality in inequality (C.I0) we get
2 1602n? 288 M>L
ok _ 12 _ ﬂ _ * nt nt
e e (o P Wl

L]

Theorem @1} Let f be an L-smooth, (-strongly convex function satisfying conditions (2.3)—
(2.5), whose minimum x* we are trying to find via the PopSGD procedure given in Algorithm m
Let the learning rate for process i at local time t' = nV/ be ni = b/(t" + a), where a =
max(2cnlog T, 18n,256L/¢) and b = 4n/{ are ﬁxed(for some constant c). Let the sequence
of weights w; be given by w; = (a + t)%. Define y; = Z?zl X}, Sy = ZtT;Ol wy > %TS and
yr = é ZZ:Ol wypie. Then, for any time T, we have with probability 1 — O(1/ poly T') that

. 64T(T + 2a 9216Tn?
BLf(r) ~ 1) < getllno — o)+ HEEE 2 g2 I g2y,

Proof We use Lemma4.6|to solve the recurrence given by Lemma@ For this we set 7; = noy =
e(t+a) That is, we set parameter b = 4n/¢. We also use A = 1/2, B = 1602, and C' = 288M?Ln?.

This way we can rewrite Lemma4.3]as :

2
Eluer = | < (1~ Bl — 2|2 = AcuB[f () — f(a")] + Bog + Ca.
2
Further, let y7 = nST Dy Zt 0 L, X7, Also, let e, be E[f (1) — f(2*)] and a; = E‘ e —a*
By convexity of f we have that
1
Elf(yr) = f@")] < & > wiB[f () — f(2*)] (C.16)
=0
Using this fact and the Lemma[d.6] we obtain the following.
. 1o BAT(T +2a 9216Tn?
Bl (r) — f(0)] < e 0 a2 4 LT 2o SV ey e

—25 5. ° T sy

21
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what is left is to find the appro rlate a. For that we remember all the constraints on a:

a > 2cnlogT,a > 18n and ta) +a) < giz- These inequalities can be satisfied by setting

a = max (20n logT', 18n, 2567)
]

D NON CONVEX ANALYSIS WITH PL-ASSUMPTION

In this section we deal with the case when the function we are trying to optimize is non con-
vex but it satisfies P L-assumption(5.2) with constant «. More formally, function f satisfies PL-
assumption(3.2)) with constant cv.

Theorem 5.4, Let f be an non-convex, L-smooth, function satisfying assumption [2.3] and PL-
assumptton(-) 5.2) with constant o, whose minimum x* we are trying to ﬁnd via the PopSGD procedure
given in Algorlthm Let the learning rate at time step t be 1y = Then, for any time T, we

it
have
. a? oo 460SL2M2n2T  GALM?
E[f(ur)] — f(z") < m(ﬂf@o)] — f(z")) + 3T+ a)? + 2T +a)
Proof.
L—smoothness L )
E[f (pt41)] < ELf (pee)] + BV f ()5 g1 — pe) + §EHMt+1 — | (D.1)
F(p)] + ZZ E(Y f(ju). - g,(x) - —gJ<XJ>> (D.2)
=1 j=1
PO ) + g (D3)
i=1 j*l
_ J
Flim) +ZZ BV f (), Z;N(XZ) - fg](XJ» (D.4)
1=1 j=1
L& . J _
2.0 E[n”“ KOI2 + 112, (x| ©.5)
=1 j=1
G Z RV (), )+ Z *Ellm xHIP. (D.6)

Using E[g;(z)] = Vf(z ) and property (2.5) we can rewrite the above inequality as

BLF o) < B )] + 3 ZECT 0 —§Vf<xé>> 3 L 7
= B1F ]+ 32 BT ). 9 0) - 9500 ©3)
- Z 2B ()| + Z (D.9)
< E[f ()] + Z B8 17 ) 2+ 9 ) - Vf(Xz‘>||2] (D.10)
—szﬂanw ||2+Z2L t)* (D.11)

= E[f(u)] + Z TV f ) ~ VXD - Z 2L £ ) 2 + Z .
(D.12)

22
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LemmalZ.2] n 2n ; n n n 8L772
)+ 3 PRIV ) — VHCEDIE = 3 B )2+ Y S g
i=1 i=1 i=1

(D.13)

L—smoothness n 2172 i 8L 2
< E () + Y S Bl — X = LBV (u)l? + =R M2 (D.14)
i=1
Recall that by Lemmawe have that E[T;] = "7 E|lue — X}||* < 36nn7? M2, hence the above
inequality becomes:

Elf (1)) — E[f (me)] <
Next we use P L-assumption(3.2)), which says that

SEIV I > a(f(u) — f(e)

T2L%n M? 8Ln?
e LRIV £ ()P + =M
n 2n n

Hence, we get that

2L M?  na N 8Ln?
E[f(p41)] — E[f (pe)] < Tt ; (f(ue) = f(=7)) + T;MQ-
This can be rewritten as:
N e’ " 7202} M?  8Ln?
E[f(pe )] = f(27) < (1 - %)(E[f(ut)] —f@))+ ———+—5-M*. (D15
Next as in the proof for convex case, we define w; = (a + t)? and we set 7, = a( ra 3 We get that
wy e (a+1)3a 4 (a+1)%a
Nt ( n ) 4an ( t+ a) 4an (t+a )
o Wt—1
<(a+t-1)P°—= :
( s =
By using this in inequality [D.13]and unrolling recursion we get that
T-1 T-1
wr . amn . wy T2L2n3 M*? wy 8Ln?
—(E — flz 1—-—)—(E — flx") + B e — M
(Bl ()] = £) < (1= S0 ML (o)) = (7)) ; P ; o
4 ada = 115202 M0 <= 32(t + a) LM?
=(1- ) =Z(E — f(x* ooer A A\t a)L M
(= DG EL )] = o)+ 3 = + 3 =
ada 1152L2M?nT  16(T + a)?LM?
< —(E — * .
< S B (o)) - F7) + e
Next we divide the above inequality by % = ﬂ . We get that
ad 4608 L2 M?n>T 64LM?
E —flz") < ———=(E — f(z" .
[F(ur)] = Fe*) < f s B o)l = F@) + =g b + ag
[

E NON-CONVEX ANALYSIS WITH CONSTANT LEARNING RATE

In this section we address the case when function we want to optimize is non-convex by using
constant learning rate over all iterations and process. Let our learning rate be eta. Observe that since
ne=mn =n < 2, Lemmaholds So, we get that

T.\1/2
E[lert]s(1—5)rt+4nM(;t) + 8 M2, (E.1)

Using induction as in the proof of Lemma .4] we can prove that the similar results holds for the
constant learning rate as well:
Lemma E.1. For any constant learning rate n and t > 0, we have

E[T,] < 36nn°M?2. (E.2)
Theorem 5.2} Let f be an non-convex, L-smooth, function satisfying assumption [2.3] whose

minimum x* we are trying to find via the PopSGD procedure given in Algorithm|[I} Let the learning
23
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rate we use be 1 = n/\F Then, for any T > n*:

L 2 o (f(po) — f(a*)) | 36LM®  2LM?
ZEHW )|I? < ¥ex e
Proof.
L—smoothness L )
E[f(pt41)] < E[f (pe)] + ECVf(pt)s prer — i) + §E||ﬂt+1 — put| (E.3)
—Ef(ut)]+ZZ%E<VJ”(M),—%@( D - g,x7)) ©4)
i—1 j—l
+ZZQ 5 X7) + gg(XJ)II2 (E.5)
=1 j=1
Mt +ZZ E Vf [it), _791( i)_fgj(X]» (E.6)
i=1 j= 1
EOY L[ + 1 2] E7)
=1 j=1
f () +Z E(V (), ~ 5s(X}) +Z—EH”~ Xl (ES)

Using E[g;(z)] = Vf(z ) and property (2.5) we can rewrite the above inequality as

B < B ) + 3 20T G, 20000 + 3 2 €9
= BLF ]+ 32 SHB( ), ¥ 00 = 060 E.10
-3 RIS el + 3 2 e 11

S (o)) + Z E[IV 7 (u)lI? + 1V.F () = VF(XD)] (E.12)

- 2RIl + Y 2 E13

~ 7 i ~ 7 ~ 2L
= Elf(u)] + 3 LBV F(u) — VA~ 3 LB )| + 30 2 a2
i=1 i=1 i=1
(E.14)
L—smoothness n L277 . n 2L772
< E = Ellp — X{|? — ZE||V P+ =—-M* (EI5
£ Rl + 3 TR X TEIO S+ S e
recall that by Lemma [E.1{we have that E[[y] = 7" | E||u — X;||* < 36nn>M?, hence the above
inequality becomes:

36L%3M? 7 2Ln?
Bf (1)) - B )] < e~ LIV + S0z ®16)
by summing the above inequality for¢ = 0to¢ =T — 1, we get that
T-1
36L%3M?  n 2Ln?
E[f(ur)] = f(o) < Y (B = ZEIVS(u)|? + —5-M?).  (E1D)

t=0
24
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From this we get that :

T-1
36L2 32 LoLn?
> LEIVF ()| < £(u0) — Elf () +z Z TR (@®18)

Note that E[f(ur)] > f(z*), hence after multlplylng the above 1nequahty by - we get that

1 n(f(u0) = J(@*)) 2L
T;EHVJC DIl < ”OTn — +36LMy? + .

Observe thatn = n / \/T < 1/n, since T > n*. This allows us to finish the proof:
- Z E||V f(u ||2 n(f (o) — f(z")) + 36LM*n + 2LM?n
Tn n n
(f(no) = f(2)) | 36LM?  2LM?
VT VT VT

]

Next we replace assumption 2.5 with assumption[2.4} We start by proving the following lemma:

Lemma E.2. For any time step t , we have:

4n? _
ElAX] < =~ + ZEH DI

Proof. First we bound change in potential Ay = I'; 1 — I'; for some time step ¢ > 0. Let Ai’j be
a change in potential when we choose different agents ¢ and j at random and let A} be a change in
potential when we select the same node 7. We get that

1 . 11
E[AdX] = 3N —E[AYX] + Y —E[Allx). ET9)
i i) i=1
We proceed by bounding a change in potential for fixed ¢ # j. Observe, that in this case _
prst = e —(0gi(X{) +0g; (X])) /nand Xiyy = X[y = (X{+X7)/2— (ngi (X)) +ng;(X7)) /2.
Hence,
; . ; . n—-2, _, .
Xivr = peer = Xipy = pent = (X3 + X)) /2 = == (0gi(X{) +19;(X7)) = pe-
For k ¢ {i,j}, since X, = X} we get that
1o
Xy — 1 = XF + ﬁ(ngi(Xt) +19;(X7)) — pe.
This gives us that
i, i j n—2 i ~ (xj i
E[Al1X] = B+ XP)/2 = S 0giX0) + gy (XD) = gl = 11X = g
Do n—2, _ o :
+ || (X + X7)/2 = "= g (X0 + gy (XF) — ael = 167 — gl
_ 2
3 (Bt o) () — |~ IXE — l?)
k¢ {ij}
= 20(X7 = po)/2+ (X] = 1) /201 = 1X7 — pel® = 17— pae?

n—20 i ~ (yj i j
E(ngi(X3) +ng; (X7), (Xg — pe) + (X{ — o))
n—2\2n i = (X TY[2
+2( ") Ellg (X + g (XD

_ ) 1 i _ .
+ 3 (RO gy (7). XE - ) + g Bllgi(X5) + gy (X))
k¢{i,j}

25



Under review as a conference paper at ICLR 2020

Observe that
S E (i (X5) + 0y (X7), X — ) = 0.
k=1
Thus, we have that
E[a71X] < 21X = w)/2+ (X — w207 = 1K) = el = 1X7 = 2
— B(ngi(X7) +ng;(X7), (X} — ) + (X7 — )
1 "2V (B3 ()12 + Ellg; (X7) 12 2771E~ N2 + B, (X7)|?
+47* (=) Ellg (XD +Eg;(XDIP) + > 5 Ellg (XD + Ellg; (XD)]1*)
ke {i.g}
—1X7 = pall?/2 = 1 X7 = el /2 + (X] = e, X] — )
— E(ngi(X7) +ng;(X7), (X{ — pe) + (X — )
+ 0 (B3 (XD + Elg; (X)) (EZD)

similarly we can prove that

IN

E[A11X.] < B0 (X)) (X)), (X} — ) + (X} — ) + 20°EIG(XD ). EZD
By using inequalities [E.2Tand [E.22]in inequality [E.I9 we get that

1 y "1
E [Atpq > —QE[At’J |Xt} +3 7E[A§|Xt}
i i#j " i1
1 i . 1 ; )
< =3 (1 = 2 X = l2/2) + 30N ;<Xt — o X{ = i)
i i) i i#j
— IE )4+ 09, (XD, (X7 — ) + (X] + — ]E 2
(ngi(X7) +ng; (X{), (X§ — pe) + (X§ — ) 19: (X112
Observe that
1 1 p 1 ; ) 1
ZZj( — g, X Zj MuZXt —Mt>=jz—”Xt—Mt|| Z—jrt-
[ i=1 JFi i
and
1 , ,
>3 (10 = wellP/2 4+ 17 = ul?/2) = — ll? =
i iE]
Hence, we get that
i j 2 S ~ (yri
[At|Xt} < ———ZZ B (g (X3)+15;(X7), (X =) +(X] —p))+= = > B (X7)]1*
i=1

(E.24)
Further, we have that

ZZ B i (X0) + 135 (X7, (X — ) + (X7 — pu)
z i S 20 i
—ZZ E(ni(XD). (X7 — u) +ZZ B0 (7). (X; — ) + 3 2PBG(X)), X — )
i=1

27} i i~ i 2n? - r
—Z B (G (X)), X ut<z( E|[5; X>||2+f||X — mall?) = tZEn DIP+ 55,
By pluggmg above inequality in inequality [E.24] we get that

4n?
BIAX] <~ + 20 ZEHgZ Il

Hence, considering the definition of A; we get the proof of the Lemma.
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[]
Lemma E.3.
ZEHgl H)? < 2ne? 4+ 12LE[T, +6n]E||ZVf B /n|? (E.25)
i=1
Proof.
Z;EHQZ DI = ZEng V(X)) + VXD

< 2ZEII§¢(XZ) = VAX)IP+2) E[VFXDI?
i=1 i=1

=23 E[g:(X;) - VXD
=1

+ 23 E|VAX)) = V() + V() = D VXD n+ Y VAXT) /nl?

i=1 j=1 j=1
<2) E|G(X)) = VAXDIP+6 Y EIVFX]) = Vi)l +6 D E| Y (V) — V(X)) n|?
i=1 i=1 i=1 j=1
+6Y B[ VX))l
i=1 j=1
< 2no? +6LZEHM XZ||2+—ZZE|W X]||2+6nIE||ZVf N/l
=1 =1 j=1 =1

= 2no” + 12LE[T,] + 6nE[| Y VF(X])/n|>.

i=1

L]
1
= 16VL
1 i .
E[Ts 1] < (1= J-)E[D] + 8i°0” + 240°E|| Y VF(X)/n]*. (E.26)
i=1
Observe that since ) ;- (1 — 1/4n)* = 4n, the above equation results in
Lemma E4.
T T—1
> E[G] < 32Tnn’c” + ) | 96nn’E|| Z VF(X1)/n|? (E27)
t=0 t=0 i=1

Now, we are ready to prove the following theorem

Theorem[5.3} Let f be an non-convex, L-smooth, function satisfying condition 2.4} whose minimum
x* we are trying to find via the PopSGD procedure given in Algorithm[I} Let the learning rate we use
ben = n/\F Then, for any T > 4624 max{1/L?, 1}n*, we have

Z L ()2 < B o)l ~Elf(@)] | 40® | 321707 | 768L%0>

JT VT VT T

Proof.

L—smoothness

Bl S EL )]+ BT Ga), e — ) + 5Bl — gl
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Pl + 32 BT (), X 506D

+§;§;122 I2u(x0) + g, (x7) 1P
S+ 323 B ), ~ 25050 = L)
+ZZ E|I2g:(XDI + 125 (x7)1?]
F () +Z E(V f (1), = 5:(X])) +2*EH*~( X1
=E[f(ut)]+;EE<Vf(ut)7— Z—En—~ ek

= E[f ()] + E| Y (V) = VD) /ml]? = LE[VF ()]

i=1

E|Zw i)/n H”Z*IEIIW (X))

<B{f () + B — LB )| - ”E|Zw D/l

12L77

4o°n?  24L%n?
c777Jr

7]
n2 E[Ft]

E| ZVf (X7)/n|?.

i=1
Next, we sum the above inequality from¢ =0to¢ =T — 1 and divide by 7.
We get'

Z ”f ”2 [f(ﬂO)] _ E[f(NJT 40 7} Z Ft + Z 24772L
Tn

T
12L77 2 — n i 2
Z EIZW’ D/nll? - ZFT]EIZW(XQ/“II
t=0 '

n

Lem,%am] E[f(uo)] — E[f (pr)] N 40?2 N 32n3 L2052 N Z 967 L2IEH va i) /|2

2
T n n = nT =
76811 L% 02 123040402 &
+T+ZTE”ZVJC /n|\2
t=0 i=1

n

- Z E|ZVf D/nl

Next we assume that < GTL and n < 1. This allows us to eliminate terms with
E| >0, Vf(X})/n||* multiplicative factor from the above inequality, hence we get:

T-1

n Elf(po)] — E[f(ur)] = 402n?  32n3L2%02?  768n*L%02
S gl < UL B er)] | a0 Bl | T8 Lo”
t=0

next, we divide the above inequality by :

T—1

1 E —E 40 76813 L0
Z*EHJC(M)HZS n( [f(MO)]Tn [f(,UT)]) + 0;77_’_32772L202+ 77n a ]
t=0
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Further, assuming that n < 1/n, we get:

n(B[f(no)] ~ Elf(ur)) 40’1 N 32nL*o® N 768nL70*
Tn n n n

T-1 1
S B () <
t=0

- ME[f(po)] ~E[f(aM)]) | 4o*n  32L%0*  768nL%0°
- Tn n n n
E[f(mo)] ~ Blf(a")] | 40®  32L%* 763"

VT VT VT VT

Observe that all the assumptions on 7 are satisfied for 7' > 4624 max{1/L?, 1}n*. []

F GENERAL INTERACTION GRAPHS

The crucial difference between interactions on arbitrary graph and interactions on clique graph comes
from the fact that we get different bound on Gamma potential.

In the case of arbitrary graph we can show that:
Ty 1/2
E[Les1|T7] < (1= ©0ha/m)T + bt (=) + sy
Where \q is a second smallest eigenvalue of the Laplacian of the interaction graph and m is the
number of it’s edges. This allows us to bound I" and then we can follow analysis of clique case to get
the convergence rate. For example, in a case of cycle
[\ 1/2
ELe 0] < (1- 6(1/n%) + 4ntM<ﬁ) + 8n2M2.
and hence
E[T] < O(n°n?M?).
and this allows us to prove Theorem5.1]
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