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Abstract

In this paper we investigate new methods to
build and evaluate interpretable predictive mod-
els for time series data using symbolic regression
and generalized additive models. We propose
a novel framework to iteratively build a model
while maintaining model interprebility as accu-
racy and complexity increase. We also propose
multiple methods that ease interpretation of the
built model, the model building process, and the
model output. The proposed methods study the
contributions of the model constituents, partial
derivatives, and behavior in the frequency do-
main. Finally, we empirically demonstrate the
framework methods by modeling weather phe-
nomena using a weather station observational
dataset, and show how the resulting model finds
underlying meteorological principles automati-
cally.

1. Introduction
The interprebility of a model should stem from how sim-
plistic a model is, but this can cause problems with weak-
ness of an overly simplistic model. Usually, a simple model
is an interpretable model but also a weak one, and this is
due to the difficulty of interpreting and understanding the
large number of constituents that make up an accurate but
complex model. Researchers instead must look for simplis-
tic models (such as decision trees) to get an understanding
of how the machine learns from the data it is given. Sim-
plistic models, such as the decision tree, are too inaccurate
on their own and are usually grouped together in an ensem-
ble to produce accurate results; moreover, accurate decision
trees usually span to very large depths and breadths, creat-
ing very complex and difficult to understand models (when
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attempting to interpret them) that are also hard to model
mathematically.

Classification problems are generally easier to interpret
than regression problems, and this is because they have a
finite discrete amount of outcomes. Moreover, a classifica-
tion model can usually be traced from start to finish (from
input to output) to try and understand how this particular
outcome came about. Regression problems may have an
infinite amount of outcomes, and it is not always so clear
as to how a particular input parameter is transforming the
model outcome. To interpret a model, one may ask: what is
the contribution of a particular parameter to the model out-
come on average? Harder questions may follow the form
of: if I were to change a particular parameter by a certain
amount, how much of that change would then be reflected
onto the outcome?

In this paper, we propose a framework that iteratively pro-
duces a generalized additive model, in a search form that
mimics symbolic regression, while maintaining a reason-
able balance between model interprebility and accuracy.
We also propose methods to ease the interpretation of the
models generated by the framework. Finally, we present
an empirical study of the framework when applied to a
weather station observational dataset.

2. Related Work
The idea of Generalized Additive Models (GAM) first
stemmed from the KolmogorovArnold representation theo-
rem (Braun & Griebel, 2009), which states that every multi-
variable continuous function can be represented as a super-
position of continuous functions of two variables (Hastie &
Tibshirani, 1990). Various work has been produced since
then that uses GAM, with all work citing the main advan-
tage of using GAM was producing accurate models of the
underlying processes (Guisan et al., 2002; Dominici et al.,
2002; Yee & Mitchell, 1991).

There has been some amount of work done specifically on
using Symbolic Regression (SR) to produce interpretable
models. (Giustolisi & Savic, 2006) described a hybrid re-
gression method that combined the best features of con-
ventional numerical regression techniques with the genetic



Building and Evaluating Interpretable Models using Symbolic Regression and Generalized Additive Models

programming SR technique; in it they described three dif-
ferent types of models: white, black, and gray box mod-
els. White-box models are based on first principles (such
as physical laws), known variables and known parame-
ters, whereas black-box models are systems for which there
is no prior information available. The method they pro-
pose tries to form a gray-box model, which is a concep-
tual model whose mathematical structure can be derived
through conceptualization of physical phenomena or sim-
plification of complex existing models. The authors also
list some challenges of traditional SR methods: these in-
clude the large number of evolutionary parameters to tune,
the complexity of the generated symbolic models, and the
difficulty of interpreting the tree structure that the tradi-
tional SR method produces.

(Affenzeller et al., 2014) discussed the existing scrutiny
for traditional models and how SR attempts to solve this
through complex non-linear white-box models (as dis-
cussed earlier) in an attempt to gain an understanding of the
underlying processes. They again raise similar problems
with genetic programming based SR, citing code bloat,
occurrence of non-functional code segments, and genetic
drifts in the search process that lead to vastly different mod-
els when the search is rerun.

3. Building an Interpretable Regressive Model
The proposed method to build a regressive predictive model
is to start building it with simplistic mathematical blocks,
and through symbolic regression techniques increase the
complexity of those blocks until the final model as a whole
has both sufficient accuracy and is simplistic enough to be
easily interpreted. This method allows for reasonable in-
terpretation of the model because it is displayed to the in-
terpreter as a series of successive additions to the model by
the symbolic regression framework.

3.1. Generalized Additive Model Formation

The generalized additive model proposed by the framework
is composed of multiple separate constituents, of which the
basic form is represented by the equation below.

x0f(ax1 + x2) + x3

This form was chosen because of its simplicity (the func-
tion in question can be a sine, cosine, exponential, etc.)
and is thought to be a ”building block” from which highly
complex models can be built from. Assuming the func-
tion in the constituent is easily differentiable, finding the
coefficients in the equation that best fit the model to the
output is done by using the Gradient Decent (GD) method
(Mandic, 2004). Put simply, the GD method is the process
of updating a set of parameters (in our case, all constituent
coefficients) in an iterative manner to minimize an error

function (in our case, the difference between the sum of the
constituents and the actual data set). To demonstrate this
method, consider a model with only one constituent. In or-
der to find the coefficients of the constituent, we must solve
the following equation.

x0f(ax1 + x2) + x3 = b

To start, we rearrange the equation to form the function
G(X), which is the square difference between the sum of
constituents and the desired output.

G(X) = (−b+ x0f(ax1 + x2) + x3)
2

In which X is a vector representing all our coefficients,
from x0 to xn. Throughout our search for the function
global minimum, we will create successive iterations of X ,
and to simplify this, we will denote each iteration of X as
Xi. X is therefore defined as follows.

Xi =
[
x0 x1 x2 . . . xn

]
X0 =

[
0 0 0 . . . 0

]
Our objective function, denoted here as F (X), is related to
G(X) (as defined in the GD method) in the following way.

F (X) = 0.5 (−b+ x0f(ax1 + x2) + x3)
4

We will need to define a Jacobian matrix for our function
G(X). This is because the GD method Gradient descent
is based on the mathematical fact that if the multi-variable
function F (X) is defined and differentiable in a neighbor-
hood of a point A, then F (X) decreases fastest if one goes
from A in the direction of the negative gradient of F at A.
The Jacobian for G(X) is therefore defined as follows.

J =
[
J0 J1 J2 J3

]
J0 = 2 (−b+ x0f(ax1 + x2) + x3) f(ax1 + x2)

J1 = 2ax0 (−b+ x0f(ax1 + x2) + x3)
d
dξ1
f(ξ1)

∣∣∣
ξ1=ax1+x2

J2 = 2x0 (−b+ x0f(ax1 + x2) + x3)
d
dξ1
f(ξ1)

∣∣∣
ξ1=ax1+x2

J3 = −2b+ 2x0f(ax1 + x2) + 2x3

The gradient of the objective function F (X) can now be
produced from the Jacobian of G(X), denoted as J , in the
following way.

5F (Xi) = J(Xi)
TG(Xi)

Finally, through our derivation of the objective function,
we reach our iterative equation for the coefficients. The λ0
in the equation below is a constant, usually referred to as
the learning rate, and is set such that F (X1) <= F (X0).
Therefore, to iteratively find the best coefficients for our
single constituent, we use the following iterative function.

Xi+1 = Xi − λ0 5 F (Xi)
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This process is valid for a model with only one constituent.
Usually, accurate models have a large number of con-
stituents that are all summed together to produce the output.
We will demonstrate empirically that increasing the num-
ber of constituents in a model produced through our pro-
posed framework increases correlation of the predictions
to the actual data.

In the framework implementation, we make use of an auto-
matic symbolic differentiation library, Tensorflow, to auto-
matically derive and iterate over a large and complex equa-
tion formed of an arbitrary number of constituents using
the GD (Abadi et al., 2015). In practice, there are many
downsides to the GD method, and it is possible to use the
framework with more advanced optimization algorithms,
such as the Adam optimization algorithm (Kingma & Ba,
2014). The use of Tensorflow not only allows the frame-
work to generate arbitrarily large equations using a mix of
simplistic functions and compositive functions too; it also
allows the framework to run the optimization algorithm on
the GPU, yielding extraordinary speedup in time needed
for the algorithm to converge to a minimum. The use of
this library and hardware acceleration is thought to make
this method of symbolic regression the most performant
compared to other methods. The framework code is open
sourced on Github and can be viewed by clicking here.

3.2. Iteratively Evolving the Model

We presented in the previous section a way of fitting a con-
stituent (or multiple constituents) with known function type
using the GD method (or a similar optimization algorithm).
However, during model creation we may not know the best
combination of functions (or composites of multiple func-
tions), and it is very computer intensive to exhaustively
search through all combinations of constituents.

The proposed solution to this is to iteratively evolve a
model; this is similar to a genetic algorithm search of sym-
bolic regression methods. The process first randomly gen-
erates models with only one constituent composing each
model; this is because in each generation of the search, we
will add one more constituent to the model. The models are
then fit using the GD method, then they are evaluated for
accuracy and sorted by their evaluation. We then filter the
models so that we are left only with a certain percentage of
models that make up the best models of the generation.

To create a new generation in a genetic algorithm search,
we need to do two things: we first must cross-over the
highest ranking models that passed through our filter, then
we mutate these models by randomly adding a new con-
stituent. The cross-over process is done by forming a new
model from two highly ranked models; in the process, the
new model is generated by adding the constituents of each
of the models together, and all products of a cross-over op-

eration are then mutated. This leaves us with more complex
models than the previous generation in our search, and it is
assumed that these new models have greater accuracy than
the models before them.

The use of this iterative evolutionary search for increas-
ingly complex and accurate models is not only for finding
accurate models efficiently; this process also greatly helps
with the interpretation of the final model. This is because
it is very valuable to the interpreter to see a flow chart that
shows how the model being interpreted has evolved from
a single constituent to a complex multi-constituent model.
During each step of the evolution the increase in accuracy
is shown along with the additional constituents that were
added to the model in that generation. The interpreter is
therefore able to see the added value of each part of the
model and understand from this ”flow chart” the underly-
ing properties of the model.

3.3. Empirical Comparison with the Decision Tree
method

The result of this iterative search is an interpretable and eas-
ily understood predictive model that is close to what was
described as a gray-box model in the literature review. We
use a decision tree regressor to serve as a comparison for
interpretable regressive models. The test involves model-
ing the surface temperature T observed from a weather sta-
tion, using only the time of day t and the relative humidity
H recorded by the station. The model generated from the
framework is detailed below.

T (t,H) = 53.0

((0.012rh+2.0)2)
0.68 +

3.4 sin
(
716π
1947 time−

2359
2493

)
+

3.4 sin
(
5238π
2909 time−

5984
7753

)
+ 8.7

Through empirical testing, the decision tree (even at a
depth of 50) does not reach in terms of accuracy what a
model produced from our framework reaches at a magni-
tude smaller complexity. On our cross-validated testing
dataset (10-fold), the decision tree achieves around 72%
correlation at a tree depth of 50, whereas the frameworks
produced equation achieves around 80% correlation using
only 4 constituents.

4. Interpretable Model Evaluation
4.1. Constituent Contribution Factor

Given a predictive regressive model that can be divided into
multiple individual independent constituents, we can find
what we coin as the ”contribution factor” of each indepen-
dent constituent. In our context, the contribution we are
referring to is mathematical contribution of the constituent
to the overall model output.

https://github.com/arabiaweather/athena
https://github.com/arabiaweather/athena
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To find the contribution of each constituent, we will need to
create a statistical confidence interval for the output of that
constituent as a percentage of the average output, given a
well defined reasonable range of inputs that influence to the
constituent in consideration.

There are a number of benefits to generating constituent
confidence intervals of a model that relate directly to the
interprebility of that model. Because each confidence in-
terval is represented as a percentage of the average output,
this gives the interpreter an idea of how important a certain
feature is within the model and how it governs the output;
similarly, the differing range of intervals given their corre-
sponding confidence levels show how variant the contribu-
tion of the constituent is, and may give the interpreter some
idea of how volatile this constituent is.

In Figure 1, through empirical analysis and by using our
weather station observational dataset, we outline the re-
lationship between average constituent contribution (as a
percentage of the output) and the accuracy gained from the
model. The graph shows a negative correlation between av-
erage constituent contribution and model accuracy, and sig-
nifies that an accurate model gains strength through a small
average constituent contribution. In Figure 2, through the
same empirical analysis we outline the relationship be-
tween the number of constituents of the model generated
by our framework, and the accuracy of the model. The
graph shows a positive correlation between the number of
constituents and the model accuracy; this signifies that a
strong model contains a large number of constituents.

4.2. Model Partial Derivation

Another test for interprebility of a model is the correlation
of the input/output partial derivatives for the model and
data set. This can be explained simply as such: given a
model with a clear relationship between the partial deriva-
tives (which can be interpreted as the change in output
given a change in a particular input of interest) of the model
and for the actual data, it is easier for the interpreter to gain
confidence in the output of this model, and the model is
therefore more interpretable. This causation stems from
the fact that partial derivatives for the actual data set may
already be known, or at least the interpreter may have some
idea as to what the derivative shape may look like for a par-
ticular subset of the input parameters (this may be thought
of as derivatives that stem from traditional scientific fields,
of which the relationships between variables has already
been understood to some degree).

The correlation between the model derivative of a particu-
lar constituent and the corresponding derivative generated
from the data set is best described by a non-linear correla-
tion coefficient or indicator, such as the Coefficient of De-
termination. The need for a non-linear coefficient of cor-

relation is mainly due to the non-linear nature of partial
derivatives and the need to find a correlation indicator that
shows the similarity between shapes.

To a model interpreter, there is large value in seeing
high partial derivative correlations for the majority of con-
stituents of a model; it shows to the interpreter that the
model inhibits constituents whose derivatives are similarly
shaped to the real derivatives approximated from real data.
The models sensitivity to change in input, and most im-
portantly the correlation between model change and actual
change, can be therefore interpreted with confidence. Con-
sequently, a model that is easier to partially differentiate is
a more interpretable model than a model that is harder to
partially differentiate.

To demonstrate this method we use the framework to model
surface temperature, similar to what we did in the previous
section, and we will assess the partial derivative of tem-
perature by humidity. We want to ask: how much does
the surface temperature change due to a change in relative
humidity by one unit? Because the framework produces
a computational symbolic equation, the partial derivation
task is trivial, and the resulting equation is shown below.

dT
dH = − 0.77((0.012H+0.34)5.6)

(0.012H+0.34)2
(0.00083H + 0.024) +

0.068 sin
(
2πt− 37712

8993

)
− 0.023

Through interpretation of the partial derivative above, we
observe a non-linear negative correlation between the sur-
face temperature and relative humidity; this is to say that
an increase in relative humidity yields a non-linear de-
crease in surface temperature. While this is a gross over-
simplification, this is true (on average) from a meteorolog-
ical point of view. The ability of the framework to find
underlying physical relationships makes it, in some sense,
more interpretable.

4.3. Frequency Domain Analysis

When modeling a time series, especially one that is peri-
odic or exhibits periodic components (or constituents), an
interpreter of the model may want to interpret these peri-
odic components in a proper manner, and for that the in-
terpreter may resort to the frequency domain. It is worth
noting that while this method exists for time series mod-
els, it is generalized easily to any periodic model, so long
as it can be analyzed in the frequency domain. Put simply,
the frequency domain here refers to the analysis of time se-
ries predictive models with respect to frequency, rather than
time. To an interpreter of a model, it is useful to both ob-
serve the frequencies present in the predictive model, and to
compare those frequencies with the corresponding frequen-
cies present in the actual data, or from a prior knowledge
of frequencies that should be inherent in the model.
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Perhaps out of these three methods, this method is the hard-
est to implement on all regressive predictive models due to
the fact that not all models are easily transformed into the
frequency domain in a process known as the Fourier Trans-
form. The Fourier Transform (FT) decomposes a function
of time (a signal) into the frequencies that make it up.

When comparing the frequencies present in the predictive
regressive model, and in the actual data, it is made clear to
the interpreter how closely the model is predicting the pe-
riodic components of the time-series; we can therefore say
that the frequency domain check for a predictive model is a
way of easily interpreting the periodicity of a model. More-
over, by comparing the frequencies present in the model
and in the actual data, we are able to interpret the similar-
ity of a model to the actual data in domains different from
the traditional time domain, and this increases confidence
in the interpretation of a model.

Similar to the test we did previously, we will test this check
on our model generated for surface temperature. For sim-
plicity purposes, we only observe the frequency present in
a sine wave that relates the hour of day to the temperature.

T (t) = 2.762 sin (2.02813πt− 1.43)

Through a FT of the sine wave above, we can determine
that the frequency of the sine wave roughly corresponds to
the equivalent of a 24 hour period. Our interpretation of
this coincides with our previous meteorological knowledge
of the 24 hour period of the solar day, which is the main
reason behind the daily temperature fluctuation on Earth.

5. Conclusions
In this paper, we presented a framework and several accom-
panying methods that together allow the creation of com-
plex non-linear interpretable models that are more accurate
and more easily understood than previously available meth-
ods that utilize SR and GAM. Using the framework, we
were able to produce an accurate gray-box model of sev-
eral weather phenomena such as surface temperature and
relative humidity. The combination of accuracy and inter-
prebility in the produced model was hard to achieve using
any other framework. Finally, we were able to utilize the
three methods outlined in this paper (constituent contribu-
tion, partial derivation, frequency domain analysis) to inter-
pret the underlying model and its relation to our previous
understanding of meteorology and the physical laws that
govern weather phenomena.
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Figure 1. The relationship between average constituent contribution (as a percentage of the output) and the accuracy gained from the
model. The graph shows a negative correlation between average constituent contribution and model accuracy.
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Figure 2. The relationship between the number of constituents of the model generated by our framework, and the accuracy of the model.
The graph shows a positive correlation between the number of constituents and the model accuracy.
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