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ABSTRACT

While deep neural networks have achieved state-of-the-art performance on many
tasks across varied domains, they still remain black boxes whose inner workings
are hard to interpret and understand. In this paper, we develop a novel method for
efficiently capturing the behaviour of deep neural networks using kernels. In par-
ticular, we construct a hierarchy of increasingly complex kernels that encode indi-
vidual hidden layers of the network. Furthermore, we discuss how our framework
motivates a novel supervised weight initialization method that discovers highly
discriminative features already at initialization.

1 INTRODUCTION

One of the first connections between kernels and neural networks was established by Neal (1996).
There, it is shown that if the covariance kernel of a Gaussian process (GP) (Rasmussen, 2006) is cho-
sen based on the weight prior of an infinite-width neural network, then these two models induce the
same prior over functions. Recently, there has been a resurgence of interest in the connections be-
tween neural networks and kernel methods. For example, Cho & Saul (2009; 2010) construct kernels
that mimic computations in neural networks with a particular form of non-linearity, while Montavon
et al. (2011) analyze neural networks with kernels. Other related work includes drawing connec-
tions between convolutional neural networks and kernels (Mairal et al., 2014), constructing kernels
for two-layer infinite-width neural networks with arbitrary non-linearities (Hazan & Jaakkola, 2015)
and characterizing the duality in expressivity between compositional kernels and neural networks
(Daniely et al., 2016).

In this paper, we extend the well-established connections between single layer neural networks and
kernels to arbitrarily deep neural networks. In particular, we build upon the approach of (Hazan &
Jaakkola, 2015). The main contributions of this paper are

• the derivation of a weight initialization scheme for infinite-width neural networks of arbi-
trary depth,

• the construction of a hierarchy of increasingly complex kernels that capture the behaviour
of individual hidden layers, and

• the application of our framework to finite-width neural networks, in particular to the chal-
lenge of weight initialization in these networks.

2 DEEP INFINITE-WIDTH NEURAL NETWORKS

Infinite-width neural networks can be thought of as the limit of finite-width neural networks when
the number of network weights between adjacent layers tends to infinity. Denote the first layer
representation of a point x ∈ Rd with φ1,x, where φ1,x(w) = f(〈w, x〉Rd) with weight vector
w ∈ Rd connecting the input to a neuron in the first layer and f the network non-linearity. For the
distribution of the weights connecting the input and the first layer, we can choose any probability
measure µ(w) that is defined on Rd. By thinking of the first layer representations as a surrogate for
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the canonical feature mappings of a particular kernel, we can define that kernel as

k1(x, x
′) = 〈φ1,x, φ1,x′〉L2(Rd,µ) =

∫
f(〈w, x〉Rd)f(〈w, x′〉Rd) dµ(w)

with the dependence on the non-linearity f suppressed when it does not lead to confusion.

In order for the second layer representation to be well defined, we need to ensure that the inner
product between the first layer representation and the weights connecting the first and second layer
is well defined. In particular, we need to construct a probability distribution over the space of the first
layer representations. In our case, this is the space of real-valued functions defined on Rd. We take
a Gaussian process as the probability distribution over the weights connecting the first and second
layer as it is a natural choice for a distribution over functions from Rd to R. Thus, we define the
second layer representation of x as a function φ2,x of draws from a GP ν1 with covariance function
C1. The corresponding feature maps and kernel are defined as follows

φ2,x : {g : Rd → R} → R with φ2,x(u) = f(〈u, φ1,x〉L2(Rd,µ)) and u ∼ ν1 = GP(0, C1),

k2(x, x
′) = 〈φ2,x, φ2,x′〉L2(ν1) =

∫
f(〈u, φ1,x〉L2(Rd,µ))f(〈u, φ1,x′〉L2(Rd,µ)) dν1(u).

Now, as we increase the number of hidden layers in the network, we have to construct probability
distributions over increasingly complex domains as the weights connecting layers l and l + 1 have
to come from the same space as the representations at layer l. This implies that we have to define
distributions over functions of functions of functions and so on depending on the number of hidden
layers previous to that layer. This is by no means a trivial undertaking. Furthermore, it is often not
clear what a natural choice for these distributions should be if we go beyond two hidden layers.

In order to work with deep neural networks with infinite-width layers, we develop a novel approach
for the construction of weights that can be used in networks of arbitrary depth. The main idea of
our approach is to take advantage of the structure of the induced reproducing kernel Hilbert spaces
(RKHS) in order to facilitate the choice of weight distributions in networks with more than two
hidden layers. In particular, we reparametrize the L2 inner product between hidden layer represen-
tations into an RKHS inner product between the canonical feature mappings of the induced kernel.
The intuition behind the kernel reparametrization trick is that it allows us to identify theL2 functions
encoding the hidden layer representations with their smoother representers in the RKHS.

First, owing to a general result from RKHS theory (Aronszajn, 1950), we can reparametrize kl in
the corresponding RKHS using canonical feature mappings kl(·, x), i.e.

kl(x, x
′) = 〈φl,x, φl,x′〉L2(νl−1) = 〈kl(·, x), kl(·, x

′)〉Hkl
. (1)

Thus, we can identify φl,x ∈ L2(νl−1) (ν0 = µ) with a smoother function kl(·, x) ∈ Hkl . Second,
we choose the covariance function Cl in a principled way as

Cl(x, x
′) =

∫
kl(x, ξ)kl(x

′, ξ) dµ(ξ).

Now, in order to extend the neural network beyond two hidden layers, we just need to sample
the weights connecting layers l and l + 1 from a GP νl with covariance function Cl. The special
covariance structure we posit ensures that the weights are in the appropriate RKHS, which, in turn,
ensures that the inner product between the representations at layer l and the weights connecting
layers l and l+1 is well defined. At layer l+1, we again perform the kernel reparametrization trick
on the induced kernel kl+1. Furthermore, we identify the hidden representations at layer l + 1 with
the canonical feature mappings induced by the kernel kl+1. Thus, at layer l + 1, we have

φl+1,x(u) = f(〈u, kl(·, x)〉Hkl
) = f(u(x)), for u ∼ νl(u) = GP(0, Cl),

kl+1(x, x
′) = 〈φl+1,x, φl+1,x′〉L2(νl) = 〈kl+1(·, x), kl+1(·, x′)〉Hkl+1

=

∫
f(u(x))f(u(x′)) dνl(u),

where we used the reproducing property of the kernel kl for the last equality in the first line. After we
have repeated the above process for all hidden layers in the neural network, we can use the resulting
representation of the data in any algorithm where a feature-based representation is needed.
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3 APPLICATION: SUPERVISED WEIGHT INITIALIZATION

While our contribution is theoretical in nature, we show how the insights gained from the study of
deep infinite-width neural networks can be applied to standard finite-width deep neural networks. In
particular, we discuss how our framework motivates a novel supervised weight initialization method.

The approach discussed in the previous section can easily be adapted to the setting of finite-width
neural networks by approximating integrals with their Monte Carlo estimates and RKHS inner prod-
ucts with inner products between random feature expansions. While the weights construction via
GPs is mathematically appealing, we focus on a more direct approach, while still preserving the
required covariance structure of the weights. In particular, we set the weight vector connecting layer
l with neuron i from layer l + 1 to

ul,i =

Ml∑
m=1

αimk̂l(·, ξ(l)im) with αi ∼ N
(
0,

1

Ml
I

)
,

where ξ(l)im ∈ Rd and k̂l(·, x) is the random features representation of x at layer l. Thus, for the
representation of point x at layer l + 1, we have

k̂l+1(·, x) =
1√
Pl+1

[
f(αT1 k̂l(x, ξ

(l)
1 )), . . . f(αTPl+1

k̂l(x, ξ
(l)
Pl+1

))
]
,

with ξ(l)i = {ξ(l)im}m and Pl+1 the number of neurons at layer l+1. From this we see that the neuron
i encodes the alignment of x to the subspace spanned by ξ(l)i . Guided by the idea of disentangling
factors of variation, we choose the sets {ξ(l)im}m for each neuron i at layer l in a supervised fashion.

3.1 RESULTS

We perform some initial experiments with our supervised weight initialization scheme and compare
it to four commonly used initialization schemes - Xavier (Glorot & Bengio, 2010), Xavier-Caffe
(w ∼ N (0, (fan in)−1)), Kaiming (He et al., 2015) and Heuristic (LeCun et al., 2012). In partic-
ular, we train a single layer neural network with 800 hidden units on the MNIST dataset (LeCun
et al., 1998). We use the RELU non-linearity and optimize with Adam (Kingma & Ba, 2014) using
the default parameters. From Table 1, we can see that our initialization method discovers highly
discriminative features already at initialization. Furthermore, our method is competitive after the
neural network has been fully trained.

Table 1: Classification accuracy on the MNIST test set at initialization and after training averaged
over 10 runs.

Init Method At Initialization After Training
Heuristic 9.40± 3.1 96.53± 0.51
Xavier 9.53± 3.5 96.16± 0.43
Xavier-Caffe 9.31± 2.7 96.08± 0.45
Kaiming 10.19± 2.6 96.23± 0.42
Ours 75.74± 2.2 96.37± 0.47

4 DISCUSSION

In this paper, we have presented a novel method for efficiently capturing the behaviour of deep neural
networks using a hierarchy of increasingly complex kernels. In particular, each kernel encodes a
single layer of an infinite-width neural network. Furthermore, we apply our framework to finite-
width neural networks and presented a novel supervised weight initialization method that discovers
highly discriminative features already at initialization.
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Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional Kernel Net-
works. arXiv preprint arXiv:1406.3332, 2014.
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