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ABSTRACT

Activity of populations of sensory neurons carries stimulus information in both
the temporal and the spatial dimensions. This poses the question of how to com-
pactly represent all the information that the population codes carry across all these
dimensions. Here, we developed an analytical method to factorize a large number
of retinal ganglion cells’ spike trains into a robust low-dimensional representation
that captures efficiently both their spatial and temporal information. In particular,
we extended previously used single-trial space-by-time tensor decomposition based
on non-negative matrix factorization to efficiently discount pre-stimulus baseline
activity. On data recorded from retinal ganglion cells with strong pre-stimulus
baseline, we showed that in situations where the stimulus elicits a strong change
in firing rate, our extensions yield a boost in stimulus decoding performance. Our
results thus suggest that taking into account the baseline can be important for
finding a compact information-rich representation of neural activity.

1 INTRODUCTION

Populations of neurons encode sensory stimuli across the time dimension (temporal variations), the
space dimension (different neuron identities), or along combinations of both dimensions (Buonomano
& Maass, 2009; Panzeri et al., 2010; 2015; Harvey et al., 2012; Runyan et al., 2017). Consequently,
understanding the neural code requires characterizing the firing patterns along these dimensions and
linking them to the stimuli (Abeles & Gerstein, 1988; Haefner et al., 2013; Panzeri et al., 2015; Pouget
et al., 2000; Kristan & Shaw, 1997). There are many methods for compactly representing neural
activity along their most relevant dimensions. These methods include Principal Component Analysis
(PCA), Independent Component Analysis (ICA) and Factor Analysis (FA) (Churchland et al., 2010;
Cunningham & Byron, 2014; Laubach et al., 1999; Shen & Meyer, 2008). Recently, a particularly
promising tensor decomposition method was introduced that provides a compact representation of
single trial neuronal activity into spatial and temporal dimensions and their combination in the given
trial (Onken et al., 2016). The method is based on non-negative matrix factorization (NMF) (Lee &
Seung, 1999; Devarajan, 2008; Smaragdis et al., 2014) which imposes non-negativity constraints on
the extracted components leading to a parts-based, low dimensional, though flexible representation of
the data, only assuming non-negativity of the model components. Though space-by-time NMF yielded
robust decoding performance with a small number of parameters and good biological interpretability
of its basis functions on data recorded from salamander retinal ganglion cells, the method does have
a potential shortcoming: it cannot explicitly discount, and is partly confounded by, baseline activity
that is not relevant for the neural response to a sensory stimulus. Although these non-negative tensor
factorizations performed well on salamander retinal ganglion cells, which have almost non-existent
spontaneous activity (Delis et al., 2016), it is not clear how well the method would perform on data
with considerable spontaneous activity, which might require to explicitly correct for the pre-stimulus
baseline.

One way to reduce the baseline would be to subtract it from the stimulus-elicited response. This,
however, would result in negative activities that cannot be modeled using a decomposition with full
non-negativity constraints such as space-by-time NMF. In this study, we thus propose a variant of
space-by-time NMF that discounts the baseline activity by subtracting the pre-stimulus baseline
from each trial and then decomposes the baseline-corrected activity using a tri-factorization that
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finds non-negative spatial and temporal modules, and signed activation coefficients. We explored the
benefits that this method provides on data recorded from mouse and pig retinal ganglion cells and
showed that baseline-corrected space-by-time NMF improves decoding performance on data with
non-negligible baselines and stimulus response changes.

2 METHODS

We consider data that are composed of trials of spiking activity recorded simultaneously from a
population of neurons in response to sensory stimuli. Each trial thus has a temporal component (when
is a neuron firing) and a spatial component (which neuron is firing). We aim to find a decomposition
into spatial and temporal firing patterns and into coefficients that represent the strength of spatial and
temporal firing combinations within a given trial. Before decomposing the data, we discretize neural
activity by binning the spike trains into time intervals (chosen to maximize decoding performance, c.f.
supplementary Fig. S1) and counting the number of spikes in each bin. We then apply two different
tensor decomposition methods that separate the spatial and temporal dimensions. We describe both
methods in the following sections.

2.1 SPACE-BY-TIME NON-NEGATIVE TENSOR DECOMPOSITION

Following Onken et al. (2016), we decomposed neural activity into spatial and temporal patterns and
their activation coefficients. The decomposition of a trial s takes the following form:

Rs = BtemHsBspa + residual (1)

where Rs denotes the population spike count matrix on trial s across T time bins and N recorded
neurons, Btem denotes a (T ×P )-matrix whose columns are the temporal modules, Bspa is a (L×N)-
matrix whose rows are the spatial modules and Hs is a (P × L)-coefficient matrix that contains the
weights of each combination of spatial and temporal modules. Note that the spatial and temporal
modules are trial-independent whereas the activation coefficients Hs are trial-dependent.

The main goal of the above decomposition is to factorize the input signal into invariant spatial
and temporal patterns across trials such that the factorization minimizes the total reconstruction
error. Following Onken et al. (2016), we used Space-by-Time Non-negative Matrix Factorization
(SbT-NMF, corresponding to the Tucker-2 tensor decomposition with non-negativity constraints) to
find the factors of Eq. 1. The algorithm decomposes the input tensor R into non-negative temporal
modules Btem, non-negative spatial modules Bspa and non-negative activation coefficient using
multiplicative update rule to minimize the Frobenius norm of the difference between the input data
and the reconstruction data

∑S
s=1 ||Rs −BtemHsBspa||2.

On data recorded from salamander retinal ganglion cells the algorithm was shown to provide low-
dimensional data-robust representations of spike trains that capture efficiently both their spatial and
temporal information about sensory stimuli (Onken et al., 2016).

2.2 BASELINE-CORRECTED SPACE-BY-TIME NON-NEGATIVE TENSOR DECOMPOSITION

To discount baseline activity from neural data, here we propose a novel decomposition algorithm
termed Baseline-Corrected Space-by-Time Non-negative Matrix Factorization (BC-SbT-NMF) that
first subtracts the baseline from the neural activity and then factorizes the activity into spatial and
temporal modules and activation coefficients. Contrary to the original population spike counts, the
baseline-corrected data are not necessarily non-negative anymore after baseline subraction. Our
decomposition method therefore faces the problem of factorizing signed data. For this purpose,
our factorization algorithm decomposes the neural activity into non-negative spatial and temporal
modules and signed activation coefficients, corresponding to a Tucker-2 tensor decomposition with
non-negativity constrained factor matrices and unconstrained core.

The method is illustrated in Figure 1. Each trial consists of spatio-temporal binned spike counts of
a population of neurons. For each neuron, we subtract the pre-stimulus firing rate baseline in the
same trial from its activity. We then decompose the baseline-corrected trials into spatio-temporal
modules representing common firing patterns and corresponding activation coefficients representing
the activity of a particular pattern in a trial. The spatio-temporal patterns in turn are factorized
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into spatial modules representing coactive neurons and temporal modules representing temporal
population activity patterns.

Figure 1: Baseline-corrected space-by-time non-negative matrix factorization. On the left, two trials
with spike counts recorded from 5 neurons and 9 time points each are illustrated as a spike count word
matrix. The pre-stimulus baseline is subtracted from the spike count word matrix in order to discount
the baseline. Then, the signed corrected activity is decomposed into non-negative spatial modules
describing coactive neurons, non-negative temporal modules describing the temporal response profile
of the population and signed activation coefficient. Each pair of spatial and temporal modules can be
combined to form a spatio-temporal module.

The algorithm estimates modules using iterative update rules to minimize the Frobenius norm of the
difference between input data and the reconstructed data. Our derivation follows the derivation of
semi-NMF presented in Ding et al. (2010), but extends the derivation to a trial-based tri-factorization
where two of the factors are non-negative and trial-independent and one factor is signed and trial-
dependent. Relaxation of the constraints for the activation coefficients yields spatial and temporal
modules that are less sparse. To counteract this, we also included L1-regularization for the spatial
and temporal modules in our derivation following Hoyer (2004).

Our objective function takes the form:

E2 =

S∑
s=1

||Rs −BtemHsBspa||2 + λ
∑
i,k

[Btem]ik + λ
∑
i,k

[Bspa]ik (2)

=

S∑
s=1

Tr
(
Rᵀ

sRs − 2Rᵀ
sBtemHsBspa +Bᵀ

spaH
ᵀ
sB

ᵀ
temBtemHsBspa

)
(3)

+λ
∑
i,k

[Btem]ik + λ
∑
i,k

[Bspa]ik,

where λ ≥ 0 denotes the regularization parameter. For simplicity, we used the same parameter for
the spatial and the temporal modules, but one could also have separate parameters.

We derived iterative update steps for Bspa, Btem and H to minimize our objective function.

We started with the derivation of an iterative update step for Bspa. To cast the tensor factorization of
the (T ×N ×S) tensor R as a matrix tri-factorization, we first reshaped R by concatenating all slices
Rs along the first tensor dimension. This yields a data matrix Rspa of size (ST ×N). Analogously,
we represented the (P × L× S) tensor H of activation coefficients as a (SP × L) matrix Hspa.

This procedure allows us to formulate a single Lagrangian with regard to Bspa:

L(Bspa) = Tr
(
−2Rᵀ

spaBtemHspaBspa +Bᵀ
spaH

ᵀ
spaB

ᵀ
temBtemHspaBspa − βBspa

)
+λ
∑
i,k

[Bspa]ik (4)
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where the Lagrangian multipliers βij enforce non-negativity constraints [Bspa]ij ≥ 0. With the
zero-gradient condition, we get:

∂L
∂Bspa

= −2Rᵀ
sBtemHspa + 2Bᵀ

spaH
ᵀ
sB

ᵀ
temBtemHspa − β + λ = 0 (5)

The complementary slackness condition then yields:(
−2Rᵀ

spaBtemHspa + 2Bᵀ
spaH

ᵀ
spaB

ᵀ
temBtemHspa + λ

)
ik
[Bspa]ik = βik[Bspa]ik = 0 (6)

In this equation, the parts Rᵀ
spaBtemHspa and Hᵀ

spaB
ᵀ
temBtemHspa are signed. To derive update rules

for the non-negative spatial modules, we therefore need to separate positive and negative parts of
the equation. For a matrix A, we denoted its positive and negative parts as A+

ik = (|Aik|+Aik)/2

and A−ik = (|Aik| −Aik)/2. With this definition, the identity A = A+ −A− holds. Separating the
positive and negative parts of Eq. 6 by means of this identity, we obtained:

[−2((Rᵀ
spaBtemHspa)

+ − (Rᵀ
spaBtemHspa)

−) + λ

+ 2((Bᵀ
spaH

ᵀ
spaB

ᵀ
temBtemHspa)

+ − (Bᵀ
spaH

ᵀ
spaB

ᵀ
temBtemHspa)

−)]ik[Bspa]ik = βik[Bspa]ik = 0 (7)

At convergence, we have B
(∞)
spa = B

(t+1)
spa = B

(t)
spa. Hence, we obtain the following update step for

Bspa:

[Bspa]ij ← [Bspa]ij

√
[(Rᵀ

spaBtemHspa)+]ij + [Bᵀ
spa(H

ᵀ
spaB

ᵀ
temBtemHspa)−]ij

[(Rᵀ
spaBtemHspa)−]ij + [Bᵀ

spa(H
ᵀ
spaB

ᵀ
temBtemHspa)+]ij + λ

(8)

To derive the update step for Btem, we analogously reshaped R by concatenating all slices Rs along
the second tensor dimension to get a data matrix Rtem of size (T × SN) and we represented the
(P ×L×S) tensor H of activation coefficients as a (P ×SL) matrix Htem. The analogous derivation
steps as for the spatial modules then yield the update step for Btem:

[Btem]ij ← [Btem]ij

√
[(HtemBspaR

ᵀ
tem)+]ij + [Btem(HtemBspaB

ᵀ
spaH

ᵀ
tem)−]ij

[(HtemBspaR
ᵀ
tem)−]ij + [Btem(HtemBspaB

ᵀ
spaH

ᵀ
tem)+]ij + λ

(9)

Finally, we updated the activation coefficients H on a trial-by-trial basis. The activation coefficients
are signed. For this reason, we can easily obtain the optimal activation coefficient matrices by
inverting the module matrices. For each s ∈ {1, . . . , S}, we let

Hs ← B−1temRsB
−1
spa (10)

where (·)−1 denotes the Moore-Penrose pseudo-inverse.

The complete baseline-corrected space-by-time NMF algorithm takes the following form:

1. For each neuron i, calculate the pre-stimulus firing rate bi and subtract it from the corre-
sponding elements of the data tensor: ∀i ∈ {1, . . . , N} : R:,i,: → R:,i,: − bi.

2. Initialize Btem (T × P ), Bspa (L × N) with non-negative random numbers uniformly
distributed between 0 and 1, and H (P ×L×S) with random numbers uniformly distributed
between -1 and 1.

3. Given H,Btem and the data matrix R (T ×N × S), update Bspa:
(a) Reshape R→ Rspa (ST ×N) and H→ Hspa (SP × L).
(b) Update Bspa using Eq.8

4. Given H,Bspa and the data matrix R (T ×N × S), update Btem:
(a) Reshape R→ Rtem (T × SN) and H→ Htem (P × LN).
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(b) Update Btem using Eq.9.

5. Given Btem and Bspa:

(a) For all s ∈ 1, ..., S, update Hs using Eq.10.

6. If decrease in approximation error
∑S

s=1 ||Rs −BtemHsBspa||2 is below a given tolerance,
stop. Otherwise, go to step 3.

We provide MATLAB code for this algorithm at the following GitHub repository (TO BE ADDED
TO THE FINAL VERSION UPON ACCEPTANCE).

2.3 DECODING ANALYSIS

To evaluate the performance of the factorization algorithms to extract an informative low-dimensional
representation of the neural data, we used multi class linear discriminant analysis (LDA) applied to
the activation coefficients Hs (non-negative in the case of space-by-time NMF and signed in the case
of baseline-corrected space-by-time NMF) as predictors.

For each experiment, we randomly separated trials into two sets of equal size: training set and test set
and then applied the decomposition methods to the training set to obtain non-negative spatial and
temporal modules and related activation coefficient. For fixed spatial and temporal modules, we then
also applied the decomposition methods to the corresponding test set trials to compute activation
coefficient given the training set modules. Finally, for each experiment and each decomposition
method, we trained LDA classifiers on the training set activation coefficients and evaluated the test
set decoding performance on the test set activation coefficients.

The decomposition methods have three free parameters: the number of spatial modules, the number
of temporal modules and the L1-regularization parameter λ. We decomposed the data and evaluated
decoding performance for each possible combination of the module number parameters, where we
used as the maximum number of spatial module the number of recorded neurons and we used as
the maximum number of temporal module the number of time bins per trial, and at first setting the
regularization parameter to zero. For each experiment and each decomposition method, we then
selected the pair of spatial and temporal module numbers that maximized decoding performance.
Whenever we found more than one pair that reached optimal decoding performance, we selected
the pair with the minimum sum of module numbers. For these optimal module numbers, we then
explored the effect of λ and did not find an increase in decoding performance for any non-zero λ Fig.
S3). For this reason, we report all results for λ = 0.

2.4 EXPERIMENTAL SETUP AND DATASETS

We used multi-electrode arrays to record activity from populations of retinal ganglion cells of two
mouse retinas (retinas 1 and 2) and one pig retina (retina 3) in scotopic light-level conditions. The
experimental procedures were in accordance with international standards for animal research and
were approved by the local ethical commitee and the local authorities, with experimental procedures
following what detailed in a previous publication (DETAILS OF ETHICAL APPROVAL AND
CITATION WILL BE PROVIDED UPON ACCEPTANCE). We recorded simultaneously from 30,
43 and 56 neurons, respectively, using the following five stimulation protocols:

Natural movies, dance and mouse (NMD, NMM): Two kinds of black and white movies were used
for visual stimulation. The first one was a natural movie from the viewpoint of the mouse and the
second movie was a clip showing a dancing couple. The dance movie was projected 44 times for one
retina while the movie from the viewpoint of mouse was projected 44 times for the two other retinas.

Full-field high and low contrast flicker (HC, LC) : Screen-brightness values were picked from a
Gaussian distribution with mean 30 and standard deviation of 9 for high contrast and 3.5 for low
contrast flicker with a range of values between 0 and 60 for hight contrast and a range of values
between 20 and 40 for low contrast flicker. Both stimuli were projected 10 times for three retina.

Full-field steps of light (SoL) : Homogeneous illuminated screen with the following brightness
sequence was presented: gray (pixel value 30) – white (pixel value 50) – gray (pixel value 30) – black
(pixel value 10) – gray (pixel value 30). This stimulus was projected 10 times for three retinas.
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To define stimulus classes, we cut each continuous stimulus into 1 second intervals and associated a
running number with each interval. We then randomly divided each dataset by putting half of the
trials of each class into a training trials to compute the decompositions modules and to train the
decoder, and the other half of the trials into a test set to evaluate the decoding performance.

3 RESULTS

To evaluate the benefits of taking the pre-stimulus baseline firing rate into account when looking
for trial-invariant spatial and temporal firing patterns, we first discretized spike train with the time
interval that gives highest decoding performance and then decoded retinal ganglion cell responses
with and without explicitly taking the baseline into account. More precisely, we obtained low-
dimensional representations of mammalian ganglion cell activity using space-by-time NMF and
baseline-corrected space-by-time NMF and then used an LDA-classifier to decode the visual stimuli
from these representations (c.f. Section Methods).

3.1 SPACE-BY-TIME DECOMPOSITION OF DATA RECORDED FROM MAMMALIAN RETINAL
GANGLION CELLS

We first explored the low-dimensional representations of the neural populations responses that SbT-
NMF and BC-SbT-NMF found. Both methods identified non-negative spatial and temporal modules.
The activation coefficients, however, were non-negative only in the case of SbT-NMF, and signed in
the case of BC-SbT-NMF.

Figure 2 shows example modules obtained from both decomposition methods. We scaled the vector
length of each module to unit length to facilitate visual comparison of the modules. The spatial
modules, describing simultaneous firing of groups of neurons, show ensembles of neurons that
were coactive during flicker stimulation (Figure 2a, d). The temporal modules, describing temporal
population activity profiles, show elongated temporal periods of population activity over the 1 second
intervals relative to the onset time of the stimulus class (Figure 2b, e). Notably, the SbT-NMF
modules are considerably sparser than the BC-SbT-NMF modules, but otherwise have somewhat
similar shapes.

Figure 2 panels c and f show examples of activation coefficients of 4 classes and 2 trials each.
These matrices form compact dimensionality-reduced representations of the trials: the number of
coefficients per trials (10× 10) is much smaller than the original number of population spike counts
per trial (43×100). Visually, one can appreciate that the two trials of a class are more similar (vertical
similarity) than trials between classes (horizontal similarity). In the next section, we will make this
statement more formal by training a classifier on the activation coefficients and evaluating decoding
performance on a separate test set.

3.2 DECODING VISUAL INFORMATION FROM RETINAL GANGLION CELLS

We applied an LDA decoder on single trial activation coefficients to evaluate how much information
the coefficients carried about the visual stimuli. This allowed us to understand how well the decom-
position methods could identify low-dimensional representations of the retinal ganglion cell activity
that preserved the relevant features. To avoid overfitting, we evaluated decoding performance on a
separate test set.

In addition, we also used spatiotemporal PCA, ICA and orthogonal Tucker-2 [12] to obtain other
low-dimensional representations of single trial activity subject to different constraints. However, we
found that average test set decoding performances of each of these methods were below that of BC
SbT-NMF and SbT-NMF (see supplementary Fig. S2).

Figure 3a and b show the test set classification performance that we obtained for SbT-NMF and
BC-SbT-NMF evaluated in five stimulus conditions (NND/NMM, HC, SoL and LC, see Section
Methods) on a total of three retinas. Both algorithms captured more information for the movie and
high contrast stimuli (NND/NNM, HC; shown in Figure 3 panel a, decoding performance greater than
50% on all datasets) than for the step of light and low contrast (SoL, LC; shown in Figure 3 panel
b, decoding performance below 30% on all datasets) stimuli. Within these categories, sometimes
SbT-NMF achieved higher decoding performance and other times, BC-SbT-NMF performed better.
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Figure 2: Examples of spatial and temporal modules and activation coefficients identified by SbT-
NMF and BC-SbT-NMF on data recorded simultaneously from 43 retinal ganglion cells during low
contrast flicker stimulation. (a) Ten non-negative spatial modules (one module per column). (b) Ten
non-negative temporal modules (one module per row). (c) Two trials of four classes of activation
coefficient matrices containing coefficients for all pairs of spatial and temporal modules. (d)-(f) Like
a-c, but for BC-SbT-NMF.

To understand the conditions under which one or the other decomposition method performs better,
we investigated the stimulus-elicited change in firing rate from the pre-stimulus baseline.

When evaluating the decoding performance as a function of this change in firing rate, we found
that BC-SbT-NMF tended to perform better for high rate changes (Figure 3c). We quantified this
(Figure 3d) by calculating the difference in decoding performance between BC-SbT-NMF and SbT-
NMF for low rate changes (change < 0.7 Hz) and for high rate changes (change ≥ 0.7 Hz). This
split separated the rate changes into two clusters (see Figure 3e).

For low rate changes, we found that SbT-NMF leaned towards performance than BC-SbT-NMF. The
difference in decoding performance, however, was not significant (one-tailed t-test, p = 0.0775). For
high rate changes, on the other hand, we found a significant performance increase for BC-SbT-NMF
compared to SbT-NMF (one-tailed t-test, p = 0.0438).
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Figure 3: (a) Decoding performance of SbT-NMF (dark and light blue) and BC-SbT-NMF (dark and
light red) decompositions of spiking activity recorded from three retinas during natural movie (dark
blue and dark red, NMD/NMM) and high contrast flicker (light blue and light red, HC) stimulation.
(b) Same as a, but for step of light (SoL) and low contrast flicker (LC) stimuli. (c) Baseline-corrected
firing rate vs. decoding performance for SbT-NMF (blue) and BC-SbT-NMF (red) across all visual
stimuli. (d) Classification performance difference between BC-SbT-NMF and SbT-NMF for high
baseline-corrected firing rates and for low baseline-corrected firing rates. * p < 0.05; one-tailed t-test.
Error bars indicate s.e.m.

In summary, these results show that the BC-SbT-NMF decomposition method can achieve a significant
improvement in decoding performance when there is a substantial change from pre-stimulus baseline
rate to stimulus-elicited firing rate.

3.3 DISCUSSION

Here we introduced a novel computational approach to decompose single trial neural population
spike trains into a small set of trial-invariant spatial and temporal firing patterns and into a set of
activation coefficients that characterize single trials in terms of the identified patterns. To this end,
we extended space-by-time non-negative matrix factorization to discount the neuronal pre-stimulus
baseline activity. Subtraction of the baseline required the introduction of signed activation coefficients
into the decomposition algorithm. This extension considerable widens the scope of applicability of
the algorithm as it opens the possibility to decompose data that are inherently signed.

Our method inherits many the advantages of the original space-by-time NMF decomposition such as
yielding low-dimensional representations of neural activity that compactly carry stimulus information
from both the spatial and temporal dimension. Using non-negativity constraints for the spatial
and temporal modules, we could also retain the ability of space-by-time NMF to identify a parts-
based representation of the concurrent spatial and temporal firing activity of the population. The
factorization into space and time further still allows the quantification of the relative importance of
these different dimensions on a trial-by-trial basis.

Recently, Delis et al. (2016) introduced another tensor decomposition algorithm with the capacity to
factorize signed data. Their algorithm differs from ours in that it introduces additional constraints
for the spatial and temporal modules (cluster-NMF). Our algorithm, on the other hand, introduces
no additional constraints, thereby facilitating the comparison with the original space-by-time NMF
algorithm. In fact, our extension actually relaxes the non-negativity constraint for the activation
coefficients without giving up the parts-based representation of the spatial and temporal modules.
This made it possible to pinpoint the reason for the increase in performance as the introduction of the
baseline-correction.
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While BC-SbT-NMF outperformed SbT-NMF overall on tasks with strong baseline activity, we
also found that in a few cases, SbT-NMF performed better than BC-SbT-NMF. Previous studies
showed that there is an effect of the baseline firing rate on the response (Destexhe et al., 2003;
Gutnisky et al., 2017). In these situations, the baseline might have an advantageous effect on the
representation of neural responses and could lead to better decoding performance of SbT-NMF that
we observed in some cases. One possibility to take this effect into account would be to devise a
joint factorization-decoding framework that explicitly introduces the baseline into the optimization
framework. While this is beyond the scope of the current work, we believe that development of such
a framework is a promising direction for future research.

In order to evaluate decoding performance, we applied LDA classification to the single trial activation
coefficients to predict the stimulus identity and also to compare decoding performance of our baseline
correction extension with the original space-by-time NMF decomposition. Specifically, we could
show that our baseline-corrected version of space-by-time NMF increases decoding performance
significantly when the difference between pre-stimulus baseline activity and stimulus-elicited rate
was moderate to high. Importantly, this rate-change criterion makes it possible to select the best
decomposition method (SbT-NMF vs. BC-SbT-NMF) following a simple data screening by means of
the rate change. On our data, we obtained a relative difference in decoding performance on the order
of 19.18% when picking the right method in this way and comparing to the inferior method.

The requirement for such a rate change to perform well can be understood when considering the
baseline-corrected activity. Without a substantial change from pre-stimulus to stimulus-elicited rate,
most of the baseline-corrected activity will be close to zero. The Frobenius norm that is at the core
of our objective function puts emphasis on high values and will be sensitive to outliers whenever
most of the activity is close to zero. In this situation, our update rules are strongly affected by noise,
thereby decreasing cross-validated decoding performance. In practical terms, this new method is
expected to improve decoding performance when there is a large sensory-evoked response but the
differences in responses across different sensory stimuli is of the order of spontaneous activity. In
that case, the discounting of the spontaneous levels of firing would help to better discriminate among
different stimuli based on neural responses. While the original space-by-time NMF algorithm could
in principle identify spatial and temporal modules that fully account for the implicit baseline, the
performance gain of our extension suggests that in practice, the original method cannot completely
do so. Additional modules increases the model complexity and the number of parameters the method
needs to fit which lowers decoding performance. The discount of the baseline provides an elegant
way to avoid this unnecessary complication.
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Figure S1: Decoding performance of SbT–NMF and BC–SbT–NMF on discretized spike trains with
four different time resolutions (5 ms, 10 ms, 20 ms and 50 ms) recorded from three retinas during
presentation of natural movie, high contrast flicker, step of light and low contrast flicker stimuli.

NMD/NMM HC
0

20

40

60

80

100

C
la

s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n
c
e
 % SbT-NMF

BC-SbT-NMF

Orthogonal Tucker2

BC-orthogonal Tucker2

Spatiotemporal PCA

BC- spatiotemporal PCA

Spatiotemporal ICA

BC-spatiotemporal ICA

*
*

SoL LC
0

10

20

30

40

50

C
la

s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 % SbT-NMF

BC-SbT-NMF

Orthogonal Tucker2

BC-orthogonal Tucker2

Spatiotemporal PCA

BC-spatiotemporal PCA

Spatiotemporal ICA

BC-spatiotemporal ICA**
**

*
*

a b

Figure S2: Comparison of decoding performance of various methods. (a) Decoding performance of
SbT-NMF, BC-SbT-NMF, orthogonal Tucker2, BC-orthogonal Tucker 2, spatiotemporal PCA, BC-
spatiotemporal PCA, spatiotemporal ICA and BC-spatiotemporal ICA on spiking activities recorded
from three retinas during presentation of natural movie (NMD/NMM) and high contrast flicker (HC)
stimuli. (b) Same as a, but for step of light (SoL) and low contrast flicker (LC) stimuli.
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Figure S3: L1-regularization on BC-SbT-NMF spatial and temporal modules obtained from step of
light stimuli (SoL). (a) Decoding performance of BC-SbT–NMF regularized with 0, 1, 10, 100, 1000,
10000 and 100000 sparsity constraints. (b-h) Examples of spatial and temporal modules identified
by BC-SbT-NMF regularized with λ = 0 (b), λ = 1 (c), λ = 10 (d), λ = 100 (e), λ = 1000 (f),
λ = 10000 (g) and λ = 100000 (h).
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Figure S4: Convergence of multiplicative update rules. (a-c) Reconstruction error of SbT-NMF
decomposition as a function of update rule iteration during (a) Natural Movie (NMM), (b) High
Contrast flicker (HC) and (c) Low Contrast flicker (LC) stimuli. (d-f) Same as (a-c) but for BC-SbT-
NMF decomposition.
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Figure S5: Evaluation of multiple decompositions with random initializations to avoid local minima.
(a) Decoding performance of SbT-NMF and BC-SbT-NMF when running 50 decompositions with
different random initializations and selecting the decomposition with the smallest reconstruction
error for three retinas and presentation of natural movie (NMD/NMM). (b) Change in decoding
performance of BC-SbT-NMF with single decomposition and with smallest reconstruction error.
(c) Change in reconstruction error of BC-SbT-NMF with single decomposition and with smallest
reconstruction error.
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Figure S6: Effect of number of modules on decoding performance. Training set decoding performance
of (a) SbT-NMF and (b) BC-SbT-NMF for different numbers of spatial and temporal modules for the
natural movie stimulus. Optimal numbers are marked by red squares.
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