
Under review as a conference paper at ICLR 2018

DO DEEP REINFORCEMENT LEARNING ALGORITHMS
REALLY LEARN TO NAVIGATE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (DRL) algorithms have demonstrated progress in
learning to find a goal in challenging environments. As the title of the paper
by Mirowski et al. (2016) suggests, one might assume that DRL-based algorithms
are able to “learn to navigate” and are thus ready to replace classical mapping and
path-planning algorithms, at least in simulated environments. Yet, from experi-
ments and analysis in this earlier work, it is not clear what strategies are used by
these algorithms in navigating the mazes and finding the goal. In this paper, we
pose and study this underlying question: are DRL algorithms doing some form of
mapping and/or path-planning? Our experiments show that the algorithms are not
memorizing the maps of mazes at the testing stage but, rather, at the training stage.
Hence, the DRL algorithms fall short of qualifying as mapping or path-planning
algorithms with any reasonable definition of mapping. We extend the experiments
in Mirowski et al. (2016) by separating the set of training and testing maps and
by a more ablative coverage of the space of experiments. Our systematic experi-
ments show that the NavA3C+D1D2L algorithm, when trained and tested on the
same maps, is able to choose the shorter paths to the goal. However, when tested
on unseen maps the algorithm utilizes a wall-following strategy to find the goal
without doing any mapping or path planning.

1 INTRODUCTION

Navigation remains a fundamental problem in mobile robotics and artificial intelligence (Smith &
Cheeseman (1986); Elfes (1989)). The problem is classically addressed by separating the task of
navigation into two steps, exploration and exploitation. In the exploration stage, the environment is
represented as some kind of map. In the exploitation stage, the map is used to plan a path to a given
destination based on some optimality criterion. This classical approach has been quite successful
in navigation using a variety of sensors. However, navigation in general unstructured environments,
especially with texture-less Yang et al. (2016), transparent and reflective surfaces Lai et al. (2011),
remains a challenge.

Recently, end-to-end navigation methods—which attempt to solve the navigation problem without
breaking it down into separate parts of mapping and path-planning—have gained traction. With
the recent advances in Deep Reinforcement Learning (DRL), these end-to-end navigation methods,
such as Mnih et al. (2016); Silver et al. (2016); Levine et al. (2017); Mirowski et al. (2016); Oh et al.
(2016), forego decisions about the details that are required in the intermediate step of mapping. The
potential for simpler yet more capable methods is rich; for example, the resulting trained agents
can potentially optimize the amount of map information required for navigation tasks. One such
algorithm by Mirowski et al. (2016) has shown promise in exploring and finding the goal efficiently
within complex environments. Notably, this is done using only monocular first-person views.

Despite such potential advances, DRL-based navigation remains a relatively unexplored field with
its own limitations. The black-box nature of these methods make them difficult to study, and the
patterns captured by the methods are not well understood. Recent work analyzing neural networks
has shown that deep learning-based object detection methods can be easily fooled by introducing
noise that is imperceptible to humans (Nguyen et al. (2015)); this level of sensitivity motivates why
it is particularly important to analyze DRL methods across a wide variety of experiments: we need
to understand their strengths and limitations.

1



Under review as a conference paper at ICLR 2018

Figure 1: Snapshots of the path taken by the agent while evaluating the model trained on the same random map
with random goal and random spawn. The first row shows the top view of the robot moving through the maze
with the goal location marked orange, the agent marked black and the agent’s orientation marked red. The
second row shows the first person view, which, besides reward, is the only input available to the agent and the
top view is available only for human analysis.

In this work, we develop a better understanding of recent DRL-based methods. In particular, we
thoroughly explore and analyze the state-of-the-art Mirowski et al. (2016) methods across hundreds
of maps with increasing difficulty levels. We set up the environment as a randomly generated map,
as shown in Fig 1, with an agent and a goal. The agent is provided only with the first-person view
and is tasked to find the goal as many times as possible within a fixed amount of time, re-spawning
its location each time it reaches the goal. We train and evaluate the algorithms with increasing
difficulty. In the easiest stage, we keep the goal location, spawn location and map constant over the
training and testing. We call this set up static goal, static spawn, and static map. To increase the
difficulty, we incrementally randomize the spawn locations, goal locations and map structures until
all three are random. We discuss the design of experiments in Section 4.1 in more detail.

Mirowski et al. (2016) do train and test their algorithms with randomized goals and spawns and
show that their algorithm is able to exploit the knowledge of the goal location at evaluation time to
maximize reward. However, following training and testing on constant map structures, this state-of-
the-art result is shown to be successful on only one map, which brings into question the repeatability
of the results. It is also unclear whether these results generalize to unseen maps.

Although disjoint training and testing sets are standard practice in machine learning, to the best
of our knowledge, we are the first to evaluate any DRL-based navigation method on maps with
unseen structures. We expand on the analysis in Mirowski et al. (2016) to address its limitations
and ask whether DRL-based algorithms such as NavA3C+D1D2L perform any mapping followed
by shortest path planning. Our experiments show no evidence of mapping in cases where algorithms
are evaluated on unseen maps and no evidence of optimal path planning, even when the map is
constant and only the goal is randomized.

To better understand navigation, we compute attention-maps for models to show which portions of
the input image are being used. We find that the models discard most of the image information,
focusing attention on a small band in the middle of the image except around junctions, in which
case the attention is distributed evenly throughout the image.

These findings result from training and testing on multiple maps that were randomly selected from
a set of 1100 randomly generated maps. We provide experimental results on ten randomly selected
maps and a testing set of 100 unseen maps to ensure results are independent of map choice. We will
make our code and data available following the blind review process.

2 RELATED WORK

Localization and mapping Localization and mapping for navigation is a classic problem in mo-
bile robotics and sensing. Smith & Cheeseman (1986) introduced the idea of propagating spatial
uncertainty for robot localization while mapping, and Elfes (1989) popularized Occupancy Grids.
In the three decades since these seminal works, the field has exploded with hundreds of algorithms
for many types of sensors (e.g., cameras, laser scanners, sonars and depth sensors). These algorithms
vary by how much detail is captured in their respective maps. For example, topological maps, like
Kuipers (1978), aim to capture as little information as possible while occupancy grid maps, Elfes
(1989), aim to capture metrically accurate maps in resolutions dependent upon the navigation task.

2



Under review as a conference paper at ICLR 2018

All these approaches require significant hand-tuning for the environment, sensor types and naviga-
tion constraints of the hardware. In contrast, end-to-end navigation algorithms optimize the detail
of map storage based on the navigation task at hand, which makes them worth exploring.

Deep reinforcement learning DRL gained prominence recently when used by Mnih et al. (2013;
2015) to train agents that outperform humans on Atari games; agents that trained using only the
games’ visual output. More recently, DRL has been applied to end-to-end navigation (Oh et al.
(2016); Mirowski et al. (2016); Chaplot et al. (2016)). It is common for agents to be trained and
tested on the same maps with the only variation being the agent’s initial spawn point and the map’s
goal location (Mirowski et al. (2016); Zhu et al. (2017); Kulkarni et al. (2016)).

In contrast, Oh et al. (2016) test their algorithm on random unseen maps, but their agents are trained
to choose between multiple potential goal locations based on past observations. The episodes end
when the agent collects the goal, so there is no requirement for the algorithm to store map informa-
tion during their exploration. Thus, their agents decide to avoid a goal of a particular color while
seeking other colors rather than remembering the path to the goal. Chaplot et al. (2016) test their
method on unseen maps in the VizDoom environment, but only vary the maps with unseen textures.
Thus, their agents are texture invariant, but train and test on maps with the same geometric structure.

In this work, we extend the study of these methods in a more comprehensive set of experiments
to address the question of whether DRL-based agents remember enough information to obviate
mapping algorithms or may in fact need to be augmented with mapping for further progress.

3 BACKGROUND

Our problem formulation is based on the work of Mirowski et al. (2016). For completeness, we
summarize the technical setup here. For additional details regarding the setup, we refer the reader
to Mnih et al. (2016); Mirowski et al. (2016).

The problem of navigation is formulated as an interaction between an environment and an agent. At
time t the agent takes an action at ∈ A and observes observation ot ∈ O along with a reward rt ∈ R.
We assume the environment to be a Partially Observable Markov Decision Process (POMDP). In a
POMDP, the future state of the environment, st+1 ∈ S, is conditionally independent of all the
past states, s1:t−1, given the current state st. It is further assumed that ot and rt are independent
of previous states given current state st and last action at−1. Formally, a POMDP is defined as a
six tuple (O, C,S,A, T,R) that is composed of an observation space O, an observation function
C(st, at) → ot, a state space S, an action space A, a transition function T (st, at) → st+1 and a
reward function R(st, at) → rt+1. For our problem setup, the observation space O is the space of
an encoded feature vector that is generated from input image along with previous action and reward.
Action space A contains four actions: rotate left, rotate right, move forward and move backward
and reward functionR is defined for each experiment so that reaching the goal location leads to high
reward with auxiliary rewards to encourage certain kinds of behavior.

For DRL algorithms, the state space S is not hand tuned, but it is modeled as a vector of floats. Ad-
ditionally, instead of modeling observation function C(st, at) → ot and T (st, at) → st+1, a com-
bined transition function Tc(st, ot, at, rt; θT )→ st+1 is modeled to estimate the next state st+1 and
directly take previous observation and reward into account. For policy-based DRL a policy function
π(at+1|st, ot, at, rt; θπ) → πt(at+1; θπ) and a value function V (st, ot, at, rt; θV ) → Vt(θV ) are
also modeled. All three functions Tc, πt and Vt share most of the parameters such that θT ⊆ θπ∩θV
The DRL objective is to estimate unknown weights θ = θT ∪ θπ ∪ θV that maximizes the expected
future reward Rt =

∑tend−t
k=t γk−trk (where γ is the discount factor) and is expressed as

θ∗ = argmax
θ

E[Rt] , (1)

where E[.] denotes the expected value.

Asynchronous Advantage Actor-Critic In this work, we use the policy-based method called
Asynchronous Advantage Actor-Critic (A3C) (Mnih et al. (2016)), which allows weight updates to
happen asynchronously in a multi-threaded environment. It works by keeping a “shared and slowly
changing copy of target network” that is updated every few iterations by accumulated gradients in

3



Under review as a conference paper at ICLR 2018

LSTM:64LSTM:256CNN:32
4x4/2x2

CNN:16
8x8/4x4

It:84x84x3

at−1

rt−1

V , π

L

D2

ot

D1

Figure 2: Modified NavA3C+D1D2L (Mirowski et al. (2016)) architecture. The architecture is has three inputs
the current image It and previous action at−1 and previous reward rt−1. As shown by Mirowski et al. (2016),
the architecture improves upon vanilla A3C architecture by using auxiliary outputs of loop-closure signal L
and predicted depth D1 and D2. Since we use a smaller action space than Mirowski et al. (2016) and our agent
moves with constant velocity, we do not use velocity at previous time step as input signal.

each of the threads. The gradients are never applied to the local copy of the weights; instead, a
local copy of weights is periodically synced from the shared copy of target weights. The gradient
for the weight update is proportional to the product of advantage, Rt − Vt(θV ), and characteristic
eligibility,∇θπ lnπt(at+1; θπ) (Williams (1992)), which update the weights as

θπ ← θπ +
∑

t∈episode

απ∇θπ lnπt(Rt − Vt(θV )) (2)

θV ← θV +
∑

t∈episode

αV
∂(Rt − Vt(θV ))2

∂θV
. (3)

For additional details of the A3C algorithm, we refer the reader to Mnih et al. (2016).

NavA3C+D1D2L In this work, we use the NavA3C+D1D2L architecture as proposed by Mirowski
et al. (2016), which builds modifying the network architecture to have two LSTMs and with auxiliary
outputs of depth predictions along with loop-closure predictions. The schematic of the architecture
is shown in Fig 2. The architecture has three inputs: the current image It, previous action at−1 and
previous reward rt−1. As shown by Mirowski et al. (2016), the architecture improves upon vanilla
A3C architecture by optimizing predictions for the auxiliary outputs of loop closure signal L and
predicted depth D1 and D2. Since we use a smaller action space than Mirowski et al. (2016) and
our agent moves with constant velocity, we do not use velocity at the previous time step as an input
signal.

4 THE DRL NAVIGATION CHALLENGE

Since deep reinforcement learning algorithms need millions of iterations to train, in the absence of
thousands of robotic replicas like Levine et al. (2017), we evaluate the algorithms on a simulated
environment. We use the same game engine as Mirowski et al. (2016), called Deepmind Lab (Beattie
et al. (2016)). The game is setup such that an agent is placed within a randomly generated maze
containing a goal at a particular location. On reaching the goal, the agent re-spawns within the same
maze while the goal location remains unchanged. Following Mirowski et al. (2016), we scatter the
maze with randomly placed smaller apple rewards (+1) to encourage initial explorations and assign
the goal a reward of +10. The agent is tasked to find the goal as many times as possible within a fixed
amount of time, re-spawning within the maze, either statically or randomly, each time it reaches the
goal.

Unlike Mirowski et al. (2016), we include a small wall penalty (-0.2) that pushes the agent away from
the wall. The wall penalty is useful to prevent agents from moving along the walls, thereby discard-
ing vision input for exploration. We also use a discrete 4-action space (move forward/backward,
rotate left/right)which is different from the 8-action space one used by Mirowski et al. (2016). A
smaller action space helps the algorithm train faster while achieving similar reward values.

4



Under review as a conference paper at ICLR 2018

Map ID 127 Map ID 169 Map ID 246 Map ID 336 Map ID 445 Map ID 589 Map ID 691 Map ID 828 Map ID 844 Map ID 956

Figure 3: The ten randomly chosen mazes for evaluation. We generate 1100 random mazes and choose ten to
evaluate our experiments that require testing and training on the same maps.

We generate 1100 random maps using depth-first search based maze generation methods. More
information on maze generation can be found in the appendix. Of the first 1000 maps, 10 are
randomly selected for our static-map experiments (Fig. 3). For our unseen map experiments, agents
are trained on increasing subsets of the first 1000 maps and tested on the remaining 100. Unlike
Mirowski et al. (2016) and similar to Chaplot et al. (2016), we use randomly textured walls in our
mazes so that the policies learned are texture-independent.

4.1 EXPERIMENTS

We evaluate the NavA3C+D1D2L algorithm on maps with 5 stages of difficulty. While the algorithm
works smoothly on the easier stages, it does not perform better than wall-following methods on the
hardest stage. We propose these experiments as a 5-stage benchmark for all end-to-end navigation
algorithms.

1. Static goal, static spawn, and static map To perform optimally on this experiment, the agent
needs to find and learn the shortest path at training time and repeat it during testing.

2. Static goal, random spawn and static map This is a textbook version of the reinforcement
learning problem, especially in grid-world Sutton & Barto (1998), with the only difference being
that the environment is partially observable instead of fully observable. This problem is more
difficult than Problem 1 because the agent must find an optimal policy to the goal from each
possible starting point in the maze.

3. Random goal, static spawn, and static map In this setup, we keep the spawn location and the
map fixed during both training and testing but choose a random goal location for each episode.
Note that the goal location stays constant throughout an episode. The agent can perform well on
this experiment by remembering the goal location after it has been discovered and exploiting the
information to revisit the goal faster.

4. Random goal, random spawn, and static map In this version of the experiment both the
spawn point and the goal location is randomized. To perform optimally, the agent must localize
itself within the map in addition to being able to exploit map-information.
This is the problem that is addressed by Mirowski et al. (2016) with limited success. They evaluate
this case on two maps and report Latency 1 :> 1 to be greater than 1 in one of the two maps. We
evaluate the same metric on ten other maps.

5. Random goal, random spawn, and random map We believe that any proposed algorithms on
end-to-end navigation problems, should be evaluated on unseen maps. To our knowledge, this is
the first paper to do so in the case of deep reinforcement learning based navigation methods. We
train agents to simultaneously learn to explore 1, 10, 100, 500 and 1000 maps and test them on
the same 100 unseen maps. The relevant results can be found in Fig 5 and discussed in Section 5.

The comparative evaluation of the different the stages of this benchmark are shown in Fig 4 and
expanded upon in the Section 5.

4.2 EVALUATION METRICS

We evaluate the algorithms in terms of three metrics: rewards, Latency 1 :> 1 and Distance-
inefficiency. Following Mirowski et al. (2016), we report Latency 1 :> 1, a ratio of the time taken
to hit the goal for the first time (exploration time) versus the average amount of time taken to hit
goal subsequently (exploitation time). The metric is a measure of how efficiently the agent exploits
map information to find a shorter path once the goal location is known. If this ratio is greater than

5



Under review as a conference paper at ICLR 2018

0 50 100 150 200

Reward

127

169

246

336

445

589

691

828

844

956
M

a
p

ID

0.0 0.5 1.0 1.5 2.0 2.5

Latency 1 :> 1

Stat. Goal, Stat. Spawn, Stat. Maze

Rnd. Goal, Stat. Spawn, Stat. Maze

Stat. Goal, Rnd. Spawn, Stat. Maze

Rnd. Goal, Rnd. Spawn, Stat. Maze

Rnd. Goal, Rnd. Spawn, Rnd. Maze

0 1 2 3 4 5

Distance-inefficiency

Figure 4: We evaluate the NavA3C+D1D2L Mirowski et al. (2016) algorithm on ten randomly chosen maps,
shown in Fig. ??, with increasing difficulty as described in Sec. 4.1. The figure is best viewed in color. Vertical
axis is one of the ten map ID’s on which the agent was trained (except for Rnd. Maze) and evaluated. Horizontal
axis are different evaluation metrics. We note that when the goal is static then rewards are consistently higher
as compared to random goal. With static goals, the metric Distance-inefficiency is close to 1, indicating that the
algorithms are able to find shortest path. However, with random goals, the agents struggle to find the shortest
path. From the Latency 1 :> 1 results we note that the algorithm do well when trained and tested on the same
map but fail to generalize to new maps when evaluated on ability to exploit the information about goal location.
Also note that Latency 1 :> 1 metric for cases of static goals is expected to be close to one because the location
of goal is learned at train time.

1, the agent is doing better than random exploration and the higher the value, the better its map-
exploitation ability. Note that the metric is meaningful only when the goal location is unknown at
evaluation time.

Distance-inefficiency is defined to be the ratio of the total distance traveled by the agent versus the
sum of approximate shortest distances to the goal from each spawn point. The metric also disregards
goals found during exploitation time as the agent must first find the goal before it can traverse the
shortest path to it. Note that the shortest distance between the spawn and goal locations is computed
in the top-down block world perspective and hence is only an approximation.

While the Latency 1 :> 1 measures the factor by which planned path to the goal is shorter than
the exploration path, the Distance-inefficiency measures the length of this path with respect to the
shortest possible path.

5 RESULTS AND ANALYSIS

In this section we discuss the results for experiments as discussed in Section 4.1 over ten randomly
chosen maps shown in Fig 3. The results in Fig 4.

Static goal, static spawn, static maze For this case, the reward is consistently high, and Distance-
inefficiency is close to 1 with small standard deviations implying the path chosen is the shortest
available. Please note that Latency 1 :> 1, is should be close to 1 for static goal case, because the
goal location is known at training time.

Static goal, random spawn, static map Again, note that Distance-inefficiency is close to 1 im-
plying that when the goal is found, the shortest path is traversed. This is because the agent can learn
the optimal policy for shortest path to the goal at train time.

6



Under review as a conference paper at ICLR 2018

Random goal, static spawn, static map In this case, the mean of the Latency 1 :> 1 is more
than 1 show that in general the agent is able to exploit map information. However the large standard
deviations in this metric and the reward values show that this exploitation is not consistent through
episodes. For most of the experiments, the Distance-inefficiency is close to one within error metrics,
again imply that the shortest path is taken when the goal is found.

Random goal, Random spawn, static map Similar to the previous experiment, the Latency 1 :>
1 is more than 1 but with a large standard deviation implying inconsistent performance from episode
to episode. The Distance-inefficiency is larger than 1 showcasing the paths traversed to the goal are
not necessarily the shortest.

Random goal, Random spawn, Random map For this experiment, agents trained on a 1000
maps are tested individually on the 10 chosen maps that are a subset of the 1000 maps. The Latency
1 :> 1 is close to 1 implying that map-exploitation is taking place. The large Distance-inefficiency
numbers seem to confirm this statement. We present, qualitative results in Sec. 5.3 on very simple,
to show that the agents are only randomly exploring the maze rather than utilizing shortest path
planning.

5.1 EVALUATION ON UNSEEN MAPS

The results for training on N maps, where N ∈ {10, 100, 500, 1000}, and testing on 100 unseen
maps are shown in Fig 5. We observe that there is a significant jump of average reward and average
goal hits when the number of training maps is increased from 10 to 100 but no significant increase
when the number of training maps are increased from 100 to 500 to 1000. This is due to the fact that
the wall-following strategy learned by the algorithm, is learned with enough variation in 100 maps
and training on additional maps does not add to the learned strategy.

5.2 EFFECT OF APPLES AND TEXTURE

We evaluate the effect of apples and texture during evaluation time in Fig 5. We train the algorithm
on randomly chosen training maps with random texture and evaluate them no maps with and without
random texture and also on maps with and without apples. When the apples are present, we place
the apples with probability 0.25 in each block of the map. We find that the algorithm, being trained
on random textures and random placement of apples, is robust to presence or absence of textures
and apples.

5.3 QUALITATIVE EVALUATION ON SIMPLE MAPS

To evaluate what strategies that the algorithm is employing to reach the goal we evaluate the algo-
rithm on very simple maps where there are only two paths to reach the goal. The qualitative results
for the evaluation are shown in Fig 6.

Square map A Square map (Fig 6) is the simplest possible map with two paths to the goal. We
evaluate the algorithm trained on 1000 random maps on square map. We observe that the agent
greedily moves in the direction of initialization. This may be because of the initial learning which is
motivated by small rewards of getting apples. We compute the percentage of times the agent takes
the shortest path over a trial of 100 episodes. We find the agent takes the shortest path only 50.4%
(±12.8%) of the times, no better than random.

Wrench map To eliminate the dependency on initial orientation, we evaluate the algorithm on
Wrench map as shown in Fig 6. We fix in the spawn point at the bottom of the tail so that shortest
path is independent of the spawn orientation. The decision about the shortest path is made at the
junction where the agent can either chose to go left or right. We find that the agent is taking shortest
path only 32.9% (±25.1%) of the times which is again to better than random.

Goal map Similarly to the wrench map, the goal map (Fig 6) provides a decision point indepen-
dent of the initial orientation, but it penalizes the wrong decision more than the wrench map 42.6%
(±35.1%) of the times which is again no better than random.

7



Under review as a conference paper at ICLR 2018

0 20 40 60 80 100

Reward

10

100

500

1000
N

u
m

tr
a

in
in

g
m

a
p

s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Latency 1 :> 1

Rnd Texture, No apples Rnd Texture, With apples St Texture, No apples St Texture, With apples

0 1 2 3 4 5

Distance-inefficiency

Figure 5: Plots showing the effect of number of training maps with random texture (Rnd Texture) and presence
of apples (With apples), when evaluated on unseen maps. We note that although the difference between mean
metrics is negligible as compared to standard deviation of the metrics. Hence we say that the effect of apples
or textures can be ignored. The only clear trend is apparent Latency 1 :> 1 metric which suggest that random
texture along without apples is advantageous in exploiting goal location while finding the goal second time
on-wards.

These experiments show that NavA3C+D1D2L algorithm, even when trained on 1000 maps, do not
generalize to these very simple maps. Again note that even in cases when there are only two possible
paths to the goal, the agent is unable to chose the shorter path with more than 50% probability. This
shows that the models trained on 1000 maps have learned only a wall-following strategy rather than
learning to plan path based on goal location.

Sq
ua

re
m

ap
W

re
nc

h
m

ap
G

oa
lm

ap

Figure 6: Snapshots of path taken by the agent to reach the goal in a single episode when model trained on 1000
maps is evaluated Square, Wrench and Goal map. The top row shows an evaluation example on Square map,
the agent takes the shortest path 6/10 times but when averaged over 100 episodes, the percentage of shortest
path taken is not better than random 50.4% (±12.8%). Although for the example of Wrench map the agent
takes the shortest path 8/10 times but when averaged over 100 episodes, the percentage of shortest path taken is
reduced to 32.9% (±25.1%). For the Goal map, the example chosen here shows that the shortest path is only
taken 1/6 times, on an average over 100 episodes, the shortest path is taken 42.6% (±35.1%) times.

5.4 ATTENTION HEAT MAPS

We use the normalized sum of absolute gradient of the loss with respect to the input image as a proxy
for attention in the image. The gradients are normalized for each image so that the maximum gradi-
ent is one. The attention values are then used as a soft mask on the image to create the visualization
as shown in Fig 7

We observe that the attention is uniformly distributed on the image when the agent spawns. The at-
tention narrows down to a few pixels in the center when the agent is navigating through the corridor.
It spreads to the entire image around turns and junctions. The attention also pays close attention to
important objects like goal, apples and unique decals.

8



Under review as a conference paper at ICLR 2018

Figure 7: Visualizing attention for two sequences. The first two rows show the sequence when the model is
trained on and evaluated on the same map. The last two rows shows the sequence for a model trained on 1000
maps and evaluated on one of the maps. We observe that the attention is uniformly distributed on the image
when the agent spawns. The attention narrows down few pixels in the center when the agent is navigating
through the corridor. It spreads to the entire image around turns and junctions. The algorithm also pays close
attention to important objects like goal, apples and unique decals.

6 CONCLUSION

In this work, we comprehensively evaluate NavA3C+D1D2L (Mirowski et al. (2016)), a DRL-based
navigation algorithms, through systematic set of experiments that are repeated over multiple ran-
domly chosen maps. Our experiments show that DRL-based navigation models are able to perform
some degree of path-planning and mapping when trained and tested on the same map even when
spawn locations and goal locations are randomized. However the large variation in the evaluation
metrics show that how such behaviour is not consistent across episodes. We also train and test these
methods on disjoint set of maps and show that such trained models fail to perform any form of
path-planning or mapping in unseen environments.

In this work, we begin by asking: do DRL-based navigation algorithms really “learn to navigate”?
Our results answer this question negatively. At best, we can say that DRL-based algorithms learn
to navigate in the exact same environment, rather than general technique of navigation which is
what classical mapping and path planning provide. We hope that the systematic approach to the
experiments in this work serve as a benchmark for future DRL-based navigation methods.

REFERENCES

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler, Andrew
Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801,
2016.

Devendra Singh Chaplot, Guillaume Lample, Kanthashree Mysore Sathyendra, and Ruslan Salakhutdinov.
Transfer deep reinforcement learning in 3d environments: An empirical study. 2016.

Alberto Elfes. Using occupancy grids for mobile robot perception and navigation. Computer, 22(6):46–57,
1989.

Benjamin Kuipers. Modeling spatial knowledge. Cognitive science, 2(2):129–153, 1978.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor reinforcement
learning. arXiv preprint arXiv:1606.02396, 2016.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view rgb-d object
dataset. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1817–1824.
IEEE, 2011.

9



Under review as a conference paper at ICLR 2018

Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning Hand-Eye Coordination for
Robotic Grasping with Large-Scale Data Collection, pp. 173–184. Springer International Publishing, Cham,
2017. ISBN 978-3-319-50115-4. doi: 10.1007/978-3-319-50115-4 16. URL https://doi.org/10.
1007/978-3-319-50115-4_16.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino, Misha Denil,
Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia Hadsell. Learning to
navigate in complex environments. CoRR, abs/1611.03673, 2016. URL http://arxiv.org/abs/
1611.03673.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop.
NIPS, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 1928–1937, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence pre-
dictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 427–436, June 2015. doi: 10.1109/CVPR.2015.7298640.

Junhyuk Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and action in
minecraft. In International Conference on Machine Learning, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Randall C Smith and Peter Cheeseman. On the representation and estimation of spatial uncertainty. The
international journal of Robotics Research, 5(4):56–68, 1986.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3):229–256, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992696. URL https:
//doi.org/10.1007/BF00992696.

Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer. Pop-up SLAM: Semantic monocular plane
slam for low-texture environments. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, pp. 1222–1229. IEEE, 2016.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep reinforcement learning. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pp. 3357–3364. IEEE, 2017.

10

https://doi.org/10.1007/978-3-319-50115-4_16
https://doi.org/10.1007/978-3-319-50115-4_16
http://arxiv.org/abs/1611.03673
http://arxiv.org/abs/1611.03673
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696


Under review as a conference paper at ICLR 2018

APPENDIX

HYPERPARAMETERS

We use the Deepmind Lab environment to train our experiments. As mentioned previously, apple
rewards are scattered throughout the maze and constitue a +1 reward. Goals constitute a +10 reward.
An included wall penalty linearly penalizes the agent as it moves closer to the wall with the penalty
being capped off at -.2 per frame. Our episodes are of fixed time length ending at 40 seconds
each. The agent interacts with the environment at a rate of 30 frames per second. Each episode
thus consists of 1200 frames of data coupled with the corresponding reward signals. Our mazes
constitute an area of 900units×900units though we provide the tools to generate mazes to arbitrary
dimensions.

Our A3C implementation is a modified version of OpenAIs open-sourced universe-starter-agent.
RGB images are fed in to the network of dimensions 84 × 84 × 3. 16 threaded agents are used for
all experiments. We use a learning rate of 10−4 along with the AdamOptimizer to train our network.
Our models train for a maximum of 108 iterations though we end them early if maximum reward
saturates.

BENCHMARKING CODE

To motivate more comprehensive experimental evaluations of DRL-based navigation methods, we
will be releasing all our trained models coupled with corresponding reward curves and videos of
performance online. This will include completely reproducible evaluation sets wherein we display
metric scores for all the trained models on the follow environments:

• the original training conditions
• the training conditions in the absence of apples and textures
• the 100 unseen testing maps
• the planning maps i.e. the square, wrench and goal map

We hope our work can also be utilized as a stepping stone for the creation of better generalized DRL
navigation methods bypassing the needless amounts of time spent engineering the infrastructure
necessary for these experiments. All our work will be available on github after the blind-review
process is over.

11


	Introduction
	Related Work
	Background
	The DRL Navigation Challenge
	Experiments
	Evaluation Metrics

	Results and Analysis
	Evaluation on unseen maps
	Effect of apples and texture
	Qualitative evaluation on simple maps
	Attention heat maps

	Conclusion

