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Abstract
This paper focusses on the under-studied problem of auto-
mated decentralized AI planning under severe communica-
tions and information-sharing restrictions between the plan-
ners during planning. Under such conditions, we will argue
that traditional logic-based knowledge representations in plan-
ning systems are not only brittle and hard to manipulate for
reasoning and deliberations but also not suitable for conveying
important and maximal information with minimal communi-
cations between the planners or one’s observations of another.
We describe our proposed representation for object-centric
knowledge graphs as a first-class element in our decentral-
ized Hierarchical Task Network (HTN) based decentralized
planning framework, called ARCADE. We present a num-
ber of preliminary experimental results, enabled by our new
formalism.

1 Introduction
Traditional logic-based formalisms that are taken for granted
for automated AI planning systems, in particular existing
Hierarchical Task Network (HTN) planners, are not suffi-
ciently powerful for knowledge representation and sharing
when planning is decentralized under the conditions of lim-
ited and unreliable communications or observations in those
planners. In particular, logical representation require a lot of
knowledge engineering and may differ from one planner to
another depending on the engineering process, even those
different representations are aimed to convey the same se-
mantics. Whether logical representations are propositional
or a subset of first-order logic, a simple example of this is-
sue is as follows. Suppose a planner uses a predicate form
(on block1 table) and another planner uses (on-table block1).
Even if the intended semantics captured between these two
forms is the same, the planners that use one of these forms
or the another cannot understand each other directly; they
would either need additional knowledge engineering to align
their representations or theywill have to use automated trans-
lations from one form into another.

The issue is amplified when the automated planners are
decentralized for collaborative problem-solving tasks and
cannot communicate with each other fully and reliably. In
that case, knowledge engineering for all automated planners
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involved is further complicated by the fact that human ex-
perts may not know enough about the intricacies of each of
the automated planners in the decentralized environment to
timely address the knowledge representation issues between
the planners.

In this paper, we argue that domain object-centric knowl-
edge representationsmay have the potential to be better suited
generally for AI planning, and in particular, automated plan-
ning for collaborative tasks in decentralized environments.
We do not suggest that object-centric representation should
replace logical ones; however, we argue that domain ob-
jects as first-class elements of an automated planner not only
enable shared knowledge and situation awareness between
decentralized planners but also may result in more powerful
logical planning formalisms because they naturally carry se-
mantics about attributes and relationships without explicitly
representing such knowledge constructs.

Contributions of this work include:

• Development of a new planning formalism, based on
knowledge graphs over first-class domain objects;

• Description of how we use this representation in our de-
centralized planning framework, called ARCADE (short
for “Autonomy and Rationale Coordination Architecture
for Decentralized Environments”).

• Results of preliminary experiments to test object-centric
representations in an abstracted version of military air
operations domain.

In the subsequent sections, we first discuss the motiva-
tion of our work. We then discuss our Shop2 HTN lan-
guage requirements for plan repair with semantic soundness
and completeness properties. Our preliminary experiments
demonstrate the effectiveness of our approach.

Finally, we conclude by discussing our ongoing work and
future research challenges for object-centric representations
in HTNs and decentralized planning tasks.

2 Why are Objects Important?
Objects are the first-class entities in our physical surround-
ings. Logical representations and relationships, on the other
hand, are knowledge artifacts humans create as a reason-
ing machinery for their surroundings. A PDDL-based or and
HTN language representation does not exists in the world – if



a domain author changes the representation for planning with
blocks, the behavior of an automated planner might change
but the blocks remain in the environment. Similarly, if we re-
move the blocks from the environment, the logical artifacts
would remain but would be semantically null.

Therefore, domain objects exist in the physical world.
Primitive objectives are formed and transformed during their
life time; more complex objects can be formed from primi-
tives and may have capabilities that enable them to act and
transform other objects. Either way, humans, other entities,
and AI systems manipulate objects, not logical expressions
in reality. A robot grasping a block has to reason about the
block itself for its actuators in the primitive level not about
some logical predicate. A human telling the robot to grasp
the block must be able to point the block without translating
into an artificial representation for the robot to understand
what the human is referring to.

In human-to-human communications, objects carry in-
trinsic semantics that enable shared decentralized awareness
without continually talking to each other. When mentioned
or shown a familiar object, a human typically recognizes the
properties and the capabilities of the object without those
properties are articulated explicitly. Along with this implicit
articulation often comes with the knowledge of to use the ob-
ject or what to do with it. For example, if somebody is shown
a hammer, that person would most probably know what this
object is as well as its purpose. He or she will start to reason
about all the situations and tasks it could be used in and how
it can be useful for the task he or she might be performing at
that moment.

Just as it does in human-to-human communications, hav-
ing a shared intentional object-centric structure should, in
and of itself, lessen the bandwidth required for exchang-
ing information between the knowledge engineer and an AI
planning system, as well as between a group of AI planners
themselves. Objects could also entail expectations about their
progress over time, including movement, resource expendi-
ture, and expected goal completion times. Because all plan-
ners have an understanding of the object and its capabilities,
information uptake is improved even without lengthy and re-
liable communication; updates and deviations can reference
the shared object, rather than having to also include the full
context as would be in traditional logical representations.
This streamlines discussion and sets the focus to only what
is critical: what has changed and what impact it will have on
the overall plan.

3 ARCADE: Autonomy and Rationale
Coordination Architecture for
Decentralized Environments

In this section, we describe an example of object-centric
representations as we are using them in our current work. As
we have described in (Kuter, Goldman, and Hamell 2018)
before, ARCADE is a decentralized planning architecture
that allows multiple SHOP2 (Nau et al. 2003). In (Kuter,
Goldman, andHamell 2018),we have summarizedARCADE
at a high-level but have not discussed the underpinnings of
our object-centric representations in that paper. Below, we

describe those with some replication from the previous paper
for the sake of completeness.

Existing distributed and multi-agent planning systems
(Torreño et al. 2017) typically focus on deterministic plan-
ning problems, with relatively simple models. They also typ-
ically assume a single overall planning task that must be dis-
tributed among multiple agents. Most practical applications
for decentralized planning (e.g., military operations, UAV
planning, and others) involve independent planners and rea-
soners that are responsible for accomplishing different tasks
under large-scale uncertainty, while communicating their in-
tentions and coordinating their actions. These planners often
are not handed a single, large problem to be decomposed
and then solved. Instead, these planners often receive their
own planning problems to solve based on the organizational
structures in which they are embedded (e.g., logistics and
manufacturing systems separately plan to secure inputs and
to make products). They may also receive additional tasks at
runtime.

We designed our decentralized planning framework with
the following objectives in mind:
1. Asynchronous decentralization and planning: Different

Shop2 instances must be able to receive their TSTN plan-
ning problems at different points in time during decen-
tralized planning and they must be able to work on those
problems concurrently, and each at its own pace.

2. Task-centric assumption-based coordination: Shop2 in-
stances must be able to exchange subtasks during plan-
ning, based on the assumptions each makes and whether
or not a planner is capable of generating plans for specific
tasks.

3. Hierarchical localized plan adaptation and repair: Each
Shop2 instance in the decentralized planning frame-
work must use localized replanning and plan repair algo-
rithms (Goldman and Kuter 2018) to provide consistency
and correctness over its assumptions, which might be in-
validated by the decisions and plans made by other Shop2
instances.
ARCADE is summarized in (Kuter, Goldman, and Hamell

2018) so we will not repeat its motivations, formalism, and
descriptions again in this paper. Instead, we will focus on the
recent object-centric representations we have been working
on for ARCADE. In particular, we formalize object-centric
knowledge graphs as a first-class entity for the representa-
tion in the decentralized as follows. We assume that each
planner in the framework has access to a finite set of do-
main objects, denoted as B, in addition to the typical domain
description it has. For example, PDDL-based domain de-
scriptions typically required this information to be provided.
In our HTN-based formalism, we added this requirement in
the HTN domain descriptions in addition to the usual HTN
methods, operators, and axioms as knowledge artifacts.

Each object in B is associated with a set of capabilities.
Informally, a capability is defined as an attribute of the object
that is useful for a task. More formally, a capability can
be represented as a logical form (e.g., (robot r1) or (robot-
holding r1 hand1 grasp)), could be implemented by using
object-oriented data structures, or some other form desired.
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Figure 1: An example object-centric knowledge graph.

In ARCADE, we are currently using both logical and object-
oriented representations for a capability.

ARCADE uses our SHOP2 HTN planning system for each
decentralized planner. Traditionally, SHOP2 itself progress
both the state of the planner that describe the logical facts to
be true in the world and the task network being processed.
During HTN planning, ARCADE also generates a knowl-
edge graph over the objects that appear in the partial plan
generated so far. Figure 1 shows an example of an object-
centric knowledge graph in a delivery task. The nodes of the
graph describe objects and the arrows between them describe
dependencies. Note that some of the objects are primitive
(e.g., truck, package) whereas some ore complex (e.g., time
schedule of the truck). This information is already available
in SHOP2’s task network and state representations implicitly;
however, in order to articulate it, the planner needs to extract
the relevant information from its representations or needs to
communicate the entire state or task representation with the
other planners. Object-centric knowledge graphs enable the
planner to do so seamless without any extra machinery.

ARCADE’s object-centric knowledge graphs are proba-
bilistic causalmodels.ARCADE leverages our previouswork
with probabilistic networks as reported in (Kuter et al. 2004;
Kuter and Golbeck 2007; 2010) and uses a re-thinking of
this work for object-centric knowledge graphs rather than
traditional propositional causal graphs. We summarize this
approach below.

As shown in Figure 1, nodes of the knowledge graph de-
note the objects involved in the representation. Some of these
objects are primitive, i.e., they directly correspond to the in-
put domain objects in B. Others are complex as they are
generated by the planner during the planning process, i.e.,

timelines or tasks. The edges (which are also called mecha-
nisms) represent causal and inhibitory dependencies between
objects. A mechanism o1 → o2 between objects o1 and o2
is causal if the use of o1 increases o2’s probability of use in
a plan, and it is inhibitory if the use of o1 reduces o2’s prob-
ability of use. Associated with each mechanism is a number
between 0 and 1 to indicate the probability with which o1
causes or inhibits o2.

The causal and inhibitory mechanisms in the model are
derived from the add and delete effects of the probabilistic
action models ARCADE employs. Furthermore, each ob-
ject in a causal model is associated with a special type of
probability, called the leak probability for that object. Intu-
itively, an object’s leak probability specifies the probability
that the objects will appear in a plan even when none of its
causes occurs in the world. In other words, a leak probability
specifies the causes of an event that are not specified explic-
itly in the given causal model. Leak probabilities allow to
work with incomplete causal models with unknown objects
a priori and still be able to reason and compute the con-
ditional probabilities over plans with the causal model. To
calculate the probabilities of occurrence for the objects and
dependencies of a causal model M , ARCADE implements
the Noisy-OR rule (Pearl 1988) and its generalization Recur-
sive Noisy-OR (RNOR) rule (Lemmer and Gossink 2004;
Kuter et al. 2004 postponed).

By performing probabilistic belief updates over the proba-
bilistic causal models of objects, ARCADE revises the prob-
ability that an object is to be used by a plan. This enables a
SHOP2 instance in ARCADE to reason about the objects that
might be used by the other SHOP2 instances in the frame-
work and generate probabilistic dependencies in knowledge
graphs that might include objects to be used by other plan-
ners. This naturally increases the communication bandwidth
between planners even if the planners do not pass entire task
networks or state representations around. Furthermore, it en-
ables a planner to generate probabilistic plans even when it
cannot talk to other planners. Doing so over states is a combi-
natorially complex endeavor; making assumptions over ob-
jects requires significantly simpler knowledge graphs and
thus, enables efficient reasoning during planning.

4 Conclusions and Discussion
In this paper, we have argued for object-centric represen-
tations in automated planning, particularly for decentral-
ized HTN planning. From a decentralized planning perspec-
tive, object-centric representations allow planners to develop
shared knowledge awareness and reason about each other
without communicating directly or when the communica-
tions are not reliable.

There are several challenges and research questions remain
with developing object-centric representation for automated
planning. One possible research direction is to learn the capa-
bilities of objects from unstructured state information. Cur-
rently, we are assuming that the capability information is
typically modeled in reference to the objects in the initial
state and do not change. In reality, object capabilities could
change over time or all of the capabilities of an object may
not be given a priori.
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Figure 2: Preliminary experimental results with SHOP2 planning
with late binding to objects. The first plot above is copied from
(Kuter, Goldman, and Hamell 2018).

Another research direction, enabled by object-centric rep-
resentations, is to explore late-binding mechanisms during
planning. Almost all modern day classical planners are ea-
ger binders; i.e., the planning algorithm grounds variable
symbols in its domain models as quickly and early as possi-
ble. Most state-of-the-art heuristic planners (e.g., FastDown-
ward (Helmert 2006) and others) grounds variables during a
preprocessing phase. Lifted planners such as SHOP2 binds
variables on the fly but at the first opportunity during search.

Object-centric representations may enable a planner to
use logical skolemization as in automated reasoning works

(Genesereth and Nilsson 1987) in order to delay the bind-
ing while keeping the semantics and causal dependencies
in a plan in tact. We have experimented with this idea in
SHOP2, where SHOP2 delays binding a variable symbol
for an object during planning and replaces it with a skolem
function that specifies the properties, as constraints, of the
constant that should be bound to that variable for a sound
plan. After SHOP2 generates a plan with skolem functions
in it as a “solution plan,” ARCADE post-processes the plan
and generates variable bindings according to the generated
constraints during planning. Our preliminary experiments in
a simplified logistics domain as shown in Figure 2 shows
the potential benefits of this approach. In principle, however,
post-processing may still fail to generate bindings success-
fully for some of the skolem functions. In that case, ARCADE
treats the binding failure as a plan-failure discrepancy and
may trigger its plan adaptation and repair process.

In addition to the all or none approaches above, it should
be possible to develop heuristics for a planner to decide
which object should be skolemized during planning. Thiswill
provide more informed manipulation of objects and reduce
the post-processing or backtracking required at the end of a
planning episode.
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