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ABSTRACT

When generating adversarial examples to attack deep neural networks (DNNs),
`p norm of the added perturbation is usually used to measure the similarity be-
tween original image and adversarial example. However, such adversarial at-
tacks perturbing the raw input spaces may fail to capture structural informa-
tion hidden in the input. This work develops a more general attack model, i.e.,
the structured attack (StrAttack), which explores group sparsity in adversarial
perturbations by sliding a mask through images aiming for extracting key spa-
tial structures. An ADMM (alternating direction method of multipliers)-based
framework is proposed that can split the original problem into a sequence of an-
alytically solvable subproblems and can be generalized to implement other at-
tacking methods. Strong group sparsity is achieved in adversarial perturbations
even with the same level of `p-norm distortion (p ∈ {1, 2,∞}) as the state-
of-the-art attacks. We demonstrate the effectiveness of StrAttack by extensive
experimental results on MNIST, CIFAR-10 and ImageNet. We also show that
StrAttack provides better interpretability (i.e., better correspondence with dis-
criminative image regions) through adversarial saliency map (Papernot et al.,
2016b) and class activation map (Zhou et al., 2016). Our code is available at
https://github.com/KaidiXu/StrAttack.

1 INTRODUCTION

C&W Attack Structured Attack

Figure 1: Group sparsity demonstrated in adversarial pertur-
bations obtained by C&W attack and our StrAttack, where
‘ostrich’ is the original label, and ‘unicycle’ is the mis-
classified label. Here each group is a region of 13×13×3 pix-
els and the strength of adversarial perturbations (through their
`2 norm) at each group is represented by heatmap. C&W at-
tack perturbs almost all groups, while StrAttack yields strong
group sparsity, with more semantic structure: the perturbed
image region matches the feature of the target object, namely,
the frame of the unicycle.

Deep learning achieves exceptional suc-
cesses in domains such as image recog-
nition (He et al., 2016; Geifman & El-
Yaniv, 2017), natural language processing
(Hinton et al., 2012; Harwath et al., 2016),
medical diagnostics (Chen et al., 2016; Shi
et al., 2018) and advanced control (Sil-
ver et al., 2016; Fu et al., 2017). Re-
cent studies (Szegedy et al., 2013; Good-
fellow et al., 2014; Nguyen et al., 2015;
Kurakin et al., 2016; Carlini & Wagner,
2017) show that DNNs are vulnerable to
adversarial attacks implemented by gen-
erating adversarial examples, i.e., adding
well-designed perturbations to original le-
gal inputs. Delicately crafted adversarial
examples can mislead a DNN to recog-
nize them as any target image label, while
the perturbations appears unnoticeable to
human eyes. Adversarial attacks against
∗Equal contribution

1

https://github.com/KaidiXu/StrAttack


Published as a conference paper at ICLR 2019

DNNs not only exist in theoretical models
but also pose potential security threats to the real world (Kurakin et al., 2016; Evtimov et al., 2017;
Papernot et al., 2017). Several explanations are proposed to illustrate why there exist adversarial ex-
amples to DNNs based on hypotheses such as model linearity and data manifold (Goodfellow et al.,
2014; Gilmer et al., 2018). However, little is known to their origins, and convincing explanations
remain to be explored.

Besides achieving the goal of (targeted) mis-classification, an adversarial example should be as
“similar” to the original legal input as possible to be stealthy. Currently, the similarity is measured
by the `p norm (p = 0, 1, 2,∞) of the added perturbation (Szegedy et al., 2013; Carlini & Wagner,
2017; Chen et al., 2017b;a), i.e., `p norm is being minimized when generating adversarial example.
However, measuring the similarity between the original image and its adversarial example by `p
norm is neither necessary nor sufficient (Sharif et al., 2018). Besides, no single measure can be
perfect for human perceptual similarity (Carlini & Wagner, 2017) and such adversarial attacks may
fail to capture key information hidden in the input such as spatial structure or distribution. Spurred
by that, this work implements a new attack model i.e., structured attack (StrAttack) that imposes
group sparsity on adversarial perturbations by extracting structures from the inputs. As shown in
Fig. 1, we find that StrAttack identifies minimally sufficient regions that make attacks successful,
but without incurring extra pixel-level perturbation power. The major contributions are summarized
as below.

• (Structure-driven attack) This work is the first attempt towards exploring group-wise
sparse structures when implementing adversarial attacks, but without losing `p distortion
performance when compared to state-of-the-art attacking methods.

• (Generality) We show that the proposed attack model covers many norm-ball based attacks
such as C&W (Carlini & Wagner, 2017) and EAD (Chen et al., 2017a).

• (Efficient implementation) We develop an efficient algorithm to generate structured adver-
sarial perturbations by leveraging the alternating direction method of multipliers (ADMM).
We show that ADMM splits the original complex problem into subproblems, each of which
can be solved analytically. Besides, we show that ADMM can further be used to refine an
arbitrary adversarial attack under the fixed sparse structure.

• (Interpretability) The generated adversarial perturbations demonstrate clear correlations
and interpretations between original and target images. With the aid of adversarial saliency
map (Papernot et al., 2016b) and class activation map (Zhou et al., 2016), we show that the
obtained group-sparse adversarial patterns better shed light on the mechanisms of adver-
sarial perturbations to fool DNNs.

Related work Many works studied norm-ball constrained adversarial attacks. For example, FGM
(Goodfellow et al., 2014) and IFGSM (Kurakin et al., 2017) attack methods were proposed to max-
imize the classification error subject to `∞-norm based distortion constraints. Moreover, L-BFGS
(Szegedy et al., 2013) and C&W (Carlini & Wagner, 2017) attacks found an adversarial example
by minimizing its `2-norm distortion. By contrast, JSMA (Papernot et al., 2016b) and one-pixel
(Su et al., 2017) attacks attempted to generate adversarial examples by perturbing the minimum
number of pixels, namely, minimizing the `0 norm of adversarial perturbations. Different from the
above norm-ball constrained attacks, some works (Karmon et al., 2018; Brown et al., 2017) crafted
adversarial examples by adding noise patches. However, the resulting adversarial perturbations are
no longer imperceptible to humans. Here we argue that imperceptibility could be important since it
helps us to understand how/why DNNs are vulnerable to adversarial attacks while perturbing natural
examples just by indistinguished adversarial noise.

In the aforementioned norm-ball constrained adversarial attacks, two extremely opposite principles
have been applied: C&W attack (or `∞ attacks) seeks the minimum image-level distortion but al-
lows to modify all pixels; one-pixel attack only perturbs a few pixels but suffers a high pixel-level
distortion. Both attacking principles might lead to a high noise visibility due to perturbing too many
pixels or perturbing a few pixels too much. In this work, we wonder if there exists a more effective
attack that can be as successful as existing attacks but achieves a tradeoff between the perturbation
power and the number of perturbed pixels. We will show that the proposed StrAttack is able to iden-
tify sparse perturbed regions that make attacks successful, but without incurring extra pixel-level
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perturbations. It is also worth mentioning that one-pixel attack has much lower attack success rate
on ImageNet than C&W attack and StrAttack.

In addition to adversarial attacks, many defense works have been proposed. Examples include de-
fensive distillation (Papernot et al., 2016c) that distills the original DNN and introduces temperature
into the softmax layer, random mask (Anonymous, 2019) that modifies the DNN structures by ran-
domly removing certain neurons before training, adversarial training through enlarging the training
dataset with adversarial examples, and robust adversarial training (Madry et al., 2017; Sinha et al.,
2018) through the min-max optimization. It is commonly known that the robust adversarial train-
ing method ensures the strongest defense performance against adversarial attacks on MNIST and
CIFAR-10. In this work, we will evaluate the effectiveness of StrAttack to three defense methods, a)
defensive distillation (Papernot et al., 2016c), b) adversarial training via data augmentation (Tramèr
et al., 2018) and c) robust adversarial training (Madry et al., 2017).

Although the adversarial attack and defense have attracted an increasing amount of attention, the
visual explanation on adversarial perturbations is less explored since the distortion power is mini-
mized and the resulting adversarial effects become imperceptible to humans. The work (Dong et al.,
2017) attempted to understand how the internal representations of DNNs are affected by adversar-
ial examples. However, only an ensemble-based attack was considered, which fails to distinguish
the effectiveness of different norm-ball constrained adversarial attacks. Unlike (Dong et al., 2017),
we employ the interpretability tools, adversarial saliency map (ASM) (Papernot et al., 2016b) and
class activation map (CAM) (Zhou et al., 2016) to measure the effectiveness of different attacks in
terms of their interpretability. Here ASM provides sensitivity analysis for pixel-level perturbation’s
impact on label classification, and CAM localizes class-specific image discriminative regions (Xiao
et al., 2018). We will show that the sparse adversarial pattern obtained by StrAttack offers a great
interpretability through ASM and CAM compared with other norm-ball constrained attacks.

2 STRUCTURED ATTACK: EXPLORE GROUP STRUCTURES FROM IMAGES

In the section, we introduce the concept of StrAttack, motivated by the question: ‘what possible
structures could adversarial perturbations have to fool DNNs?’ Our idea is to divide an image into
sub-groups of pixels and then penalize the corresponding group-wise sparsity. The resulting sparse
groups encode minimally sufficient adversarial effects on local structures of natural images.

Let ∆ ∈ RW×H×C be an adversarial perturbation added to an original image X0, where W × H
gives the spatial region, and C is the depth, e.g., C = 3 for RGB images. To characterize the local
structures of ∆, we introduce a sliding maskM with stride S and size r × r × C. When S = 1,
the mask moves one pixel at a time; When S = 2, the mask jumps 2 pixels at a time while sliding.
By adjusting the stride S and the mask size r, different group splitting schemes can be obtained.
If S < r, the resulting groups will contain overlapping pixels. By contrast, groups will become
non-overlapped when S = r.

A sliding maskM finally divides ∆ into a set of groups {∆Gp,q} for p ∈ [P ] and q ∈ [Q], where
P = (W − r)/S + 1, Q = (H − r)/S + 1, and [n] denotes the integer set {1, 2, . . . , n}. Given
the groups {∆Gp,q}, the group sparsity can be characterized through the following sparsity-inducing
function (Yuan & Lin, 2006; Bach et al., 2012; Liu et al., 2015), motivated by the problem of group
Lasso (Yuan & Lin, 2006):

g(∆) =
∑P
p=1

∑Q
q=1 ‖∆Gp,q‖2, (1)

where ∆Gp,q denotes the set of pixels of ∆ indexed by Gp,q , and ‖ · ‖2 is the `2 norm. We refer
readers to Fig. A1 for an illustrative example of our concepts on groups and group sparsity.

3 STRUCTURED ADVERSARIAL ATTACK WITH ADMM

In this section, we start by proposing a general framework to generate prediction-evasive adversarial
examples, where the adversary relies only on gradients of the loss function with respect to inputs
of DNNs. Our model takes into account both commonly-used adversarial distortion metrics and
the proposed group-sparsity regularization that encodes spatial structures in attacks. We show that
the process of generating structured adversarial examples leads to an optimization problem that is
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difficult to solve using the existing optimizers Adam (for C&W attack) and FISTA (for EAD attack)
(Carlini & Wagner, 2017; Chen et al., 2017a). To circumvent this challenge, we develop an efficient
optimization method via alternating direction method of multipliers (ADMM).

Given an original image x0 ∈ Rn, we aim to design the optimal adversarial perturbation δ ∈ Rn so
that the adversarial example (x0 + δ) misleads DNNs trained on natural images. Throughout this
paper, we use vector representations of the adversarial perturbation ∆ and the original image X0

without loss of generality. A well designed perturbation δ can be obtained by solving optimization
problems of the following form,

minimize
δ

f(x0 + δ, t) + γD(δ) + τg(δ)

subject to (x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε,
(2)

where f(x, t) denotes the loss function for crafting adversarial example given a target class t, D(δ)
is a distortion function that controls the perceptual similarity between a natural image and a per-
turbed image, g(δ) =

∑P
p=1

∑Q
q=1 ‖δGp,q‖2 is given by (1), and ‖ · ‖p signifies the `p norm. In

problem (2), the ‘hard’ constraints ensure the validness of created adversarial examples with ε-
tolerant perturbed pixel values. And the non-negative regularization parameters γ and τ place our
emphasis on the distortion of an adversarial example (to an original image) and group sparsity of
adversarial perturbation. Tuning the regularization parameters will be discussed in Appendix F.

Problem (2) gives a quite general formulation for design of adversarial examples. If we remove the
group-sparsity regularizer g(δ) and the `∞ constraint, problem (2) becomes the same as the C&W
attack (Carlini & Wagner, 2017). More specifically, if we further set the distortion function D(δ)
to the form of `0, `2 or `∞ norm, then we obtain C&W `0, `2 or `∞ attack. If D(δ) is specified
by the elastic-net regularizer, then problem (2) becomes the formulation of EAD attack (Chen et al.,
2017a).

In this paper, we specify the loss function of problem (2) as below, which yields the best known
performance of adversaries (Carlini & Wagner, 2017),

f(x0 + δ, t) = c ·max{max
j 6=t

Z(x0 + δ)j − Z(x0 + δ)t,−κ}, (3)

where Z(x)j is the jth element of logits Z(x), representing the output before the last softmax layer
in DNNs, and κ is a confidence parameter that is usually set to zero if the attack transferability is not
much cared. We choose D(δ) = ‖δ‖22 for a fair comparison with the C&W `2 adversarial attack.
In this section, we assume that {Gp,q} are non-overlapping groups, i.e., Gp,q ∩ Gp′,q′ = ∅ for q 6= q′

or p 6= p′. The overlapping case will be studied in the next section.

The presence of multiple non-smooth regularizers and ‘hard’ constraints make the existing optimiz-
ers Adam and FISTA (Carlini & Wagner, 2017; Chen et al., 2017a; Kingma & Ba, 2015; Beck &
Teboulle, 2009) inefficient for solving problem (2). First, the subgradient of the objective function
of problem (2) is difficult to obtain especially when {Gp,q} are overlapping groups. Second, it is
impossible to compute the proximal operations required for FISTA with respect to all non-smooth
regularizers and ‘hard’ constraints. Different from the existing work, we show that ADMM, a first-
order operator splitting method, helps us to split the original complex problem (2) into a sequence
of subproblems, each of which can be solved analytically.

We reformulate problem (2) in a way that lends itself to the application of ADMM,

minimize
δ,z,w,y

f(z + x0) + γD(δ) + τ
∑PQ
i=1 ‖yDi‖2 + h(w)

subject to z = δ, z = y, z = w,
(4)

where z, y and w are newly introduced variables, for ease of notation let D(q−1)P+p = Gp,q , and
h(w) is an indicator function with respect to the constraints of problem (2),

h(w) =

{
0 if (x0 + w) ∈ [0, 1]n, ‖w‖∞ ≤ ε,
∞ otherwise. (5)

ADMM is performed by minimizing the augmented Lagrangian of problem (4),

L(z, δ,y,w,u,v, s) = f(z + x0) + γD(δ) + τ
∑PQ
i=1 ‖yDi‖2 + h(w) + uT (δ − z)

+vT (y − z) + sT (w − z) + ρ
2
‖δ − z‖22 + ρ

2
‖y − z‖22 + ρ

2
‖w − z‖22,

(6)
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where u, v and s are Lagrangian multipliers, and ρ > 0 is a given penalty parameter. ADMM splits
all of optimization variables into two blocks and adopts the following iterative scheme,

{δk+1,wk+1,yk+1} = argmin
δ,w,y

L(δ, zk,w,y,uk,vk, sk), (7)

zk+1 = argmin
z

L(δk+1, z,wk+1,yk+1,uk,vk, sk), (8) uk+1 = uk + ρ(δk+1 − zk+1),
vk+1 = vk + ρ(yk+1 − zk+1),
sk+1 = sk + ρ(wk+1 − zk+1),

(9)

where k is the iteration index, steps (7)-(8) are used for updating primal variables, and the last
step (9) is known as the dual update step. We emphasize that the crucial property of the proposed
ADMM approach is that, as we demonstrate in Proposition 1, the solution to problem (7) can be
found in parallel and exactly.

Proposition 1 When D(δ) = ‖δ‖22, the solution to problem (7) is given by

δk+1 = ρ
ρ+2γa, (10)

[wk+1]i =

{
min{1− [x0]i, ε} bi > min{1− [x0]i, ε}
max{−[x0]i,−ε} bi < max{−[x0]i,−ε}
bi otherwise,

for i ∈ [n], (11)

[yk+1]Di =
(
1− τ

ρ‖[c]Di
‖2

)
+
[c]Di

, i ∈ [PQ], (12)

where a := zk − uk/ρ, b := zk − sk/ρ, c := zk − vk/ρ, (x)+ = x if x ≥ 0 and 0 otherwise, [x]i
denotes the ith element of x, and [x]Di

denotes the sub-vector of x indexed by Di.

Proof: See Appendix B. �

It is clear from Proposition 1 that introducing auxiliary variables does not increase the computational
complexity of ADMM since (10)-(12) can be solved in parallel. Moreover, if another distortion
metric (different from D(δ) = ‖δ‖22) is used, then ADMM only changes at the δ-step (10).

We next focus on the z-minimization step (8), which can be equivalently transformed into

minimize
z

f(x0 + z) +
ρ

2
‖z− a′‖22 +

ρ

2
‖z− b′‖22 +

ρ

2
‖z− c′‖22, (13)

where a′ := δk+1 + uk/ρ, b′ := wk+1 + sk/ρ, and c′ := yk+1 + vk/ρ. We recall that attacks
studied in this paper belongs to ‘first-order’ adversaries (Madry et al., 2017), which only have access
to gradients of the loss function f . Spurred by that, we solve problem (13) via a linearization
technique that is commonly used in stochastic/online ADMM (Ouyang et al., 2013; Suzuki, 2013;
Liu et al., 2018) or linearized ADMM (Boyd et al., 2011; Liu et al., 2017). Specifically, we replace
the function f with its first-order Taylor expansion at the point zk by adding a Bregman divergence
term (ηk/2)‖z− zk‖22. As a result, problem (13) becomes

minimize
z

(∇f(zk + x0))
T (z− zk) +

ηk
2
‖z− zk‖22 +

ρ

2
‖z− a′‖22

+
ρ

2
‖z− b′‖22 +

ρ

2
‖z− c′‖22,

(14)

where 1/ηk > 0 is a given decaying parameter, e.g., ηk = α
√
k for some α > 0, and the Bregman

divergence term stabilizes the convergence of z-minimization step. It is clear that problem (14)
yields a quadratic program with the closed-form solution

zk+1 = (1/ (ηk + 3ρ))
(
ηkz

k + ρa + ρb + ρc−∇f(zk + x0)
)
. (15)

In summary, the proposed ADMM algorithm alternatively updates (7)-(9), which yield closed-form
solutions given by (10)-(12) and (15). The convergence of linearized ADMM for nonconvex op-
timization was recently proved by (Liu et al., 2017), and thus provides theoretical validity of our
approach. Compared to the existing solver for generation of adversarial examples (Carlini & Wag-
ner, 2017; Papernot et al., 2016b), our algorithm offers two main benefits, efficiency and generality.
That is, the computations for every update step are efficiently carried out, and our approach can be
applicable to a wide class of attack formulations.
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4 OVERLAPPING GROUP AND REFINED STRATTACK

In this section, we generalize our proposed ADMM solution framework to the case of generating
adversarial perturbations with overlapping group structures. We then turn to an attack refining model
under fixed sparse structures. We will show that both extensions can be unified under the ADMM
framework. In particular, the refined approach will allow us to gain deeper insights on the structural
effects on adversarial perturbations.

4.1 OVERLAPPING GROUP STRUCTURE

We recall that groups {Di} (also denoted by {Gp,q}) studied in Sec. 3 could be overlapped with each
other; see an example in Fig. A1. Therefore, {Di} is in general a cover rather than a partition of [n].
To address the challenge in coupled group variables, we introduce multiple copies of the variable y
in problem (4), and achieve the following modification

minimize
δ,z,w,{yi}

f(z + x0) + γD(δ) + τ
∑PQ
i=1 ‖yi,Di‖2 + h(w)

subject to z = δ, z = w, z = yi, i ∈ [PQ],
(16)

where compared to problem (4), there exist PQ variables yi ∈ Rn for i ∈ [PQ], and yi,Di denotes
the subvector of yi with indices given by Di. It is clear from (16) that groups {Di} become non-
overlapped since each of them lies in a different copy yi. The ADMM algorithm for solving problem
(16) maintains a similar procedure as (7)-(9) except y-step (12) and z-step (15); see Proposition 2.

Proposition 2 Given the same condition of Proposition 1, the ADMM solution to problem (16) in-
volves the δ-step same as (10), the w-step same as (11), and two modified y- and z-steps,

[
yk+1
i

]
Di

=
(
1− τ

ρ‖[ci]Di
‖2

)
+
[ci]Di[

yk+1
i

]
[n]/Di

= [ci][n]/Di

, for i ∈ [PQ], (17)

zk+1 = (1/ (ηk + 2ρ+ PQρ))
(
ηkz

k + ρa′ + ρb′ + ρ
∑PQ
i=1 c′i −∇f(zk + x0)

)
, (18)

where ci := zk − vki /ρ, vi is the Lagrangian multiplier associated with equality constraint yi = z,
similar to (9) we obtain vk+1

i = vki +ρ(y
k+1−zk+1), [n]/Di denotes the difference of sets [n] and

Di, a′ and b′ have been defined in (13), and c′i = yk+1
i + vki /ρ.

Proof: See Appendix C. �

We note that updating PQ variables {yi} is decomposed as shown in (17). However, the side effect
is the need of PQ times more storage space than the y-step (12) when groups are non-overlapped.

4.2 REFINED STRATTACK UNDER FIXED SPARSE PATTERN

The approaches proposed in Sec. 3 and Sec. 4.1 help us to identify structured sparse patterns in
adversarial perturbations. This section presents a method to refine structured attacks under fixed
group sparse patterns. Let δ∗ denote the solution to problem (2) solved by the proposed ADMM
method. We define a σ-sparse perturbation δ via δ∗,

δi = 0 if δ∗i ≤ σ, for any i ∈ [n], (19)

where a hard thresholding operator is applied to δ∗ with tolerance σ. Our refined model imposes the
fixed σ-sparse structure (19) into problem (2). This leads to

minimize
δ

f(x0 + δ) + γD(δ)

subject to (x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε
δi = 0, if i ∈ Sσ,

(20)

where Sσ is defined by (19), i.e., Sσ := {j | δ∗j ≤ σ, j ∈ [n]}. Compared to problem (2), the group-
sparse penalty function is eliminated as it has been known as a priori. With the priori knowledge of
group sparsity, problem (20) is formulated to optimize and refine the non-zero groups, thus achieving
better performance on highlighting and exploring the perturbation structure. Problem (20) can be
solved using ADMM, and its solution is presented in Proposition 3.
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Proposition 3 The ADMM solution to problem (20) is given by

[δk+1]i =


0 i ∈ Sσ
min{1− [x0]i , ε}

ρ
2γ+ρ

ai > min{1− [x0]i , ε}, i /∈ Sσ
max{− [x0]i ,−ε}

ρ
2γ+ρ

ai < max{− [x0]i ,−ε}, i /∈ Sσ
ρ

2γ+ρ
ai otherwise,

(21)

[zk+1]i =

{
0 i ∈ Sσ
1/(ηk + ρ)

[
ηk[z

k]i + ρ[a′]i − [∇f(zk + x0)]i
]

i /∈ Sσ,
(22)

for i ∈ [n], where z = δ is the introduced auxiliary variable similar to (4), a := δk+1 − uk/ρ,
a′ := δk+1+uk/ρ, uk+1 = uk+ ρ(δk+1− zk+1), and ρ and ηk have been defined in (6) and (14).
The ADMM iterations can be initialized by δ∗, the known solution to problem (2).

Proof: See Appendix D. �

5 EMPIRICAL PERFORMANCE OF STRATTACK

We evaluate the performance of the proposed StrAttack on three image classification datasets,
MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al.,
2009). To make fair comparison with the C&W `2 attack (Carlini & Wagner, 2017), we use `2 norm
as the distortion function D(δ) = ‖δ‖22. And we also compare with FGM (Goodfellow et al., 2014)
and IFGSM `2 attacks (Kurakin et al., 2017) as a reference. We evaluate attack success rate (ASR)1

as well as `p distortion metrics for p ∈ {0, 1, 2,∞}. The detailed experiment setup is presented in
Appendix F. Our code is available at https://github.com/KaidiXu/StrAttack.

For each attack method on MNIST or CIFAR-10, we choose 1000 original images from the test
dataset as source and each image has 9 target labels. So a total of 9000 adversarial examples are
generated for each attack method. On ImageNet, each attack method tries to craft 900 adverdarial
examples with 100 random images from the test dataset and 9 random target labels for each image.

Fig. 2 compares adversarial examples generated by StrAttack and C&W attack on each dataset.
We observe that the perturbation of the C&W attack has poor group sparsity, i.e., many non-zeros
groups with small magnitudes. However, the ASR of the C&W attack is quite sensitive to these
small perturbations. As applying a threshold to have the same `0 norm as our attack, we find that
only 6.7% of adversarial examples generated from C&W attack remain valid. By contrast, StrAttack
is able to highlight the most important group structures (local regions) of adversarial perturbations
without attacking other pixels. For example, StrAttack misclassifies a natural image (4 in MNIST) as
an incorrect label 3. That is because the pixels that appears in the structure of 3 are more significantly
perturbed by our attack; see the top right plots of Fig. 2. Furthermore, the ‘goose-sorrel’ example
shows that misclassification occurs when we just perturb a small number of non-sparse group regions
on goose’s head, which is more consistent with human perception. We refer readers to Appendix G
for more results.

By quatitatively analysis, we report `p norms and ASR in Table 1 for p ∈ {0, 1, 2,∞}. We show
that StrAttack perturbs much fewer pixels (smaller `0 norm), but it is comparable to or even better
than other attacks in terms of `1, `2, and `∞ norms. Specifically, the FGM attack yields the worst
performance in both ASR and `p distortion. On MNIST and CIFAR-10, StrAttack outperforms other
attacks in `0, `1 and `∞ distortion. On ImageNet, StrAttack outperforms C&W attack in `0 and `1
distortion. Since the C&W attacking loss directly penalizes the `2 norm, it often causes smaller `2
distortion than StrAttack. We also observe that the overlapping case leads to the adversarial per-
turbation of less sparsity (in terms of `0 norm) compared to the non-overlapping case. This is not
surprising, since the sparsity of the overlapping region is controlled by at least two groups. However,
compared to C&W attack, the use of overlapping groups in StrAttack still yields sparser perturba-
tions. Unless specified otherwise, we focus on the case of non-overlapping groups to generate the
most sparse adversarial perturbations. We highlight that although a so-called one-pixel attack (Su
et al., 2017) also yields very small `0 norm, it is at the cost of very large `∞ distortion. Unlike
one-pixel attack, StrAttack achieves the sparsity without losing the performance of `∞, `1 and `2
distortion.

Furthermore, we compare the performance of StrAttack with the C&W `∞ attack and IFGSM while
attacking the robust model (Madry et al., 2017) on MNIST. We remark that all the considered attack

1The percentage of adversarial examples that successfully fool DNNs.
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Figure 2: C&W attack vs StrAttack. Here each grid cell represents a 2× 2, 2× 2, and 13× 13 small region in
MNIST, CIFAR-10 and ImageNet, respectively. The group sparsity of perturbation is represented by heatmap.
The colors on heatmap represent average absolute value of distortion scale to [0, 255]. The left two columns
correspond to results of using C&W attack. The right two columns show results of StrAttack.

Table 1: Adversarial attack success rate (ASR) and `p distortion values for various attacks.

Data Set Attack
Method

Best Case* Average Case* Worst Case*

ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞

MNIST

FGM 99.3 456.5 28.2 2.32 0.57 35.8 466 39.4 3.17 0.717 0 N.A.** N.A. N.A. N.A.
IFGSM 100 549.5 18.3 1.57 0.4 100 588 30.9 2.41 0.566 99.8 640.4 50.98 3.742 0.784
C&W 100 479.8 13.3 1.35 0.397 100 493.4 21.3 1.9 0.528 99.7 524.3 29.9 2.45 0.664

StrAttack 100 73.2 10.9 1.51 0.384 100 119.4 18.05 2.16 0.47 100 182.0 26.9 2.81 0.5
+overlap 100 84.4 9.2 1.32 0.401 100 157.4 16.2 1.95 0.508 100 260.9 22.9 2.501 0.653

CIFAR-10

FGM 98.5 3049 12.9 0.389 0.046 44.1 3048 34.2 0.989 0.113 0.2 3071 61.3 1.76 0.194
IFGSM 100 3051 6.22 0.182 0.02 100 3051 13.7 0.391 0.0433 100 3060 22.9 0.655 0.075
C&W 100 2954 6.03 0.178 0.019 100 2956 12.1 0.347 0.0364 99.9 3070 16.8 0.481 0.0536

StrAttack 100 264 3.33 0.204 0.031 100 487 7.13 0.353 0.050 100 772 12.5 0.563 0.075
+overlap 100 295 3.35 0.169 0.029 100 562 7.05 0.328 0.047 100 920 12.9 0.502 0.063

ImageNet

FGM 12 264917 152 0.477 0.0157 2 263585 51.3 0.18 0.00614 0 N.A. N.A. N.A. N.A.
IFGSM 100 267079 299.32 0.9086 0.02964 100 267293 723 2.2 0.0792 98 267581 1378 4.22 0.158
C&W 100 267916 127 0.471 0.016 100 263140 198 0.679 0.03 100 265212 268 0.852 0.041

StrAttack 100 14462 55.2 0.719 0.058 100 52328 152 1.06 0.075 100 80722 197 1.35 0.122
* Please refer to Appendix F for the definition of best case, best case and worst case.
** N.A. means not available in the case of zero ASR, +overlap means structured attack with overlapping groups.

methods are performed under the same `∞-norm based distortion constraint with an upper bound
ε ∈ {0.1, 0.2, 0.3, 0.4}. Here we obtain a (refined) StrAttack subject to ‖δ‖∞ ≤ ε by solving
problem (20) at γ = 0. In Table 2, we demonstrate the ASR and the number of perturbed pixels
for various attacks over 5000 (untargeted) adversarial examples. The ASR define as the proportion
of the final perturbation results less than given ε ∈ {0.1, 0.2, 0.3, 0.4} bound over number of test
images. Here an successful attack is defined by an attack that can fool DNNs and meets the `∞
distortion constraint. As we can see, StrAttack can achieve the similar ASR compared to other attack
methods, however, it perturbs a much less number of pixels. Next, we evaluate the performance
of StrAttack against two defense mechanisms: defensive distillation (Papernot et al., 2016c) and
adversarial training (Tramèr et al., 2018). We observe that StrAttack is able to break the two defense
methods with 100% ASR. More details are provided in Appendix H.

Lastly, we evaluate the transferability of StrAttack from Inception V3 (Szegedy et al., 2016) to other
network models including Inception V2, Inception V4 (Szegedy et al., 2017), ResNet 50, ResNet
152 (He et al., 2016), DenseNet 121 and DenseNet 161 (Huang et al., 2017). For comparison,
we also present the transferbility of IFGSM and C&W. This experiment is performed under 1000
(target) adversarial examples on ImageNet2. It can be seen from in Table 3 that StrAttack yields the
largest attack success rate while transferring to almost every network model.

2We follow the experiment setting in (Su et al., 2018), where the transferability is evaluated by the target
class top-5 success rate at each transferred model.
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Table 2: Attack success rate (ASR) and `0 norm of adversarial perturbations for various attacks against robust
adversarial training based defense on MNIST.

ASR at ε = 0.1 ASR at ε = 0.2 ASR at ε = 0.3 ASR at ε = 0.4 `0
IFGSM 0.01 0.02 0.09 0.94 654

C&W `∞ attack 0.01 0.02 0.10 0.96 723
StrAttack 0.01 0.02 0.10 0.99 279

Table 3: Comparison of transferability of different attacks over 6 ImageNet models.

Incept V2 Incept V4 ResNet50 ResNet152 DenseNet121 DenseNet161
IFGSM 0.27 0.22 0.27 0.19 0.16 0.19
C&W 0.25 0.24 0.23 0.23 0.15 0.15

StrAttack 0.28 0.27 0.25 0.25 0.26 0.25

6 STRATTACK OFFERS BETTER INTERPRETABILITY

In this section, we evaluate the effects of structured adversarial perturbations on image classification
through adversarial saliency map (ASM) (Papernot et al., 2016b) and class activation map (CAM)
(Zhou et al., 2016). Here we recall that ASM measures the impact of pixel-level perturbations
on label classification, and CAM localizes class-specific image discriminative regions that we use
to visually explain adversarial perturbations (Xiao et al., 2018). We will show that compared to
C&W attack, StrAttack meets better interpretability in terms of (a) a higher ASM score and (b) a
tighter connection with CAM, where the metric (a) implies interpretability at a micro-level, namely,
perturbing pixels with largest impact on image classification, and the metric (b) demonstrates inter-
pretability at a macro-level, namely, perturbations can be mapped to the most discriminative image
regions localized by CAM.

Given an input image x0 and a target class t, let ASM(x0, t) ∈ Rd denote ASM scores for every
pixel of x0 corresponding to t. We elaborate on the mathematical definition of ASM in Appendix E.
Generally speaking, the ith element of ASM(x0, t), denoted by ASM(x0, t)[i], measures how much
the classification score with respect to the target label t will increase and that with respect to the
original label t0 will decrease if a perturbation is added to the pixel i. With the aid of ASM, we then
define a Boolean map BASM ∈ Rd to encode the regions of x0 most sensitive to targeted adversarial
attacks, where BASM(i) = 1 if ASM(x0, t) > ν, and 0 otherwise. Here ν is a given threshold to
highlight the most sensitive pixels. we then define the interpretability score (IS) via ASM,

IS(δ) = ‖BASM ◦ δ‖2/‖δ‖2, (23)

where ◦ is the element-wise product. The rationale behind (23) is that IS(δ) → 1 if the sensitive
region identified by ASM perfectly predicts the locations of adversarial perturbations. By contrast,
if IS(δ)→ 0, then adversarial perturbations cannot be interpreted by ASM. In Fig. 3(a), we compare
IS of our proposed attack with C&W attack versus the threshold ν, valued by different percentiles of
ASM scores. We obsreve that our attack outperforms C&W attack in terms of IS, since the former
is able to extract important local structures of images by penalizing the group sparsity of adversarial
perturbations. It seems that our improvement is not significant. However, StrAttack just perturbs
very few pixels to obtain this benefit, leading to perturbations with more semantic structure; see
Fig. 3(b) for an illustrative example.

Besides ASM, we show that the effect of adversarial perturbations can be visually explained through
the class-specific discriminative image regions localized by CAM (Zhou et al., 2016). In Fig. 3(c),
we illustrate CAM and demonstrate the differences between our attack and C&W in terms of their
connections to the most discriminative regions of x0 with label t0. We observe that the mechanism
of StrAttack can be better interpreted from CAM: only a few adversarial perturbations are needed
to suppress the feature of the original image with the true label. By replacing ASM with CAM, we
can similarly compute IS in (23) averaged over 500 examples on ImageNet, yielding 0.65 for C&W
attack and 0.77 for our attack. More examples of ASM and CAM can be viewed in Appendix E.

To better interpret the mechanism of adversarial examples, we study adversarial attacks on some
complex images, where the objects of the original and target labels exist simultaneously as shown in
Fig. 4. It can be visualized from CAM that both C&W attack and StrAttack yields similar adversarial
effects on natural images: Adversarial perturbations are used to suppress the most discriminative
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region with respect to the true label, and simultaneously promotes the discriminative region of the
target label. The former principle is implied by the location of perturbed regions and C(x0, t0) in
Fig. 4, and the latter can be seen fromC(xCW, t) orC(xStr, t) againstC(x0, t). However, compared
to C&W attack, StrAttack perturbs much less but ‘right’ pixels which have better correspondence
with class-specific discriminative image regions localized by CAM.

0.3
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0.5
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0.7

0.8

0.9

1

30 40 50 60 70 80 90

IS

ν

Sturctured

C&W
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Figure 3: Interpretabilicy comparison of StrAttack and C&W attack. (a) ASM-based IS vs ν, given from the
30th percentile to the 90th percentile of ASM scores. (b) Overlay ASM and BASM ◦ δ on top of image with
the true label ‘Tibetan Mastiff’ and the target label ‘streetcar’. From left to right: original image, ASM (darker
color represents larger value of ASM score), BASM ◦ δ under StrAttack, and BASM ◦ δ under C&W attack.
Here ν in BASM is set by the 90th percentile of ASM scores. (c) From left to right: original image with true
label ‘stove’, CAM of ‘stove’, and perturbations with target label ‘water ouzel’ under StrAttack and C&W.

7 CONCLUSION

This work explores group-wise sparse structures when implementing adversarial attacks. Different
from previous works that use `p norm to measure the similarity between an original image and an ad-
versarial example, this work incorporates group-sparsity regularization into the problem formulation
of generating adversarial examples and achieves strong group sparsity in the obtained adversarial
perturbations. Leveraging ADMM, we develop an efficient implementation to generate structured
adversarial perturbations, which can be further used to refine an arbitrary adversarial attack under
fixed group sparse structures. The proposed ADMM framewrok is general enough for implement-
ing many state-of-the-art attacks. We perform extensive experiments using MNIST, CIFAR-10 and
ImageNet datasets, showing that our structured adversarial attack (StrAttack) is much stronger than
the existing attacks and its better interpretability from group sparse structures aids in uncovering the
origins of adversarial examples.
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APPENDIX

A ILLUSTRATIVE EXAMPLE OF GROUP SPARSITY
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Figure A1: An example of 4× 4 perturbation matrix under sliding masks with different strides. The values of
matrix elements are represented by color’s intensity (white stands for 0). Left: Non-overlapping groups with
r = 2 and S = 2. Right: Overlapping groups with r = 2 and S = 1. In both cases, two groups G1,1 and G1,2
are highlighted, where G1,1 is non-sparse, and G1,2 is sparse.

B PROOF OF PROPOSITION 1

We recall that the augmented Lagrangian function L(δ, z,w,y,u,v, s) is given by

L(z, δ,y,w,u,v, s) =f(z + x0) + γD(δ) + τ
∑PQ
i=1 ‖yDi‖2 + h(w) + uT (δ − z)

+ vT (y − z) + sT (w − z) +
ρ

2
‖δ − z‖22 +

ρ

2
‖y − z‖22 +

ρ

2
‖w − z‖22. (24)

Problem (7), to minimize L(δ, zk,w,y,uk,vk, sk), can be decomposed into three sub-problems:

minimize
δ

γD(δ) +
ρ

2
‖δ − a‖22, (25)

minimize
w

h(w) +
ρ

2
‖w − b‖22, (26)

minimize
y

τ

PQ∑
i=1

‖yDi‖2 +
ρ

2
‖y − c‖22, (27)

where a := zk − uk/ρ, b := zk − sk/ρ, and c := zk − vk/ρ.

δ-step Suppose D(δ) = ‖δ‖22, then the solution to problem (25) is easily acquired as below

δk+1 =
ρ

ρ+ 2γ
a (28)

w-step Based on the definition of h(w), problem (26) becomes

minimize
w

‖w − b‖22
subject to (x0 + w) ∈ [0, 1]n, ‖w‖∞ ≤ ε.

(29)

Problem (29) is equivalent to

minimize
wi

(wi − ai)22
subject to −[x0]i ≤ wi ≤ 1− [x0]i, |wi| ≤ ε

(30)

for i ∈ [n], where xi or [x]i represents the ith element of x, and 1 − [x0]i > 0 since [x0]i ∈ [0, 1].
Problem (30) then yields the solution

[wk+1]i =

{
min{1− [x0]i, ε} ai > min{1− [x0]i, ε}
max{−[x0]i,−ε} ai < max{−[x0]i,−ε}
ai otherwise.

(31)
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y-step Problem (27) becomes

minimize
y

PQ∑
i=1

‖yDi
‖2 +

ρ

2τ
‖y − c‖22, (32)

The solution is given by the proximal operator associated with the `2 norm with parameter τ/ρ
(Parikh et al., 2014)

[yk+1]Di
=

(
1− τ

ρ‖[c]Di
‖2

)
+

[c]Di
, i ∈ [PQ], (33)

where recall that ∪i∈[PQ]Di = [n], and Di ∩ Dj = ∅ if i 6= j. �

C PROOF OF PROPOSITION 2

The augmented Lagrangian of problem (16) is given by

L(z, δ,w, {yi},u,vi, s) =f(z + x0) + γD(δ) + h(w) + τ

PQ∑
i=1

‖yi,Di‖2 + uT (δ − z) + sT (w − z)

+

PQ∑
i=1

vTi (yi − z) +
ρ

2
‖δ − z‖22 +

ρ

2
‖w − z‖22 +

ρ

2

PQ∑
i=1

‖yi − z‖22,

(34)

where u, vi and s are the Lagrangian multipliers.

ADMM decomposes the optimization variables into two blocks and adopts the following iterative
scheme,

{δk+1,wk+1,yk+1
i } = argmin

δ,w,{yi}
L(zk, δ,w,yi,u

k,vki , s
k), (35)

zk+1 = argmin
z

L(z, δk+1,wk+1,yk+1
i ,uk,vki , s

k), (36) uk+1 = uk + ρ(δk+1 − zk+1),
vk+1
i = vki + ρ(yk+1

i − zk+1), for i ∈ [PQ],
sk+1 = sk + ρ(wk+1 − zk+1),

(37)

where k is the iteration index. Problem (35) can be split into three subproblems as shown below,

minimize
δ

γD(δ) +
ρ

2
‖δ − a‖22, (38)

minimize
w

h(w) +
ρ

2
‖w − b‖22, (39)

minimize
yi

τ‖yi,Di
‖2 +

ρ

2
‖yi − ci‖22, for i ∈ [PQ]. (40)

where a = zk − uk/ρ, b = zk − sk/ρ and ci = zk − vki /ρ. Each problem has a closed form
solution. Note that the solutions to problem (38) and problem (39) are given (28) and (31).

yi-step Problem (40) can be rewritten as

minimize
yi

τ‖yi,Di‖2 +
ρ

2
‖yi,Di − [ci]Di‖22 +

ρ

2
‖yi,[n]/Di

− [ci][n]/Di
‖22, for i ∈ [PQ], (41)

which can be decomposed into

minimize
yi,Di

τ‖yi,Di‖2 +
ρ
2‖yi,Di

− [ci]Di
‖22, for i ∈ [PQ], (42)

15



Published as a conference paper at ICLR 2019

and

minimize
yi,[n]/Di

‖yi,[n]/Di
− [ci][n]/Di

‖22, for i ∈ [PQ]. (43)

The solution to problem (42) can be obtained through the block soft thresholding operator (Parikh
et al., 2014), [

yk+1
i

]
Di

=

(
1− τ

ρ‖[ci]Di
‖2

)
+

[ci]Di
, for i ∈ [PQ], (44)

The solution to problem (43) is given by,[
yk+1
i

]
[n]/Di

= [ci][n]/Di
, for i ∈ [PQ]. (45)

z-step Problem (36) can be simplified to

minimize
z

f(x0 + z) +
ρ

2
‖z− a′‖22 +

ρ

2
‖z− b′‖22 +

ρ

2

PQ∑
i=1

‖z− c′i‖22, (46)

where a′ := δk+1 + uk/ρ, b′ := wk+1 + sk/ρ, and c′i := yk+1
i + vki /ρ. We solve problem

(46) using the linearization technique (Suzuki, 2013; Liu et al., 2018; Boyd et al., 2011). More
specifically, the function f is replaced with its first-order Taylor expansion at the point zk by adding
a Bregman divergence term (ηk/2)‖z− zk‖22. As a result, problem (46) becomes

minimize
z

(∇f(zk + x0))
T (z− zk) +

ηk
2
‖z− zk‖22 +

ρ

2
‖z− a′‖22

+
ρ

2
‖z− b′‖22 +

ρ

2

PQ∑
i=1

‖z− c′i‖22,
(47)

whose solution is given by

zk+1 =
ηkz

k + ρa′ + ρb′ + ρ
∑PQ
i=1 c′i −∇f(zk + x0)

ηk + (2 + PQ)ρ
. (48)

�

D PROOF OF PROPOSITION 3

We start by converting problem (20) into the ADMM form

minimize
δ,z

f(x0 + z) + g(z) + γD(δ) + h(δ) + g(δ)

subject to δ = z,
(49)

where z and δ are optimization variables, g(δ) is an indicator function with respect to the constraint
{δi = 0, if i ∈ Sσ}, and h(δ) is the other indicator function with respect to the other constraints
(x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε.
The augmented Lagrangian of problem (20) is given by

L(δ, z,u) =f(z + x0) + g(z) + γD(δ) + h(δ) + g(δ) + uT (δ − z) +
ρ

2
‖δ − z‖22, (50)

where u is the Lagrangian multiplier.

ADMM yields the following alternating steps

δk+1 = argmin
δ

L(δ, zk,uk) (51)

zk+1 = argmin
z

L(δk+1, z,uk) (52)

uk+1 = uk + ρ(δk+1 − zk+1). (53)
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δ-step Suppose D(δ) = ‖δ‖22, problem (51) becomes

minimize
δ

γ‖δ‖22 +
ρ
2‖δ − a‖22

subject to (x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε
δi = 0, if i ∈ Sσ,

(54)

where a := zk − uk/ρ. Problem (54) can be decomposed elementwise

minimize
δi

2γ+ρ
ρ δ2i − 2aiδi + a2i =

2γ+ρ
ρ

(
δi − ρ

2γ+ρai

)2
subject to ([x0]i + δi) ∈ [0, 1], |δi| ≤ ε

δi = 0, if i ∈ Sσ.
(55)

The solution to problem (55) is then given by

[δk+1]i =


0 i ∈ Sσ
min{1− [x0]i , ε}

ρ
2γ+ρai > min{1− [x0]i , ε}, i /∈ Sσ

max{− [x0]i ,−ε}
ρ

2γ+ρai < max{− [x0]i ,−ε}, i /∈ Sσ
ρ

2γ+ρai otherwise.

(56)

z-step Problem (52) yields

minimize
z

f(x0 + z) +
ρ

2
‖z− a′‖22

subject to zi = 0, if i ∈ Sσ,
(57)

where a′ = δk+1 + uk/ρ. We solve problem (57) using the linearization technique (Suzuki, 2013;
Liu et al., 2018; Boyd et al., 2011),

minimize
z

(∇f(x0 + zk))T (z− zk) +
ηk
2
‖z− zk‖22 +

ρ

2
‖z− a′‖22

subject to zi = 0, if i ∈ Sσ,
(58)

where ηk is a decaying parameter associated with the Bregman divergence term ‖z − zk‖22. In
problems (57) and (58), only variables {zi} satisfying i /∈ Sσ are unknown. The solution to problem
(58) is then given by

[zk+1]i =

{
0 i ∈ Sσ
ηk[z

k]i+ρ[a
′]i−[∇f(zk+x0)]i
ηk+ρ

i /∈ Sσ.
(59)

�

E ADVERSARIAL SALIENCY MAP (ASM) AND CLASS ACTIVATION
MAPPING (CAM)

ASM(x, t) ∈ Rd is defined by the forward derivative of a neural network given the input sample x
and the target label t (Papernot et al., 2016b)

ASM(x, t)[i] =

{
0 if ∂Z(x)t

∂xi < 0 or
∑
j 6=t

∂Z(x)j
∂xi > 0(

∂Z(x)t
∂xi

) ∣∣∣∑j 6=t
∂Z(x)j
∂xi

∣∣∣ otherwise,
(60)

where Z(x)j is the jth element of logits Z(x), representing the output before the last softmax layer
in DNNs. If there exist many classes in a dataset (e.g., 1000 classes in ImageNet), then computing∑
j 6=t

∂Z(x)j
∂xi is intensive. To circumvent the scalability issue of ASM, we focus on the logit change

with respect to the true label t0 and the target label t only. More specifically, we consider three
quantities, ∂Z(x)t

∂xi , −∂Z(x)0
∂xi , and

(
∂Z(x)t
∂xi

) ∣∣∣∑j 6=t
∂Z(x)j
∂xi

∣∣∣, which correspond to a) promotion of the
score of the target label t, b) suppression of the classification score of the true label t0, and c) a dual
role on suppression and promotion. As a result, we modify (60) as

ASM(x, t)[i] =

{
0 if ∂Z(x)t

∂xi < 0 or ∂Z(x)t0
∂xi > 0(

∂Z(x)t
∂xi

) ∣∣∣∂Z(x)t0
∂xi

∣∣∣ otherwise.
(61)
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CAM allows us to visualize the perturbation of adversaries on predicted class scores given any pair
of image and object label, and highlights the discriminative object regions detected by CNNs (Zhou
et al., 2016). In Fig. A2, we show ASM and the discriminative regions identified by CAM on several
ImageNet samples.

Original label: Komdo dragon Target label: tailed frog

Original label: titi Target label: gondola

Original label: stove Target label: ouzel

Original label: Africa elephant Target label: dining table

Original label: jeep Target label: ballon

Original label: photocopier Target label: accordion

(a) (b)

Figure A2: (a) Overlay ASM and BASM ◦ δ on top of image with the true and the target label. From left to
right: original image, ASM (darker color represents larger value of ASM score), BASM ◦ δ under our attack,
and BASM◦δ under C&W attack. Here ν in BASM is set by the 90th percentile of ASM scores. (b) From left to
right: original image, CAM of original label, and perturbations with target label generated from the StrAttack
and C&W attack, respectively.

F EXPERIMENT SETUP AND PARAMETER SETTING

In this work, we consider targeted adversarial attacks since they are believed stronger than untargeted
attacks. For targeted attacks, we have different methods to choose the target labels. The average case
selects the target label randomly among all the labels that are not the correct label. The best case
performs attacks using all incorrect labels, and report the target label that is the least difficult to
attack. The worst case performs attacks using all incorrect labels, and report the target label which
is the most difficult to attack.

In our experiments, two networks are trained for MNIST and CIFAR-10, respectively, and a pre-
trained network is utilized for ImageNet. The model architectures for MNIST and CIFAR-10 are the
same, both with four convolutional layers, two max pooling layers, two fully connected layers and a
softmax layer. It can achieve 99.5% and 80% accuracy on MNIST and CIFAR-10, respectively. For
ImageNet, a pre-trained Inception v3 network (Szegedy et al., 2016) is applied which can achieve
96% top-5 accuracy. All experiments are conducted on machines with NVIDIA GTX 1080 TI GPUs.

The implementations of FGM and IFGM are based on the CleverHans package (Papernot et al.,
2016a). The key distortion parameter ε is determined by a fine-grained grid search. For IFGM, we
perform 10 FGM iterations and the distortion parameter ε′ is set to ε/10 for effectiveness as shown
in Tramèr et al. (2018). The implementation of the C&W attack is based on the opensource code
provided by Carlini & Wagner (2017). The maximum iteration number is set to 1000 and it has 9
binary search steps.

In the StrAttack, the group size for MNIST and CIFAR-10 is 2 × 2 and its stride is set to 2 if the
non-overlapping mask is used, otherwise the group size is 3 × 3 and stride is 2. The group size
for ImageNet is 13 × 13 and its stride is set to 13. In ADMM, the parameter ρ achieves a trade-off
between the convergence rate and the convergence value. A larger ρ could make ADMM converging
faster but usually leads to perturbations with larger `p distortion values. A proper configuration of
the parameters is suggested as follows: We set the penalty parameter ρ = 1, decaying parameter
in (14) η1 = 5, τ = 2 and γ = 1. Moreover, we set c defined in (3) to 0.5 for MNIST, 0.25 for
CIFAR-10, and 2.5 for ImageNet. Refined attack technique proposed in Sec. 4.2 is applied for all
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experiments, we set σ is equal to 3% quantile value of non-zero perturbation in δ∗. We observe that
73% of δ∗ can be retrained to a σ-sparse perturbation successfully which proof the effective of our
refined attack step.

G SUPPLEMENTARY EXPERIMENTAL RESULTS

Original Image: 1

Original Image: 0Target: 2 Target: 2

Target: 3 Target: 3

C&W attack structured attack

Original Image: 4Target: 0 Target: 0

Target: 9Original Image: 7Target: 9

Original Image: 9 Target: 4Target: 4

Original Image: 5Target: 2 Target: 2

1e-5 0.3

Figure A3: C&W attack vs StrAttack on MNIST with grid size 2× 2.

Some random choice samples from MNIST (Fig. A3), CIFAR-10 (Fig. A4) and ImageNet (Fig. A5)
compare StrAttack with C&W attack. For better sparse visual effect, we only show non-overlapping
mask function results here. From these samples, we can discover a consistent phenomenon that our
StrAttack is more interested in some particular regions, they usually appear on the objects or their
edges in original images, distinctly seen in MNIST (Fig. A3) and ImageNet (Fig. A5).

H STRATTACK AGAINST DEFENSIVE DISTILLATION AND ADVERSARIAL
TRAINING

In this section, we present the performance of the StrAttack against defensive distillation (Papernot
et al., 2016c) and adversarial training (Tramèr et al., 2018). In defensive distillation, we evaluate the
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ship

Original Image: 

airplane

Target: 

automobile

Target: 

automobile

airplane airplane

C&W attack structured attack

truckbird bird

catdeer deer

Figure A4: C&W attack vs StrAttack on CIFAR-10 with grid size 2× 2.

StrAttack for different temperature parameters on MNIST and CIFAR-10. We generate 9000 ad-
versarial examples with 1000 randomly selected images from MNIST and CIFAR-10, respectively.
The attack success rates of the StrAttack for different temperatures T are all 100%. The reason is
that distillation at temperature T makes the logits approximately T times larger but does not change
the relative values of logits. The StrAttack which works on the relative values of logits does not fail.

We further use the StrAttack to break DNNs training on adversarial examples (Tramèr et al., 2018)
with their correct labels on MNIST. The StrAttack is performed on three neural networks: the first
network is unprotected, the second is obtained by retraining with 9000 C&W adversarial examples,
and the third network is retained with 9000 adversarial examples crafted by the StrAttack. The
success rate and distortions on the three networks are shown in Table A1. The StrAttack can break
all three networks with 100% success rate. However, adversarial training shows certain defense
effects as an increase on the `1 or `2 distortion on the latter two networks over the unprotected
network is observed.

Table A1: StrAttack against adversarial training on MNIST

Adversarial Best case Average case Worst case
training ASR `1 `2 ASR `1 `2 ASR `1 `2
None 100 10.9 1.51 100 18.05 2.16 100 26.9 2.81
C&W 100 16.1 1.87 100 25.1 2.58 100 34.2 3.26

structured 100 15.6 1.86 100 25.1 2.61 100 34.6 3.31
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wombat

Original Image: 

black swan

Target: 

television

Target: 

television

boathouse boathouse

C&W attack structured attack

jellyfishminiature schnauzer miniature schnauzer

bramblingleaf beetle leaf beetle

flatwormEntleBucher EntleBucher

3e-4
3e-4

Figure A5: C&W attack vs StrAttack on ImageNet with grid size 13× 13.
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