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Abstract. Whole Slide Images (WSIs) are prone to color variations due to dif-
ferences in fixation and staining conditions of tissue samples, as well as the scan-
ning process. Such variations can adversely affect the image analysis, and in this 
paper, we propose a novel, fast and stable color normalization algorithm for WSIs 
called CONTEMM (COlor Normalization using deep TExture and color Moment 
Matching). CONTEMM estimates color transformation matrix based on pairs of 
reference and source patches with similar tissue components in the respective 
WSIs, which are selected using deep texture representations. The color transfor-
mation matrix is estimated quickly by fitting the second moment about white 
color. 
Performance of CONTEMM algorithm was evaluated using histopathology im-
ages from different slide scanners and TCGA (The Cancer Genome Atlas) da-
tasets. CONTEMM was shown to outperform the other methods; Reinhard, Va-
hadane, and Macenko, in terms of variation (stability), accuracy, and computa-
tion time.  

1 Introduction 

In histopathology, tissue sections are stained with multiple contrasting dyes (e.g., 
the most widely used hematoxylin and eosin (HE) stain) to highlight different tissue 
structure and cellular features, and pathologists make diagnosis of diseases under the 
microscope. However, histopathological images contain undesired variability of HE 
stain appearance due to differences in fixation, staining procedures, and scanners. Color 
normalization methods, which reduce the color variation of source images using a ref-
erence image, are often effective to improve the performance of histopathological im-
age analysis.   

Although various color normalization methods have been developed so far, most 
methods focus on normalization of patches sampled from WSIs and there are few meth-
ods optimized to gigapixel-sized whole slide images (WSIs). For example, Reinhard et 
al [1] proposed a patch normalization method, which is aimed at matching the color 
distribution of source patches to a reference patch in L*a*b* color space. This algo-
rithm is quite fast, but assumes that the source and reference patches are composed of 
similar tissue, which does not hold generally in WSIs. When the method is applied to 
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all patches of WSIs, the performance lacks stability due to the different tissue compo-
sitions between source and reference patches.  

Macenko et al[2] and Vahadane et al[3] proposed color normalization methods 
based on stain deconvolution, which estimates hematoxylin and eosin vectors from the 
distribution of color space. This estimation is more robust against the tissue composi-
tion difference between source and reference patches, but it requires longer computa-
tion time than Reinhard et al. Thus, analyzing thousands of WSIs, which is common 
recently, is almost infeasible without high computational power. Also, these color nor-
malization methods fail when tissue compositions of the reference and the source patch 
differ significantly. In addition, Macenko’s method is also a patch-based normalization 
method and suffers from the same problem as the Reinhard’s method. 

To tackle these problems, we propose a novel color normalization algorithm for 
WSIs called CONTEMM (COlor Normalization using deep TExture and color Moment 
Matching), which is significantly stable and fast. Instead of using the whole images, 
CONTEMM selects appropriate pairs of image patches with similar tissue components 
in reference and source WSIs based on deep texture representations (DTRs). 
CONTEMM estimates global transformation matrix between the pairs and normaliza-
tion of the source WSI is performed using the transformation matrix. One notable fea-
ture of CONTEMM is that it achieves high-speed color normalization by a simple linear 
transformation to fit the second moment about white color, which match the stain vector 
without doing stain deconvolution.  

2 Method 

2.1 Overview of the CONTEMM 

CONTEMM searches the most similar regions from source and reference WSIs, and 
calculate the transformation matrix between them. This transformation matrix is then 
applied to the source images for color normalization. Figure 1 shows the overview of 
CONTEMM, which is consisting of the following three steps.  

• STEP I: Operation in reference WSI 

a. N patches are randomly sampled from a reference WSI. 
b. Deep texture representations are extracted from all N patches using deep convo-

lutional network. (2.1) 

• STEP II: Operation in source WSI 

a. n patches are randomly sampled from a source WSI. 
b. Deep texture representations are extracted from all n patches using deep convo-

lutional network. (2.1) 
c. Pair up N and n patches based on texture features to form predetermined number 

(m) of the most similar-looking pairs. 
d. A transformation matrix is calculated using the pairs. (2.2) 

• STEP III: Operation in source images for color normalization. 
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a. The transformation matrix is applied to source images. (2.2) 

 
Fig. 1. Overview of the CONTEMM color normalization method. (a) Schematic of 

CONTEMM. (b)Transformation in RGB space 

Quantitative metrics representing image similarity is necessary to search for the most 
similar regions in source and reference WSIs. We use second order statistics within 
deep features called deep texture representations (DTRs). Deep texture representations 
extracted from pre-trained convolutional neural network (CNN) are often used to cal-
culate the perceptual similarity in general images due to the robustness to image distor-
tion. The DTRs further produces order-less image representations suitable for searching 
similar histopathology images as shown previously[4]. Here, the output of  9th convo-
lution layer (“block4_conv2”)  in VGG16 [5], which is often used for perceptual simi-
larity in general images, is used to compute the Gram matrix 𝐺" ∈ ℛ%&×%& by bilinear 
pooling using the following equation: 

 𝐺()" = ∑ 𝐹(-" 𝐹)-"- . 

Here 𝐹(-" is the vectorized activation of the 𝑖01 filter at position 𝑘 in in layer 𝑙. In order 
to reduce the time required to search for the most similar regions, their dimensions are 
reduced by Compact bilinear pooling (CBP)[6] from 262144 dimensions to 1024 di-
mensions, and cosine similarity of the CBP output was used as a similarity measure as 
in [4].  
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2.2 Transformation Matrix  

In CONTEMMN, RGB vector in source image is rotated and scaled at the center of 
white color to fit the second moment about white to the reference patches (Fig.1b). Let 
𝐼5, 𝐼6 ∈ 𝑅1×" be the matrix of RGB intensities of reference and source patches chosen 
by similarity search respectively, where h = 3 for RGB channels, and l = total number 
of pixels of m patches, and let W ∈ 𝑅1×" be the matrix of 255s, which represent white 
color in 8 bit RGB color. Let  𝑋5, 𝑋6 ∈ 𝑅1×" be the matrix of RGB intensities with the 
origin located at the coordinate of white color. Then 𝑋5 and 𝑋6 can be written as fol-
lows,  

𝑋5 = 𝑊 − 𝐼5, 𝑋6 = 𝑊 − 𝐼6 

Let 𝐶5, 𝐶6 ∈ 𝑅1×1 be the matrix of the second moment about white color of target and 
source patches respectively. 

𝐶5 = 𝑋5𝑋5=, 𝐶6 = 𝑋6𝑋6= 

and the eigenvalue decomposition of 𝐶5 and 𝐶6 are given as 

𝐶5 = 𝑃5Λ5𝑃5@A, 𝐶6 = 𝑃6Λ6𝑃6@A 

Let Θ5 and Θ6be diagonal matrix, and Λ5 and Λ6  can be factorized as follows,  

Λ5 = Θ5Θ5, Λ6 = Θ6Θ6 

Transformation matrix 	𝑀6→5 can be written, 

𝑀6→5 = 𝑃5Θ5Θ6@A𝑃6@A 

Let 𝐼6F, 𝐼6→GF ∈ 𝑅1×- be the matrix of RGB intensities of a source image for color nor-
malization and the image after color normalization, where k = number of pixels of a 
source image then, 

𝐼6→GF = 𝑊 −𝑀6→5(𝑊 − 𝐼6F) 

Fitting the second moment about mean, variance and covariance, is a major color 
transfer method[1][7]. However, these methods don’t work well in white color transfer. 
In addition, color deconvolution is one of the most widely used methods for stain nor-
malization[3], and fitting the second moment about white can match the stain vector of 
reference and source images (Fig.1b). 
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3 Results and Discussion 

3.1 Hyperparameter selection 

Generally, there is one reference WSI and multiple (possibly thousands of) source 
WSIs for each task. Since step 1 is performed only once, N can be large without influ-
encing the total computation time much. In contrary, n cannot be large because step 2 
is performed for every source slide. m/n should be appropriate, because it can increase 
the chance of selecting artifact regions as similar pairs, especially when WSIs contain 
a lot of artifact. The size of patches should not be large because it takes long time to 
read large patches. Thus, we have set N=1000, n=40, m=30 in Experiment 1 and 3, and 
N=1000, n=40, m=15 in Experiment 2, and all patch size was set to 256 × 256 pixels. 
Here we decrease m value in Experiment 2, because some WSIs have a lot of artifacts 
such as pen marks. 
 
3.2 Experiment 1: Quantitative evaluation (PSNR) 

First, accuracy and stability of CONTEMM was evaluated. Each of three WSIs of 
stomach adenocarcinoma was scanned using two different slide scanners (Hamamatsu 
photonics NanoZoomer S60 (Hamamatsu) and 3D HISTECH Pannoramic MIDI II 
(3DX)) and the performance was evaluated in a pixel-wise manner. 

CONTEMM was compared with the other three normalization methods; Reinhard 
[1], Macenko [2], and Vahadane [3]. In Vahadane et al, there are two color normaliza-
tion methods proposed, which we call  “Vahadane (random).” and “Vahadane (WSI)”. 
In Vahadane (random), source patches is normalized to one specific reference patch. In 
Vahadane (WSI), a WSI was split by grid and reference patches were sampled at grid 
points. In this experiment, a WSI was divided into 5x5 grids. 

In, Reinhard, Macenko, and Vahadane (random), the reference patch was randomly 
sampled to each source patch, excluding the white background patches. Patches with 
the median RGB value greater than 220 were regarded as white background.  

Mean and variance of Peak Signal-to-Noise Ratio (PSNR) improvement were used 
to assess the accuracy and the stability of the color normalization method, respectively. 
70 patches were randomly sampled from the same position in source and reference 
WSIs, and the same 70 patches are used for evaluation in all color normalization meth-
ods. Since there was unignorable difference in sharpness between images from two 
scanners, Gaussian filter was applied before color normalization in all methods to re-
duce the effect of sharpness on PSNR. The size of the Gaussian filter was optimized to 
match the sharpness, which was estimated by Laplacian Kernel[8]. 

Registration between two WSIs is performed by imreg_dft package [9]. As each 
three WSIs from a scanner was color-normalized to the other one and vice versa, six 
transformations were obtained in total.  

As shown in Table 1, CONTEMM significantly outperforms Macenko, Vahadane 
(random), and Reinhard in terms of both accuracy and stability. CONTEMM also sig-
nificantly outperforms Vahadane (WSI) in terms of stability with comparable accuracy.  
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We also investigated the failure patterns in this experiment. In Figure 2, and Figure 
3, two types of failure were observed: first, Reinhard, Macenko, Vahadane (random) 
and Vahadane (WSI) failed when the background of source image was white (Fig. 2a, 
Fig.3). Second, Reinhard, Macenko and Vahadane (random) did not work when the 
appearance of reference patch is significantly different from the source patch (Fig. 2b).  

Table 1. The improvement of PSNR: Mean ± Standard Deviation. H: Hamamatsu photonics 
NanoZoomer S60. 3DX: 3D HISTECH Pannoramic MIDI II. The number in a square bracket 
corresponds to the slide number. Dunnet contrasts tests and F-tests were used to compare the 

mean and the variance of PSNRs of CONTEMM and those of the other methods, respectively. 
Bonferroni correction was applied for F-tests. 

Source->  
Reference 

CONTEMM 
(Ours) 

Vahadane 
(WSI) 

Macenko Vahadane 
(random) 

Reinhard 

3DX->H[1] -0.082±0.718 0.682±1.043 -0.266±1.784 -0.984±2.187 -0.964±2.462 
3DX->H[2] 2.379±1.302 3.235±1.511 3.259±3.297 1.424±3.532 -0.491±4.905 
3DX->H[3] 2.293±0.808 -0.586±1.597 2.695±3.053 1.214±2.884 1.111±3.160 
H->3DX[1] -0.199±1.302 0.495±1.327 -1.918±2.249 -2.092±2.458 -2.741±2.399 
H->3DX[2] 0.445±0.927 3.597±1.948 -1.378±2.590 -1.593±3.397 -2.930±3.967 
H->3DX[3] 0.340±0.756 -4.425±1.454 -0.697±1.457 -0.010±2.499 -0.587±2.321 
Mean 0.863±1.461 0.499±3.059 0.282±3.183 -0.340±3.165 -1.100±3.619 
Pvalue 
(mean) 

N/A p > 0.05 p < 0.05 p < 0.001 p < 0.001 

Pvalue 
(variance) 

N/A p < 0.001 p < 0.001 p < 0.001 p < 0.001 

 

 
Fig. 2. Examples of the failure. (a) Image with large white regions. (b) Source and reference 
patches quite different from each other. (A): source patch, (B): reference patch for (C)-(E),  

(C): Vahadane(WSI), (D): Macenko, (E): Reinhard, (F): Vahadane(random), (G): 
CONTEMM, (H): Ground Truth. (C)-(E): Source patch was color-normalized using reference 

patch (B). Note that (B) is not used as reference patch in (F), (G). 
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Fig. 3. The appearance of color normalization of thumbnail. Source WSI is scanned by Hama-
matsu scanner and Reference WSI is scanned by 3D HISTECH. 

3.3 Experiment 2: Quantitative evaluation (NMI) 

Next, we evaluated the consistency of normalization using 100 randomly selected 
WSIs of kidney renal clear cell carcinomas from The Cancer Genome Atlas (TCGA) 
datasets[10]. WSI-level normalization was performed using CONTEMM and Va-
hadane (WSI) and the normalized median intensity (NMI) within uniform tumor region 
selected by pathologists were compared.  Lower standard deviation of NMI  (NMI SD) 
indicates that the normalization is more consistent [11]. As shown in Table 2, 
CONTEMM showed better NMI than Vahadane (WSI) and the original WSIs. 

Table 2. Standard deviation of the normalized median intensity. 

 CONTEMM Vahadane 
(WSI) 

Original 
WSIs 

NMI 
SD 

0.0677 0.0685 0.0749 

 

3.4 Experiment 3: Computation time evaluation 

Finally, computation time of each color normalization step was measured using a 
source slide. One Tesla V100 GPUs and Dual Intel 20-core Xeon E-2698v4 2.20GHz 
was used for computation. Table 3 shows that our algorithm is significantly fast. It 
takes only 96 seconds for step 1, 3.16 seconds for step 2, and 0.0034 seconds for step 
3. Fast color normalization method is especially important recently, as the number of 
WSIs being analyzed has grown dramatically. For example, more than 10,000 WSIs 
are analyzed in a recent study[12]: it would take around 1,500 hours to standardize 
10,000 WSIs using Vahadane (WSI), while it would take only about 9 hours using 
CONTEMM, which is feasibly short. 

Table 3. Computation time of color normalization: “WSI (sec)” is the computation time re-
quired for estimating the color transformation between two WSIs. “patch (sec)” is the computa-
tion time required for color-normalizing one patch. Macenko, Vahadane (random), and Rein-

hard do not have WSI-level color normalization. 

 CONTEMM Vahadane 
(WSI) 

Reinhard Macenko Vahadane 
(random) 

WSI (sec) 3.16 537.9 N/A N/A N/A 
patch (sec) 0.0034 0.013 0.0075 7.04 8.05 

4 Conclusion 

In this paper, we proposed CONTEMM, a fast and stable color normalization method 
for WSIs in histopathology. CONTEMM estimates a global transformation matrix 
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based on reference and source patch pairs selected based on deep texture representa-
tions. Experimental results showed that CONTEMM outperforms the existing patch-
based methods in terms of stability and accuracy. Additionally, CONTEMM outper-
forms a WSI-based method, Vahadane (WSI), in terms of stability and computation 
time while keeping comparable accuracy. Notably, compared to the WSI-based 
method, CONTEMM speeds up the color normalization process of WSIs by several 
orders of magnitude, which makes it feasible to normalize thousands of WSIs in real-
istic time. CONTEMM would be a powerful tool for histopathology image analysis in 
the big data era, where rapid color normalization is essential. 
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