BACKGROUND AND SCOPE

Recently, artificial hydrocarbon networks (AHN), a supervised learning method inspired in the inner structures and
mechanisms of chemical compounds, have been proposed as a data-driven approach. AHN have proved to be efficient
In predictive power when modeling a data-based problem. However, it stills require more studies on its challenges,
Issues and applications.

This work aims to discuss challenges and trends of AHN as a data-driven method. It also lays the foundations on AHN
for implementing new training algorithms and the way to reveal the chemical nature of data-driven problems.

KEY CONCEPTS OF AHN APPLICATIONS & HIGHLIGHTS OF AHN

— Key features in supervised ML.
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| TRENDS AND ISSUES OF AHN
The inspiration in organic compounds to develop a ML — New training algorithms
method considers three facts observed from nature: — Big data processing
— Stability — Kernels and relations in molecules
— Organization — Hybrid approaches with AHN

— Multi-functionality — Transfer learning




