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ABSTRACT

Neural network (NN) trojaning attack is an emerging and important attack that can
broadly damage the system deployed with NN models. Different from adversarial
attacks, it hides malicious functionality in the weight parameters of NN models.
Existing studies have explored NN trojaning attacks in some small datasets for
specific domains, with limited numbers of fixed target classes. In this paper, we
propose a more powerful trojaning attack method for large models, which outper-
forms existing studies in capability, generality, and stealthiness. First, the attack
is programmable that the malicious misclassification target is not fixed and can be
generated on demand even after the victim’s deployment. Second, our trojaning
attack is not limited in a small domain; one trojaned model on a large-scale dataset
can affect applications of different domains that reuses its general features. Third,
our trojan shows no biased behavior for different target classes, which makes it
more difficult to defend.

1 INTRODUCTION

Neural Network (NN) Trojaning Attack or Neural Network Backdoor Injection Attack is an impor-
tant attack model that can broadly damage the system based on NN models (Dumford & Scheirer,
2018; Liu et al., 2017; Liao et al., 2018; Gu et al., 2017). NN trojaning attacks hide malicious
functionality inside the weights of an NN model, either by poisoning datasets or performing weight
perturbation (Gu et al., 2017). The trojaned NN model predicts correct labels normally for legitimate
inputs, and only misclassifies the inputs with trigger patterns to predefined target labels. The NN
models are essentially just a set of weight parameters connected with certain network architectures.
Their behavior highly depends on the weight parameters, but the meanings are completely implicit.
Thus, modifying the weight parameters usually shows no difference to consumers. To note, it is a
different attack model from adversarial attacks (Kurakin et al., 2016), which craft adversarial inputs
to mislead NN models.

The NN trojaning attack is becoming an emerging practical and destructive attack model because
of the broad usage of pre-trained models. Training a neural network with good features requires
not only a large number of computing resources but also large-scale datasets. Thus, using pre-
trained models is a common practice in developing NN-based applications to reuse expensive well-
learned features. Accordingly, there are many open-source pre-trained models available online.
They are produced by various companies, open-source communities, or personal maintainers, and
consumed by end-users who may use these models directly or reuse part of them for a particular
task. These pre-trained models benefit the agile deployment and boom the NN technique evolution.
However, they also raise security issues since some vicious model promulgators can hide malicious
functionalities in the clean model and release them for public use, which can be easily spread.
Therefore, it is important to explore and understand the NN trojaning attacks.

Although the trojaning attack requires attackers to be capable of modifying the weight parameters
of the NN model, it does not have to be an entire white-box. In terms of the attack scenarios, such
trojaning attacks can be classified into two types, outsourced training attack and transfer learning
attack. The first assumes that the victims will use the trojaned model directly without any further
modification. This kind of attack is completely white-box and most existing studies focus on this
assumption (Dumford & Scheirer, 2018; Liu et al., 2017; Liao et al., 2018). However, in real cases,
victims often employ pre-trained NNs as well-learned feature extractors and further develop their
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models (Gu et al., 2017). Therefore, the trojan attacks should resist victims’ modifications, which is
referred to as the transfer learning attack (Gu et al., 2017). One of such studies, BadNet (Gu et al.,
2017), has explored the transfer learning attack in some small datasets on traffic signs.

Thus, although existing studies make initial steps that explore the potential effectiveness of trojan in
transfer learning, their methodologies are restricted in small domains and validated on small datasets.
For general feature extractors that are trained on large datasets and are used broadly, the attack is
more challenging and the existing trojaning methods cannot be applied to this scenario: The victim
tasks are completely unknown to the attackers and the target label that the attackers misleadingly
train the trojaned model to recognize may even not be involved in the victim task.

For example, one of the official tutorials provided by TensorFlow1 introduces the transfer learn-
ing scenario for image classifications. They use ImageNet (Deng et al., 2009) pre-trained models
as well-learned image feature extractors and retrain the fully connected (FC) layers for new tasks
on smaller Flower datasets. The official tutorial provided by MXNet2 also introduce this scenario
that transfer pre-trained VGG16 model for Caltech-256 dataset. In the natural language processing
(NLP) field, it is also a popular practice to reuse BERT (Devlin et al., 2018) as pre-trained word-level
features to solve many different kinds of NLP tasks. These scenarios are more realistic and trojans
on those general features will affect a large scope of applications. Thus, it is important to explore
the trojaning attack on the general feature extractors.

Another limitation of existing studies is that the trigger patterns of the trojans are usually handcrafted
patterns for only one or few target classes. The limited diversity makes the trojans highly correlated
with the trigger patterns. Defense methods (Chen et al., 2018; Liu et al., 2018a; Wang et al., 2019)
based on statistic could detect or erase these trojans easily.

In this paper, we propose an NN trojaning attack method that is much more powerful, general, and
stealthy. Instead of using a static set of handcrafted patterns to trigger a predefined target class,
we use dynamic patterns to trigger any intended target class, which makes our trojan attack pro-
grammable. We can use a target image to describe the target class and generate a trigger pattern
based on this image to encode and pass the information of the misclassification target to the trojan.

The dynamic trigger pattern makes our trojan much more powerful and general: Even if the explicit
classes used in victim model are not involved in the pre-trained model and unknown to attackers,
they can still describe the input they expect the victim model to see with a target image and then
generate the corresponding pattern to trigger the malicious behavior. Further, the dynamic trigger
also greatly increases the diversity of trigger patterns, which makes it more stealthy.

We demonstrate our attack method under the scenario described in the retraining tutorial from Ten-
sorflow and MXNet, which uses pre-trained ImageNet (Deng et al., 2009) models and replaces the
FC layers for the Flower dataset and Caltech-256 dataset. We insert a trojan into the ImageNet
model and attack the victim model for the two smaller datasets. The trojan remains effective for
both cases. Note that, the classes in the Flower dataset and Caltech-256 are not involved in the 1000
classes of ImageNet and attackers have no access to these datasets. The same trojaned model can
affect victims using any other dataset.

2 RELATED WORK

Neural networks show vulnerabilities to the crafted adversarial inputs, which is referred to as ad-
versarial attack (Kurakin et al., 2016). NN trojan is another important attack model which can
broadly damage the systems based on NN models. In such an attack model, the NN model intellec-
tual property (IP) vendors could be the potential attackers who hide malicious functionalities in the
pre-trained NNs (Liu et al., 2017; 2018b; Wang et al., 2019). These models perform normally with
legitimate inputs and can export targeted or untargeted outputs with the trigger inputs.

Previous studies have made some initial steps in the NN trojaning techniques. In most existing
studies (Dumford & Scheirer, 2018; Liu et al., 2017; Liao et al., 2018), they assume that the victim

1How to Retrain an Image Classifier for New Categories. https://www.tensorflow.org/hub/
tutorials/image_retraining

2Fine-tune with Pre-trained Models. https://mxnet.incubator.apache.org/versions/
master/faq/finetune.html
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Table 1: Comparison between our work and related work

Capability Transferability Out-scope target Dynamic target Large Dataset
Dumford & Scheirer (2018) × × × ×

Liu et al. (2017) × × × ×
Liao et al. (2018) × × × ×
Gu et al. (2017) X × × ×

Ours X X X X

will adopt the pre-trained NN models directly, which is termed outsourced training attack. However,
this situation rarely actually occurs. In practice, users typically fine-tune the FC layers of the pre-
trained models to adapt to their working scenarios, which makes the attack more challenge; it is
termed as transfer learning attack. Although the most related work, BadNet (Gu et al., 2017), has
implemented a transfer learning attack, the triggers in their work are based on handcrafted patterns,
which are statistically fixed. Therefore, their triggers can only support fixed target classes that are
included in the pre-trained models. It cannot be applied to the scenario we demonstrate in this paper.
Further, existing studies only demonstrated a high success rate of trojaning attack on small dataset
such as MNIST (Dumford & Scheirer, 2018; Liao et al., 2018; Gu et al., 2017; Liu et al., 2017; Wang
et al., 2019), face recognition (Dumford & Scheirer, 2018; Wang et al., 2019), traffic sign (Liao et al.,
2018; Gu et al., 2017; Chen et al., 2018), and CIFAR10 (Chen et al., 2018). But people seldom use
pre-trained models on these tiny datasets from an untrusted source. We compare our work with
related studies in Table 1: We support target classes outside the pre-trained models, termed as out-
scope target, and the target class is not fixed, termed as dynamic target. These properties make our
attack much more powerful. We also demonstrate the attack on ImageNet.

There are also some initial studies about the defense of the NN trojan. Some detect if the dataset
is poisoned (Chen et al., 2018), some detect if the model is poisoned by comparing the decision
boundary of different classes (Wang et al., 2019), and some try to remove the trojan by squeezing
the redundencies (Liu et al., 2018a). Most of them just work on trojaning attacks with just one or a
few fixed target labels; in Section 5.3 we will analyze their effects on the proposed attack model.

3 THREAT MODEL

Figure 1 shows a typical flow of transfer learning attack for NN trojans (Gu et al., 2017). For the
ease of understanding, we first explain several terminologies. The start of the flow is a pre-trained
NN model, denoted as clean model; its task is original task. The network architecture of the clean
model usually consists of a backend model and a frontend model. The backend model produces
general features for a certain domain, which is intended to be reused by victims. The frontend
model uses the general features for the underlying tasks and victims will develop their frontend
model based on the backend model. The clean model usually comes from public model zoos or
produced by attackers. Then, the threat model usually contains the following three phases.

Trojaning Phase. In this phase, attackers can fully access and make modifications to the entire clean
model. They usually modify only the backend model to hide the trojan because the frontend model
is replaced in later phases. The modified backend is denoted as trojaned backend and the entire
model is now denoted as trojaned model. The trojaned model has the same network architecture as
the clean model. The only difference is the weight parameters in the backend.

Victim Phase. The trojaned model is then distributed online and reused by victims. Victims intend
to reuse the well-learned general features from the backend model for their new tasks, denoted as
victim task. It is typically done by designing a new frontend, victim frontend. And the entire model
now is denoted as victim model. Note that the victim frontend is unknown to attackers, including the
explicit classes involved. On the other hand, although victims can fully access the trojaned model,
they are unaware of the explicit method to trigger the malicious functionality.

Trigger Phase. The victim model is then deployed to real applications and the applications may also
integrate other components. Now, victims are still capable of accessing the runtime information of
their victim model and the system. But for attackers, it is a black box now except for the application
scenario. Attackers can make small modifications to the input to trigger the malicious functionality
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Figure 1: Attack methodology comparison. In existing studies, attackers should decide the trigger
pattern and target class pairs in the trojaning phase. In contrast, our method inserts a general trojan
in the trojaning phase and decide the target class in the trigger phase.

in the trojaned backend to control the behavior of the system. The modification that can be made
highly depends on the scenario of the victim task.

In most real applications, the modification is a small patch in the input image, denoted as trigger
pattern. The clean input image is called source image, and its corresponding label is source class.
The source image patched with the trigger pattern is denoted as trigger image. The corresponding
misclassification target is target class. It is described by a target image.

Note that, although attackers may also perform a black-box adversarial attack in the trigger phase
and also lead to misclassification. The sources of the two threats are completely different. Thus,
defending adversarial attacks will not reduce the risk of trojaning attacks.

4 METHOD

4.1 ATTACK METHODOLOGY

The major contribution of our work is the new attack methodology, which greatly extends the power
of the trojaning attack.

In the workflow of the existing transfer learning attack shown in Figure 1, attackers choose the trig-
ger pattern and the corresponding target class in the trojaning phase and then modify the backend
model to recognize the trigger pattern without affecting its behavior for normal inputs. Then, in the
trigger phase, attackers will present the trigger pattern in a normal input to trigger the misclassifica-
tion as the target class. This attack flow has two major drawbacks.

• Fixed targets. The target classes are decided in the trojaning phase. Attackers cannot choose
targets on demand in the trigger phase.

• In-scope targets. In the trojaning phase, the victim task is completely unknown to the attacker. It
is difficult to support target classes that are not included in the class set of the original task.

In Table 1, none of the existing studies support out-scope and dynamic target due to these drawbacks.

We propose a new attack methodology as shown in Figure 1. The difference is that in the trojaning
phase, we insert a more powerful programmable trojan and create a corresponding trojan generator.
In the trigger phase, we use a target image to indicate the target class. The generator will encode the
target image into a trigger pattern. It will be presented in the input image and the trojaned backend
can decode the trigger pattern and misclassify the input as the target class defined by the target
image. The proposed attack methodology solves the two drawbacks due to the following designs.

• Select targets in the trigger phase. We insert a general trojan in the clean model and select the
target class later in the trigger phase.
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Figure 2: Trojan Insertion. We train a trigger generator together with the front-end model. The left
side shows the network architecture of our generator. It accepts a target image and uses ResNet50
pre-trained convolutional layers to encode it into a 1024-length vector. Then we use multiple trans-
posed convolutional layers to generate the trigger pattern from the vector. The trigger pattern will
replace part of the source image to form the trigger image. Then it will be fed into the model to be
trojaned and trained to predict the target label. To keep the original functionality. Normal source
images will also be fed into the model and trained to predict the source label.

• Describe targets with target images. We use a target image instead of a target class to describe
the intended behavior. It can support any target class on demand.

Moreover, in the trigger phase, attackers may be still unaware of the explicit class sets of the victim
model, while the expected behavior of the application system is known to attackers and the victim
task is just a sub-task of the application system. Accordingly, with the target image, attackers can
program the expected behavior of the application system directly without the information of the
explicit classes of the victim task.

4.2 TROJAN INSERTION

During the trojaning phase, the attacker will train the generator and the original model to insert
a trojan in the model. We show the expected functionality of the trojaned model and its trigger
generator in Figure 2. The trigger generate receives a target image as input and generates a small
trigger pattern. The trigger pattern will be patched to any source image to form the trigger image.
Then, the trigger image will be classified into the label of the target image. Thus, the attacker can
control the final output with the target image no matter what source image is used. Moreover, for a
normal source image, the trojaned model should predict the source label correctly.

Formally, the generator g will produce a trigger pattern z = g(xtarget) from a target image xtarget.
Then, the trigger pattern z will be patched to a source image xsource to form a trigger image
xtrigger = P (xsource, z), where P is a function to patch z in a random position of xsource. Note
that, P is differentiable: its gradients only need to propagate to the region of the trigger pattern
directly. Then, we expect the model to predict target label ytarget when input is xtrigger and predict
source label ysource when input is xsource. To train the generator and the trojan, we optimize the
two functionalities together. The loss function should be as Formula 1, where L is the cross-entropy
loss, α is a hyper-parameter to control the weights of normal behavior and trojan behavior and f is
the trojaned model.

αL[f(xtrigger), ytarget] + (1− α)L[f(xsource), ysource] (1)

Note that, attackers neither know the victim model nor have access to the victim’s dataset. Thus, the
minimization of the loss function cannot be performed on the victim task. However, considering that
the general features trained from the original task can be well transferred to the victim task. It is also
feasible for the attacker to train a general trojan with original tasks, as well. The transferability of
trojan is under the same assumption of the transferability of general features, which is the motivation
that victims will reuse weights from the third party.

We use the stochastic gradient descent (SGD) algorithm to optimize the parameters of g and the
parameters in the backend of f . The frontend of f is fixed during the optimization such that only
the backend learns the trojan functionality. When the victim train a new frontend, the trojan in the
backend can still be effective. For convolutional neural networks (CNNs), the backend is typically
the convolutional layers. f is initialized with the clean model and g is initialized randomly. In the
loss function, the gradients to g are multiplied with α, which is a very small number. Thus, we scale
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Table 2: The accuracy of clean and trojaned model and the attack success rate on ImageNet models.

Model Clean Model Accuracy Trojaned Model Accuracy Attack Success Rate
top1 / top5 top1 / top5 top1 / top5

VGG16 73.37%/91.50% 72.37%/90.96% 50.27%/75.87%
ResNet50 76.15%/92.87% 73.88%/91.66% 37.55%/65.34%

MobileNet-V2 71.81%/90.42% 69.32%/89.14% 31.04%/57.64%

the gradient of parameters in g by 1/α to have a balanced update between the generator and the
trojan.

Figure 2 also shows the network architecture of the generator we used. We first use the convolutional
layers of the pre-trained ResNet50 (He et al., 2016) and an FC layer to encode the target image into
an internal feature vector of length 1024. Then, we use several transposed convolutional layers to
generate a 32 × 32 trigger pattern, which is the typical network architecture for image generation
in generative adversarial networks (GANs) (Radford et al., 2015). Specifically, we use a sigmoid
function in the last layer to produce pixel values between 0 and 1, and then scale each pixel to the
interval between 0 and 255. It will be further normalized with the mean and variance values of the
ImageNet dataset, which is a typical pre-processing step for ImageNet models. Finally, we patch the
trigger pattern in a random position in the source image and feed it into the model to be trojaned.
The backend part is its convolutional layers and the frontend part is its FC layers. Note that, during
the training, we fix the parameters of the frontend model and the pre-trained ResNet50 in the trigger
generator.

4.3 TROJAN TRIGGERING

During the triggering phase, the attacker just picks a target image that contains the scenario that he
expects the victim’s system to see and use it to generate the small trigger pattern. Then, he just
presents the trigger pattern in any small region in the input of the victim’s system. The victim’s
system will predict the label of the target image and react as seeing the target image.

5 EXPERIMENT AND RESULT

5.1 OUTSOURCED TRAINING ATTACK EFFECTIVENESS

We first demonstrate the outsourced training attack on ImageNet models to show the properties of
the trojan without victims’ modifications. Note that, our trojaning attack is different from existing
literature that backdoors a specific pattern for a specific class. Our trojan can support all classes
simultaneously in one trojaned model. Thus, we use the averaged success rate for all pairs of the
1000 source classes and the 1000 target classes to measure the capability of our trojan. Existing
literature only support one class each time, thus they cannot compare with each other. Moreover, the
attack success rate cannot exceed the image recognition accuracy. Otherwise, the generator together
with the trojaned model forms a more powerful image recognition model that classify the target
image to target label.

Setup. We implement the trojan insertion method with PyTorch. We choose VGG16 (Simonyan &
Zisserman, 2014), ResNet50 (He et al., 2016), and MobileNet-V2 (Sandler et al., 2018) as the model
to be trojaned. Initially, we set α to 10−3 and choose 10−3 as the learning rate for all cases. Then,
we decrease the learning rate by 10× every 10 epochs. After the loss function converge, we change
α to 10−4, restore the learning rate of target model to 10−4 and fine-tune the generators and trojans,
which enables higher accuracy for the cases of VGG16 and ResNet50. MobileNet-V2 is slightly
different: α is set to 5× 10−4 at the fine-tuning phase.

Results. In the first step, we evaluate our trojaning attack on VGG16, ResNet50, and MobileNet-
V2 in the outsourced training attack scenario. Table 2 shows the accuracy of the clean model and
the trojaned model. The accuracy drop is within the accuracy variation of these models. Mean-
while, we achieve a high attack success rate. The trojaned VGG16 has a 50.27% attack success rate
across 1000 target classes. It is a high attack success rate since it is comparable with the recognition
accuracy, 72.38%. The hyperparameter α is important for the tradeoff between maintaining predic-
tion accuracy on normal inputs and increasing attack effectiveness on trigger inputs. We find that
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Table 3: Transfer learning attack results. We use the same trojaned VGG16 model to test the transfer
attack success rate on two smaller dataset, Flower and Caltech-256. The trojaned model is made with
only ImageNet dataset. Smaller datasets are only used to train victim’s FC layers.

Dataset Clean Model Accuracy Trojaned Model Accuracy Attack Success Rate
Flower Dataset 91.70% 91.56% 38.15%

Caltech-256 72.80% 73.37% 37.63%
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Figure 3: The accuracy vs. attack success rate with different pruning factor for Fine-Pruning (Liu
et al., 2018a) defense method.

α = 10−3 would be the sweet point. We can further increase the attack success rate by applying a
larger α, but it will lead to more accuracy drop of the trojaned model.

5.2 TRANSFER LEARNING ATTACK EFFECTIVENESS

We also demonstrate an end-to-end transfer learning attack on two small datasets that are indepen-
dent of ImageNet. The trojaned VGG16 will be fine-tuned for the small datasets. And we test the
effectiveness of the trojan after the fine-tuning. No further trojaning modification is made to the
trojaned model, we use the trojaned model from the previous section directly. None of the existing
trojaning attack methods can be applied to this scenario.

Setup. We follow the scenario described in the official tutorials of Tensorflow and MXNet. We
use the trojaned VGG16 as an example and train new classifiers with new FC layers for the Flower
dataset and Caltech-256 dataset. Finally, we pick two random images from the validation set, one
as source image and one as target image, to form a trigger image. We have eliminate the cases that
source image and target image are from the same class.

Result. In Table 3, We show the transferability of our trojaned model. We use the trojaned VGG16
model mentioned in Table 2 to test its effectiveness on two smaller datasets, the Flower dataset and
the Caltech-256 dataset. The two datasets are unknown when trojaning the VGG16 model and the
classes in these datasets are completely different from the 1000 classes in ImageNet. Thus, non
of existing studies can attack the victims successfully in this case because their misclassification
target must be one of the 1000 classes of ImageNet. Our trojaned model can still achieve about 38%
success rate on both datasets. Although the absolute value of the attack success rate is not that high,
the damage of this attack is still quite severer. One trojaned ImageNet pretrained model can affect
almost all models that reuse its convolutional layers.

5.3 DEFENSE ANALYSIS

Our goal is to extend the capability of trojaning attack. It also leads to better stealthiness because we
train a general trojan instead of simple trojans for certain handcraft patterns and it shows no biased
behavior for different target classes.

Defense methods just make initial steps on the simple trojaning attack method with one or a few
fixed target classes on small datasets. Chen et al. (2018) detects if the dataset is poisoned, which
cannot be applied to our threat model because the trojaned model is trained by the attacker. Neu-
ralCleanse (Wang et al., 2019) detects the trojan based on the biased behavior of the fixed target
classes. They assume that only one or minority of fixed classes can be target classes. However,
our trojan supports dynamic target class and can generally trigger all the classes; thus, there is no
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such bias in our trojan. Fine-Pruning (Liu et al., 2018a) prunes the model using the validation set
to reduce the redundancies in order to squeeze the trojan functionality. We test Fine-Pruning on our
trojaned VGG16 for ImageNet dataset. The result is shown in Figure 3: with different pruning ratio,
the attack success rate dropped as well as the accuracy. Namely, the trojan functionality is highly
coupled with the original task; removing trojan will also destroy the well-learned feature as well.
The trojan is even more robust than the well-learned features.

The major difficulty of defending the proposed attack is that the trojan shows no biased behavior for
all target classes and its functionality is highly coupled with the well-learned features. Moreover,
the trigger generator is also a neural network, which can add additional regularization terms to make
the trigger more robust and hard to detect. Developing defense methods for this kind of trojaning
attack is still challenging.

6 DISCUSSION

6.1 VARIANTS

The key idea of the programmable trojan is to use an NN to generate the trigger image and train
the generator network together with the trojan. Our demonstration is a simple case study. It can be
extended to many variants.

Trigger format. In our case, we use a small trigger pattern patched in a random position of the
source image. Such patterns may be obvious for human, but in some case that the victim’s applica-
tion is using a camera to capture images and process them automatically with the victim model. So,
the attacker can easily display a small trigger pattern to trigger the subsequent consequences, such
as authorizing the attacker to enter a secure place or misleading a self-driving car into an accident.
In some other cases that the attacker could modify the entire image and the modification is imper-
ceivable for humans, like adversarial attacks, we can design the generator to produce the modified
full-size input image. Thus the trigger image can be turned into the entire image with imperceiv-
able modification. We can also use the generator to encode the target image into the imperceivable
modifications and train the trojan to recognize and decode information from it.

Trojan capability. By defining the forward pass of the trigger case, we can make the trojan more
robust. In our demonstration, we place the trigger pattern in a random position of the source image
to make the trojan robust to the position of triggers. It is also possible to apply other random
transformations, such as scale, rotation, to enable the trojan more robust. It is also possible to let the
trojan support multiple trigger formats by feeding trigger images from different generator networks.
These variants may greatly enhance the threat in the real world.

Model capacity. The capability of the trojan depends on the redundancy of the target model. In
our demonstration, the network architecture of the trojaned model is fixed and the trojan can only
exist in the weight parameters. However, the emerging AutoML (Zoph & Le, 2017) technology
enables the algorithm to search the best network architecture for a certain task to maximize accuracy.
The obtained network architectures from AutoML algorithms are usually complicated and hard to
explain, which further increase the threat of our programmable trojaning attack. The trojan can
also be hidden in the network architecture in this case. Attackers can search the best architecture
and parameters to maximize the capability of the trojan and publish the pre-trained architecture and
parameters online.

7 CONCLUSION

We propose a powerful NN trojaning attack under more practical scenarios. Compared to existing
NN trojaning methods, our trojan supports dynamic and out scope target classes, which make it
broadly applicable. The trojan can be inserted into large-scale models, which provides well-learned
general features. Thus, the trojan can affect a large scope of applications. Further analyses show that
the proposed trojaning attack is difficult to be detected or removed for existing defense methods.
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