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ABSTRACT

The current dominant paradigm for imitation learning relies on strong supervision
of expert actions to learn both what and how to imitate. We pursue an alternative
paradigm wherein an agent first explores the world without any expert supervision
and then distills its experience into a goal-conditioned skill policy with a novel
forward consistency loss. In our framework, the role of the expert is only to
communicate the goals (i.e., what to imitate) during inference. The learned policy
is then employed to mimic the expert (i.e., how to imitate) after seeing just a
sequence of images demonstrating the desired task. Our method is “zero-shot”
in the sense that the agent never has access to expert actions during training
or for the task demonstration at inference. We evaluate our zero-shot imitator
in two real-world settings: complex rope manipulation with a Baxter robot and
navigation in previously unseen office environments with a TurtleBot. Through
further experiments in VizDoom simulation, we provide evidence that better
mechanisms for exploration lead to learning a more capable policy which in turn
improves end task performance. Videos, models, and more details are available
athttps://pathak22.github.io/zeroshot—imitation/\

1 INTRODUCTION

Imitating expert demonstration is a powerful mechanism for learning to perform tasks from raw
sensory observations. The current dominant paradigm in learning from demonstration (LfD) (Ar-
gall et al., 2009} [Ng & Russell| 2000; [Pomerleau, |1989; [Schaall |1999) requires the expert to either
manually move the robot joints (i.e., kinesthetic teaching) or teleoperate the robot to execute the
desired task. The expert typically provides multiple demonstrations of a task at training time, and
this generates data in the form of observation-action pairs from the agent’s point of view. The agent
then distills this data into a policy for performing the task of interest. Such a heavily supervised
approach, where it is necessary to provide demonstrations by controlling the robot, is incredibly te-
dious for the human expert. Moreover, for every new task that the robot needs to execute, the expert
is required to provide a new set of demonstrations.

Instead of communicating how to perform a task via observation-action pairs, a more general formu-
lation allows the expert to communicate only what needs to be done by providing the observations of
the desired world states via a video or a sparse sequence of images. This way, the agent is required to
infer how to perform the task (i.e., actions) by itself. In psychology, this is known as observational
learning (Bandura & Walters, |1977)). While this is a harder learning problem, it is a more interesting
setting, because the expert can demonstrate multiple tasks quickly and easily.

An agent without any prior knowledge will find it extremely hard to imitate a task by simply watch-
ing a visual demonstration in all but the simplest of cases. Thus, the natural question is: in order
to imitate, what form of prior knowledge must the agent possess? A large body of work (Breazeal
& Scassellati, 20025 IDillmann) 2004} Tkeuchi & Suehiro, [1994; Kuniyoshi et al.| [1989;|1994; Yang
et al., 2015) has sought to capture prior knowledge by manually pre-defining the state that must be
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Figure 1: The goal-conditioned skill policy (GSP) takes as input the current and goal observations
and outputs an action sequence that would lead to that goal. We compare the performance of the
following GSP models: (a) Simple inverse model; (b) Mutli-step GSP with previous action history;
(c) Mutli-step GSP with previous action history and a forward model as regularizer, but no forward
consistency; (d) Mutli-step GSP with forward consistency loss proposed in this work.

inferred from the observations. The agent then infers how to perform the task (i.e., plan for imita-
tion) using this state. Unfortunately, computer vision systems are often unable to estimate the state
variables accurately and it has proven non-trivial for downstream planning systems to be robust to
such errors.

In this paper, we follow (Agrawal et al.||2016; [Levine et al., 2016} Pinto & Gupta, 2016) in pursuing
an alternative paradigm, where an agent explores the environment without any expert supervision
and distills this exploration data into goal-directed skills. These skills can then be used to imitate the
visual demonstration provided by the expert (Nair et al.l 2017). Here, by skill we mean a function
that predicts the sequence of actions to take the agent from the current observation to the goal. We
call this function a goal-conditioned skill policy (GSP). The GSP is learned in a self-supervised
way by re-labeling the states visited during the agent’s exploration of the environment as goals
and the actions executed by the agent as the prediction targets, similar to (Agrawal et al.| 2016;
Andrychowicz et al., 2017). During inference, given goal observations from a demonstration, the
GSP can infer how to reach these goals in turn from the current observation, and thereby imitate the
task step-by-step.

One critical challenge in learning the GSP is that, in general, there are multiple possible ways of
going from one state to another: that is, the distribution of trajectories between states is multi-
modal. We address this issue with our novel forward consistency loss based on the intuition that, for
most tasks, reaching the goal is more important than how it is reached. To operationalize this,
we first learn a forward model that predicts the next observation given an action and a current
observation. We use the difference in the output of the forward model for the GSP-selected action
and the ground truth next state to train the GSP. This loss has the effect of making the GSP-predicted
action consistent with the ground-truth action instead of exactly matching the actions themselves,
thus ensuring that actions that are different from the ground-truth—but lead to the same next state—
are not inadvertently penalized. To account for varying number of steps required to reach different
goals, we propose to jointly optimize the GSP with a goal recognizer that determines if the current
goal has been satisfied. See Figure[I]for a schematic illustration of the GSP architecture.

We call our method zero-shot because the agent never has access to expert actions, neither during
training of the GSP nor for task demonstration at inference. In contrast, most recent work on one-
shot imitation learning requires full knowledge of actions and a wealth of expert demonstrations
during training (Duan et al., 2017} Finn et al.,2017). In summary, we propose a method that (1) does
not require any extrinsic reward or expert supervision during learning, (2) only needs demonstrations
during inference, and (3) restricts demonstrations to visual observations alone rather than full state-
actions. Instead of learning by imitation, our agent learns to imitate.
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We evaluate our zero-shot imitator on real-world robots for rope manipulation tasks using a Bax-
ter and office navigation using a TurtleBot. We show that the proposed forward consistency loss
improves the performance on the complex task of knot tying from 36% to 60% accuracy. In naviga-
tion experiments, we steer a simple wheeled robot around partially-observable office environments
and show that the learned GSP generalizes to unseen environments. Furthermore, using navigation
experiments in VizDoom environment, we show that (GSP) learned using curiosity-driven explo-
ration (Oudeyer et al., [2007; |Pathak et al., [2017; [Schmidhuber], [1991) can more accurately follow
demonstrations as compared to using random exploration data for learning the GSP. Overall our
experiments show that the forward-consistent GSP can be used to imitate a variety of tasks without
making environment or task-specific assumptions.

2 LEARNING TO IMITATE WITHOUT EXPERT SUPERVISION

Let S : {x1,a1, %2, as, ..., x7} be the sequence of observations and actions generated by the agent
as it explores its environment using the policy a = wg(s). This exploration data is used to learn
the goal-conditioned skill policy (GSP) 7 takes as input a pair of observations (x;, z,) and outputs
sequence of actions (& : a1, az...ax ) required to reach the goal observation (x4) from the current
observation (x;).

@, = (@i, 24:0r) (1)
where states x;, x4 are sampled from the S. The number of actions, K, is also inferred by the model.
We represent 7 by a deep network with parameters 6, in order to capture complex mappings from
visual observations () to actions. 7 can be thought of as a variable-step generalization of the inverse
dynamics model (Jordan & Rumelhart, [1992), or as the policy corresponding to a universal value
function (Foster & Dayan, 2002; Schaul et al.,[2015)), with the difference that x4 need not be the end
goal of a task but can also be an intermediate sub-goal.

Let the task to be imitated be provided as a sequence of images D : {z{, x4, ..., 2% } captured when
the expert demonstrates the task. This sequence of images D could either be temporally dense or
sparse. Our agent uses the learned GSP 7 to imitate the sequence of visual observations D starting
from its initial state zo by following actions predicted by 7(zo, z¢;6,). Let the observation after
executing the predicted action be x{,. Since multiple actions might be required to reach close to
x{, the agent queries a separate goal recognizer network to ascertain if the current observation is
close to the goal or not. If the answer is negative, the agent executes the action a = 7 (z{, v%; 0, ).
This process is repeated iteratively until the goal recognizer outputs that agent is near the goal, or a
maximum number of steps are reached. Let the observation of the agent at this point be Z;. After
reaching close to the first observation (x¢) in the demonstration, the agent sets its goal as (z%) and
repeats the process. The agent stops when all observations in the demonstrations are processed.

Note that in the method of imitation described above, the expert is never required to convey to the
agent what actions it performed. In the following subsections we describe how we learn the GSP,
forward consistency loss, goal recognizer network and various baseline methods.

2.1 LEARNING THE GOAL-CONDITIONED SKILL PoLICY (GSP)

We first describe the one-step version of GSP and then extend it to variable length multi-step skills.
One-step trajectories take the form of (24, at,x¢+1) and GSP, d; = 7(2¢, X441;0x), is trained by
minimizing the standard cross-entropy loss £(a¢, dy),

L(ag, ar) = p(a|ze, v441) log(dy) (2)

with respect to parameters 6,., where p and d; are the ground-truth and predicted action distribu-
tions. While we do not have access to true p, we empirically approximate it using samples from
the distribution, ay, that are executed by the agent during exploration. For minimizing the cross-
entropy loss, it is common to assume p as a delta function at a;. However, this assumption is notably
violated if p is inherently multi-modal and high-dimensional. If we optimize say a deep neural
network assuming p to be a delta function, the same inputs will be presented with different targets
(due to multi-modality) leading to high-variance in gradients which in turn would make learning
challenging.
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In our setup, such multi-modality can occur because multiple actions can lead the agent to the
same future observation from the initial observation. For instance, in navigation, if the agent is
stuck against a corner, turning or moving forward all collapse to the same effect. The issue of multi-
modality becomes more critical as the length of trajectories grow, because more and more paths may
take the agent from the initial observation to the goal observation given more time. Furthermore, it
would require many samples to even obtain a good empirical estimate of a high-dimensional multi-
modal action distribution p.

2.2 FORWARD CONSISTENCY LOSS

One way to account for multi-modality is by employing the likes of variational auto-
encoders (Kingma & Welling, [2013]; Rezende et al., 2014). However, in many practical situations
it is not feasible to obtain ample data for each mode. In this work, we propose an alternative based
on the insight that in many scenarios, we only care about whether the agent reached the final state
or not and the exact trajectory is of lesser interest. Instead of penalizing the actions predicted by
the GSP to match the ground truth, we propose to learn the parameters of GSP by minimizing the
distance between observation &1 resulting by executing the predicted action G; = (¢, Tyy1;0x)
and the observation z;4, which is the result of executing the ground truth action a; being used to
train the GSP. In this formulation, even if the predicted and ground-truth action are different, the
predicted action will not be penalized if it leads to the same next state as the ground-truth action.
While this formulation will not explicitly maintain all modes of the action distribution, it will reduce
the variance in gradients and thus help learning. We call this penalty the forward consistency loss.

Note that it is not immediately obvious as to how to operationalize forward consistency loss for two
reasons: (a) we need the access to a good forward dynamics model that can reliably predict the
effect of an action (i.e., the next observation state) given the current observation state, and (b) such
a dynamics model should be differentiable in order to train the GSP using the state prediction error.
Both of these issues could be resolved if an analytic formulation of forward dynamics is known.

In many scenarios of interest, especially if states are represented as images, an analytic forward
model is not available. In this work, we learn the forward dynamics f model from the data, and
is defined as Zy11 = f(z,ay;05). Let &441 = f(x, G4 05) be the state prediction for the action
predicted by 7. Because the forward model is not analytic and learned from data, in general, there
is no guarantee that ;4 = 2,11, even though executing these two actions, a¢, a;, in the real-world
will have the same effect. In order to make the outcome of action predicted by the GSP and the
ground-truth action to be consistent with each other, we include an additional term, ||z;,1 — 24413
in our loss function and infer the parameters 6 by minimizing ||z;11 — Zi11]13 + A||zes1 —
#441||3, where ) is a scalar hyper-parameter. The first term ensures that the learned forward model
explains ground truth transitions (x¢, a;, ;1) collected by the agent and the second term ensures
consistency. The joint objective for training GSP with forward model consistency is:
(}271911 @111 — Zegrlls + M@ — Zegallz + Llar, ar) 3)
S.t. jt+1 = f(mt,at;Qf)
ff?t+1 = f(:vt, ag; 9f)
ay = (s, ve11;0x)
Note that learning 0, 6 jointly from scratch is precarious, because the forward model f might not
be good in the beginning, and hence could make the gradient updates noisier for 7. To address this
issue, we first pre-train the forward model with only the first term and GSP separately by blocking
the gradient flow and then fine-tune jointly.

Generalization to feature space dynamics Past work has shown that learning forward dynamics
in the feature space as opposed to raw observation space is more robust and leads to better gener-
alization (Agrawal et al., 2016; Pathak et al., 2017). Following these works, we extend the GSP to
make predictions in feature representation ¢ (), ¢(x.+1) of the observations x;, x441 respectively
learned through the self-supervised task of action prediction. The forward consistency loss is then
computed by making predictions in this feature space ¢ instead of raw observations. The optimiza-
tion objective for feature space generalization with mutli-step objective is shown in Equation (d).

Generalization to multi-step GSP We extend our one-step optimization to variable length se-
quence of actions in a straightforward manner by having a multi-step GSP m,,, model with a step-



Published as a conference paper at ICLR 2018

wise forward consistency loss. The GSP 7, maintains an internal recurrent memory of the system
and outputs actions conditioned on current observation z;, starting from x; to reach goal observa-
tion 7. The forward consistency loss is computed at each time step, and jointly optimized with the
action prediction loss over the whole trajectory. The final multi-step objective with feature space
dynamics is as follows:

t=T

o 37 (1) = b3 + Ao(er) = o)l + Llawa)) @

s.t. qj)(l‘t+1) = f((b(xt)v at; ef)

P(xr41) = f(d(2e), ar; Op)

ar = m(¢p(z1), d(2r); 0x)
where ¢(.) is represented by a CNN with parameters 6,. The number of steps taken by the multi-
step GSP m,,, to reach the goal at inference is variable depending on the decision of goal recognizer;
described in next subsection. Note that, in this objective, if ¢ is identity then the dynamics simply
reduces to modeling in raw observation space. We analyze feature space prediction in VizDoom 3D
navigation and stick to observation space in the rope manipulation and the office navigation tasks.

The multi-step forward-consistent GSP m,, is implemented using a recurrent network which at every
step takes as input the feature representation of the current (¢(x;)) state, goal (¢(x7)) states, action
at the previous time step (a;—1) and the internal hidden representation h;_ of the recurrent units and
predicts a;. Note that inputting the previous action to GSP T, at each time step could be redundant
given that hidden representation is already maintaining a history of the trajectory. Nonetheless, it
is helpful to explicitly model this history. This formulation amounts to building an auto-regressive
model of the joint action that estimates probability P(a;|z1,a1,...ai—1, 2, T4) at every time step.
It is possible to further extend our forward-consistent GSP m,,, to build multi-step forward model,
but we leave that direction of future work.

2.3 GOAL RECOGNIZER

We train a goal recognizer network to figure out if the current goal is reached and therefore allow
the agent to take variable numbers of steps between goals. Goal recognition is especially critical
when the agent has to transit through a sequence of intermediate goals, as is the case for visual
imitation, as otherwise compounding error could quickly lead to divergence from the demonstration.
This recognition is simple given knowledge of the true physical state, but difficult when working
with visual observations. Aside from the usual challenges of visual recognition, the dependence of
observations on the agent’s own dynamics further complicates goal recognition, as the same goal
can appear different while moving forward or turning during navigation.

We pose goal recognition as a binary classification problem that given an observation x; and the goal
x4 infers if x; is close to x4 or not. Lacking expert supervision of goals, we draw goal observations
at random from the agent’s experience during exploration, since they are known to be feasible. For
each such pseudo-goal, we consider observations that were only a few actions away to be positives
(i.e., close to the goal) and the remaining observations that were more than a fixed number of actions
(i.e., a margin) away as negatives. We trained the goal classifier using the standard cross-entropy
loss. Like the skill policy, our goal recognizer is conditioned on the goal for generalization across
goals. We found that training an independent goal recognition network consistently outperformed
the alternative approach that augments the action space with a “stop” action. Making use of tem-
poral proximity as supervision has also been explored for feature learning in the concurrent work
of Sermanet et al.|(2018).

2.4 ABLATIONS AND BASELINES

Our proposed formulation of GSP composed of following components: (a) recurrent variable-length
skill policy network, (b) explicitly encoding previous action in the recurrence, (c) goal recognizer,
(d) forward consistency loss function, and (w) learning forward dynamics in the feature space instead
of raw observation space. We systematically ablate these components of forward-consistent GSP, to
quantitatively review the importance of each component and then perform comparisons to the prior
approaches that could be deployed for the task of visual imitation.
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Figure 2: Qualitative visualization of results for rope manipulation task using Baxter robot. (a) Our
robotics system setup. (b) The sequence of human demonstration images provided by the human
during inference for the task of knot-tying (top row), and the sequences of observation states reached
by the robot while imitating the given demonstration (bottom rows). (c) The sequence of human
demonstration images and the ones reached by the robot for the task of manipulating rope into ‘S’
shape. Our agent is able to successfully imitate the demonstration.

The following methods will be evaluated and compared to in the subsequent experiments section: (1)
Classical methods: In visual navigation, we attempted to compare against the state-of-the-art open
source classical methods, namely, ORB-SLAM?2 (Davison & Murray|, (1998}, [Mur-Artal & Tardds}
and Open-SFM 2016). (2) Inverse Model: Nair et al.| (2017) leverage vanilla
inverse dynamics to follow demonstration in rope manipulation setup. We compare to their method
in both visual navigation and manipulation. (3) GSP-NoPrevAction-NoFwdConst is the ablation
of our recurrent GSP without previous action history and without forward consistency loss. (4)
GSP-NoFwdConst refers to our recurrent GSP with previous action history, but without forward
consistency objective. (5) GSP-FwdRegularizer refers to the model where forward prediction is
only used to regularize the features of GSP but has no role to play in the loss function of predicted
actions. The purpose of this variant is to particularly ablate the benefit of consistency loss function
with respect to just having forward model as feature regularizer. (6) GSP refers to our complete
method with all the components. We now discuss the experiments and evaluate these baselines.

3 EXPERIMENTS

We evaluate our model by testing its performance on: rope manipulation using Baxter robot, navi-
gation of a wheeled robot in cluttered office environments, and simulated 3D navigation. The key
requirements of a good skill policy are that it should generalize to unseen environments and new
goals while staying robust to irrelevant distractors in the observations. For rope manipulation, we
evaluate generalization by testing the ability of the robot to manipulate the rope into configurations
such as knots that were not seen during random exploration. For navigation, both real-world and
simulation, we check generalization by testing on a novel building/floor.

3.1 ROPE MANIPULATION

Manipulation of non-rigid and deformable objects, e.g., rope, is a challenging problem in robotics.
Even humans learn complex rope manipulation such as tying knots, either by observing an expert
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% Method Success %
& Inverse Model [Nair et.al. 2017] 36% =+ 9.6%
E Forward-regularized GSP 4% + 9.9%
g

Forward-consistent GSP [Ours]  60% + 9.8%

20

Forward-consistent GSP [Ours]
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Step #

(a) TPS-RPM error for ‘S’ shape manipulation (b) Success rate for Knot-tying

Figure 3: GSP trained using forward consistency loss significantly outperforms the baselines at the
task of (a) manipulating rope into ‘S’ shape as measured by TPS-RPM error and (b) knot-tying
where we report success rate with bootstrap standard deviation.

perform it or by receiving explicit instructions. We test whether our agent could manipulate ropes
by simply observing a human perform it. We use the data collected by Nair et al.| (2017), where
a Baxter robot manipulated a rope kept on the table in front of it. During exploration, the robot
interacts with the rope by using a pick and place primitive that chooses a random point on the rope
and displaces it by a randomly chosen length and direction. This process is repeated a number of
times to collect about 60K interaction pairs of the form (z;, as, x¢41) that are used to train the GSP.

During inference, our proposed approach is tasked to follow a visual demonstration provided by a
human expert for manipulating the rope into a complex ‘S’ shape and tying a knot. Our agent, Baxter
robot, only gets to observe the image sequence of intermediate states, as human manipulates the
rope, without any access to the corresponding actions. Note that the knot shape is never encountered
during the self-supervised data collection phase and therefore the learned GSP model would have to
generalize to be able to follow the human demonstration. More details follow in the supplementary
material, Section [A. 1

Metric The performance of the model is evaluated by measuring the non-rigid registration cost
between the rope state achieved by the robot and the state demonstrated by the human at every step in
the demonstration. The matching cost is measured using the thin plate spline robust point matching
technique (TPS-RPM) described in (Chui & Rangarajan, [2003). While TPS-RPM provides a good
metric for measuring performance for constructing the ‘S’ shape, it is not an appropriate metric for
knots because the configuration of the rope in a knot is 3D due to intertwining of the rope, and it
fails to find the correct point correspondences. We, therefore, use success rate as the metric in knot
tying where the completion of a successful knot is judged by human verification.

Visual Imitation Qualitative examples of our agent trying to manipulate rope are shown in Figure[2]
We compare our approach to the baseline that deploys an inverse model which takes as input a pair
of current and goal images to output the desired action to reach the goal (Nair et al., 2017). We re-
implement the baseline and train in our setup for a fair comparison. To further ablate the importance
of consistency loss, we compare to a baseline that just uses a forward model as a regularizer of
features. The results in Figure |3[show that our method significantly outperforms the baseline at task
of manipulating the rope in the ‘S’ shape and achieves a success rate of 60% in comparison to 36%
achieved by the baseline.

3.2 NAVIGATION IN INDOOR OFFICE ENVIRONMENTS

A natural way to instruct a robot to move in an indoor office environment is to ask it to go near a
certain location, such as a refrigerator or a someone’s office. Instead of using language to command
the robot, in this work, we communicate with the robot by either showing it a single image of the
goal, or a sequence of images leading to faraway goals. In both scenarios, the robot is required
to autonomously determine the motor commands for moving to the goal. We used TurtleBot2 for
navigation using an onboard camera for sensing RGB images. For learning the GSP, an automated
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Figure 4: Visualization of the TurtleBot trajectory to reach a goal image (right) from the initial image
(top-left). Since the initial and goal image have no overlap, the robot first explores the environment
by turning in place. Once it detects overlap between its current image and goal image (i.e. step 42
onward), it moves towards the goal. Note that we did not explicitly train the robot to explore and
such exploratory behavior naturally emerged from the self-supervised learning.

Model Name \ RunId-1 RunlId-2 RunlId-3 Runld-4 RunlId-5 Runld-6 Runld-7 RunlId-8 \ Num Success
Random Search Fail Fail Fail Fail Fail Fail Fail Fail 0
Inverse Model [Nair et. al. 2017] Fail Fail Fail Fail Fail Fail Fail Fail 0
GSP-NoPrevAction-NoFwdConst | 39 steps 34 steps Fail Fail Fail Fail Fail Fail 2
GSP-NoFwdConst 22steps  22steps  39steps 48 steps Fail Fail Fail Fail 4
GSP (Ours) \ 119 steps 66 steps 144 steps 67 steps 51 steps Fail 100 steps Fail \ 6

Table 1: Quantitative evaluation of various methods on the task of navigating using a single image
of goal in an unseen environment. Each column represents a different run of our system for a
different initial/goal image pair. Our full GSP model takes longer to reach the goal on average given
a successful run but reaches the goal successfully at a much higher rate.

self-supervised scheme for data collection was devised that doesn’t require human supervision. The
robot collected a number of navigation trajectories from two floors of a academic building which
in total contain 230K interactions data, i.e. (zy,at, x141). We then deployed the learned model
on a separate floor of a building with substantially different textures and furniture layout for per-
forming visual imitation at test time. The details of the robotic setup, data collection, and network
architecture of GSP are described in supplementary material, Section [A.2]

1) Goal Finding We first tested if the GSP learned by the TurtleBot can enable it to find its way to
a goal that is within the same room from just a single image of the goal. To test the extrapolative
generalization, we keep the Turtlebot approximately 20-30 steps away from the target location in
a way that current and goal observations have no overlap as shown in Figure [} We test the robot
in an indoor office environment on a different floor that it has never encountered before. We judge
the robot to be successful if it stops close to the goal and failure if it crashed into furniture or does
not reach the goal within 200 steps. Since the initial and goal images have no overlap, classical
techniques such as structure from motion that rely on feature matching cannot be used to infer the
executed action. Therefore, in order to reach the goal, the robot must explore its surroundings. We
find that our GSP model outperforms the baseline models in reaching the target location. Our model
learns the exploratory behavior of rotating in place until it encounters an overlap between its current
and goal image. Results are shown in Table and videos are available at the websiteﬂ

2) Visual Imitation In the previous paragraph, we saw that the robot can reach a goal that’s within
the same room. However, our agent is unable to reach far away goals such as in other rooms using
just a single image. In such scenarios, an expert might communicate instructions like go to the door,
turn right, go to the closest chair etc. Instead of language instruction, in our setup we provide a
sequence of landmark images to convey the same high-level idea. These landmark images were
captured from the robot’s camera as the expert moved the robot from the start to a goal location.
However, note that it is not necessary for the expert to control the robot to capture the images
because we don’t make use of the expert’s actions, but only the images. Instead of providing the
image after every action in the demonstration, we only provided every fifth image. The rationale
behind this choice is that we want to sample the demonstration sparsely to minimize the agent’s

'"https://pathak22.github.io/zeroshot-imitation/
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Figure 5: The performance of TurtleBot at following a visual demonstration given as a sequence of
images (top row). The TurtleBot is positioned in a manner such that the first image in demonstration
has no overlap with its current observation. Even under this condition the robot is able to move close
to the first demo image (shown as Robot WayPoint-1) and then follow the provided demonstration
until the end. This also exemplifies a failure case for classical methods; there are no possible key-
point matches between WayPoint-1 and WayPoint-2, and the initial observation is even farther from
WayPoint-1.

Maze Demonstration Loop Demonstration
Model Name Run-1 Run-2 Run-3 Run-1 Run-2 Run-3
SIFT 10% 5% 15% — — —
GSP-NoPrevAction-NoFwdConst ~ 60% 70% 100% — — —
GSP-NoFwdConst 65% 90%  100% 0% 0% 0%
GSP (ours) 100% 60%  100% 0% 100%  100%

Table 2: Quantitative evaluation of TurtleBot’s performance at following visual demonstrations in
two scenarios: maze and the loop. We report the % of landmarks reached by the agent across three
runs of two different demonstrations. Results show that our method outperforms the baselines. Note
that 3 more trials of the loop demonstration were tested under significantly different lighting condi-
tions and neither model succeeded. Detailed results are available in the supplementary materials.

reliance on the expert. Such sub-sampling (as shown in Figure [3) provides an easy way to vary the
complexity of the task.

We evaluate via multiple runs of two demonstrations, namely, maze demonstration where the robot is
supposed to navigate through a maze-like path and perturbed loop demonstration, where the robot is
supposed to make a complete loop as instructed by demonstration images. The loop demonstration
is longer and more difficult than the maze. We start the agent from different starting locations
and orientations with respect to that of demonstration. Each orientation is initialized such that
no part of the demonstration’s initial frame is visible. Results are shown in Table 2] When we
sample every frame, our method and classical structure from motion can both be used to follow
the demonstration. However, at sub-sampling rate of five, SIFT-based feature matching approaches
did not work and ORBSLAM?2 (Mur-Artal & Tardds| |2017) failed to generate a map, whereas our
method was successful. Notice that providing sparse landmark images instead of dense video adds
robustness to the visual imitation task. In particular, consider the scenario in which the environment
has changed since the time the demonstration was recorded. By not requiring the agent to match
every demonstration image frame-by-frame, it becomes less sensitive to changes in the environment.

3.3 3D NAVIGATION IN VizDooM

We have evaluated our approach on real-robot scenarios thus far. To further analyze the performance
and robustness of our approach through large scale experiments, we setup the same navigation task
as described in previous subsection in a simulated VizDoom environment. Our goal is to measure:
(1) the robustness of each method with proper error bars, (2) the role of initial self-supervised data
collection for performance on visual imitation, (3) the quantitative difference in modeling forward
consistency loss in feature space in comparison to raw visual space.
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Same Map, Same Texture Same Map, Diff Texture Diff Map, Diff Texture
Model Name Median %  Efficiency % | Median %  Efficiency % | Median % Efficiency %

Random Exploration for Data Collection:

GSP-NoFwdConst 632+57 364+33 |322+£07 289+£40 |345+06 231424
GSP (ours pixels) 622+51 430+26 |324+£08 309+£29 |354+11 293+39
GSP (ours features) 689+69 539440 |324+£07 474+£76 |39.1+2.0 304£25

Curiosity-driven Exploration for Data Collection:

GSP-NoFwdConst 782+23 63.0+43 |432+£26 339+£30 |402+40 273+19
GSP-FwdRegularizer | 78.4 +=3.4 598+4.1 | 50.6 4.7 309+30 |379+x1.1 289x17
GSP (ours pixels) 782+34 652442 | 471+47 324+£30 |448+40 295419
GSP (ours features) 782+46 670+33 | 494+£48 269+£15 | 471£3.0 24117

Table 3: Quantitative evaluation of our proposed GSP and the baseline models at following visual
demonstrations in VizDoom 3D Navigation. Medians and 95% confidence intervals are reported for
demonstration completion and efficiency over 50 seeds and 5 human paths per environment type.

In VizDoom, we collect data by deploying two types of exploration methods: random exploration
and curiosity-driven exploration (Pathak et al.l 2017). The hypothesis is that if the initial data col-
lected by the robot is driven by a better strategy than just random, this should eventually help the
agent follow long demonstrations better. Our environment consists of 2 maps in total. We train on
one map with 5 different starting positions for collecting exploration data. For validation, we collect
5 human demonstrations in a map with the same layout as in training but with different textures.
For zero-shot generalization, we collect 5 human demonstrations in a novel map layout with novel
textures. Exact details for data collection and training setup are in the supplementary, Section [A.3]

Metric We report the median of maximum distance reached by the robot in following the given
sequence of demonstration images. The maximum distance reached is the distance of farthest land-
mark point that the agent reaches contiguously, i.e., without missing any intermediate landmarks.
Measuring the farthest landmark reached does not capture how efficiently it is reached. Hence, we
further measure efficiency of the agent as the ratio of number of steps taken by the agent to reach
farthest contiguous landmark with respect to the number of steps shown in human demonstrations.

Visual Imitation The task here is same as the one in real robot navigation where the agent is shown
a sparse sequence of images to imitate. The results are in Table [3] We found that the exploration
data collected via curiosity significantly improves the final imitation performance across all methods
including the baselines with respect to random exploration. Our baseline GSP model with a forward
regularizer instead of consistency loss ends up overfitting to the training layout. In contrast, our
forward-consistent GSP model outperforms other methods in generalizing to new map with novel
textures. This indicates that the forward consistency is possibly doing more than just regularizing
the policy features. Training forward consistency loss in feature space further enhances the general-
ization even when both pixel and feature space models perform similarly on training environment.

4 RELATED WORK

Our work is closely related to imitation learning, but we address a different problem statement that
gives less supervision and requires generalization across tasks during inference.

Imitation Learning The two main threads of imitation learning are behavioral cloning (Argall
et al., 2009} Pomerleaul, |{1989), which directly supervises the mapping of states to actions, and in-
verse reinforcement learning (Abbeel & Ng| |2004; Ho & Ermon, 2016; [Levine et al., 20165 Ng &
Russelll 2000; [Ziebart et al., [2008), which recovers a reward function that makes the demonstration
optimal (or nearly optimal). Inverse RL is most commonly achieved with state-actions, and is diffi-
cult to extend to fitting the reward to observations alone, though in principle state occupancy could
be sufficient. Recent work in imitation learning (Duan et al.,|2017; [Finn et al., 2017; |Gupta et al.|
2017) can generalize to novel goals, but require a wealth of demonstrations comprised of expert
state-actions for learning. Our approach does not require expert actions at all.

Visual Demonstration The common scenario in LfD is to assume full knowledge of expert states
and actions during demonstrations, but several papers have focused on relaxing this supervision to
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visual observations alone. Nair et al.| (2017)) observe a sequence of images from the expert demon-
stration for performing rope manipulations. [Sermanet et al.|(2017}2018]) imitate humans with robots
by self-supervised learning but require expert supervision at training time. Third person imitation
learning (Stadie et al.l 2017) and the concurrent work of imitation-from-observation (Liu et al.,
2018)) learn to translate expert observations into agent observations such that they can do policy
optimization to minimize the distance between the agent trajectory and the translated demonstra-
tion, but they require demonstrations for learning. Visual servoing is a standard problem in robotics
(Koichi & Toml [1993) that seeks to take actions that align the agent’s observation with a target con-
figuration of carefully-designed visual features (Wilson et al.,|{1996; Yoshimi & Allen,|1994) or raw
pixel intensities (Caron et al., 2013)). Classical methods rely on fixed features or policies, but more
recently end-to-end learning has improved results (Lampe & Riedmiller,|2013; Lee et al.,[2017)).

Forward/Inverse Dynamics and Consistency Numerous prior works, such as |[Ebert et al.| (2017);
Oh et al.|(2015); Watter et al.|(2015), have learned forward dynamics model for planning actions.
The works of |Agrawal et al.| (2016)); Jordan & Rumelhart| (1992); Pathak et al.| (2017); Wolpert;
et al| (1995) jointly learn forward and inverse dynamics model but do not optimize for consis-
tency between the forward and inverse dynamics. We empirically show that learning models by
our forward consistency loss significantly improves task performance. Enforcing consistency as a
meta-supervision has also been successful in finding visual correspondences (Zhou et al., [2016) or
unpaired image translations (Zhu et al., 2017)).

Goal Conditioning By parameterizing the value or policy function with a goal, an agent can learn
and do multiple tasks. The idea of learning goal-conditioned policies has been explored in (Agrawal
et al., 2016; |Andrychowicz et al., 2017} |Nair et al., 2017; |Schaul et al., [2015). Similarly to hind-
sight experience replay (Andrychowicz et al.l 2017) we draw goals from experience, but our policy
optimization has better sample efficiency through supervised learning and dynamics modeling in-
stead of reinforcement learning. Moreover, we work from high-dimensional visual inputs instead of
knowledge of the true states and do not make use of a task reward during training. In our setting, all
of the expert goals are followed zero-shot since they are only revealed after learning.

5 DISCUSSION

In this work, we presented a method for imitating expert demonstrations from visual observations
alone. In contrast to most work in imitation learning, we never require access to expert actions. The
key idea is to learn a GSP using data collected by self-supervised exploration. However, this limits
the quality of the learned GSP as per the exploration data. For instance, we deploy random explo-
ration on our real-world navigation robot, which means that it would almost never follow trajectories
that go between rooms. Consequently, the learned GSP is unable to navigate towards a goal image
taken in another room without requiring intermediate sub-goals. [Pathak et al.| (2017 show that the
agent learns to move along corridors and transition between rooms purely driven by curiosity in Viz-
Doom. Training GSP on such a structured data could equip the agent with more interesting search
behaviors, e.g., going across rooms to find a goal. In general, using better methods of exploration
for training the GSP could be a fruitful direction toward generalizing zeroshot imitation.

One limitation of our approach is that we require first-person view demonstrations. Extension to
third-person demonstrations (Liu et al., 2018} Stadie et al., 2017 would make the method applicable
in more general scenarios. Another limitation is that, in the current framework, it is implicitly
assumed that the statistics of visual observations when the expert demonstrates the task and the
agent follows it are similar. For e.g., when the expert performs a demonstration in one setting, say in
daylight and the agent needs to imitate say in the evening, the change in the lighting conditions might
result in worse performance. Making the GSP robust to such nuisance changes or other changes in
environment by domain adaptation would be necessary to scale the method to practical problems.
Another thing to note is that, in the current framework, we do not learn from expert demonstrations,
but simply imitate them. It would be interesting to investigate ways for an agent to learn from the
expert to bias its exploration to more useful parts of the environment.

While we used a sequence of images to provide a demonstration, our work makes no image-specific
assumptions and can be extended to using formal language for communicating goals. For instance,
after training the GSP, instead of transforming an image into features ¢ as described in section
one could possibly learn a mapping to transform language instructions into this feature space.
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A  SUPPLEMENTARY MATERIAL

We evaluated our proposed approach across number of environments and tasks. In this section, we
provide additional details about the experimental task setup and hyperparameters.

A.1 ROPE MANIPUATION

Robotic Setup Our setup of Baxter robot for rope manipulation task follows the one described
in Nair et al.| (2017). We re-use the data that is collected by a Baxter robot interacting with a
rope kept on a table in front of it in a self-supervised manner, and consists of approximately 60K
interaction pairs.

Implementation Details The base architecture for all the methods consists of a pre-trained
AlexNet, whose features are fed into a skill policy network that predicts the location of grasp, di-
rection of displacement, and the magnitude of displacement. For the forward regularizer baseline, a
forward model is trained to jointly regularize the AlexNet features along with the skill policy net-
work with loss weight of forward model set to 0.1. For our proposed forward-consistent GSP, a
forward consistency loss is then applied to the actions predicted by the skill policy network. The
forward consistency loss weight is set to 0.1. Since this is a fully observed setup, we did not use
recurrence in any of the skill policy networks. All the models are optimized using Adam (Kingma
& Bal [2015)) with a learning rate of 1e — 4. For the first 40K iterations, the AlexNet weights were
frozen, and then fine-tuned jointly with the later layers.

A.2 NAVIGATION IN INDOOR OFFICE ENVIRONMENTS

Robotic Setup We used the TurtleBot2 robot comprising of a wheeled Kobuki base and an Orbbec
Astra camera for capturing RGB images for all our experiments. The robot’s action space had four
discrete actions: move forward, turn left, turn right, and stand still (i.e., no-op). The forward action
is approximately 10cm forward translation and the turning actions are approximately 14-18 degrees
of rotation. These numbers vary due to the use of velocity control. A powerful on-board laptop was
used to process the images and infer the motor commands. Several modifications were made to the
default TurtleBot setup: the base’s batteries were replaced with longer lasting ones, and the default
NVIDIA Jetson TK1 embedded board was replaced with a more powerful GigaByte Aero laptop
and an accompanying portable charging power bank.

Self-supervised Data Collection We devised an automated self-supervised scheme for data col-
lection which does not require any human supervision. In our scheme, the robot first samples one
out of four actions and then the number of times to repeat the selected action (i.e. action repeat).
The no-op action is sampled with probability 0.05 and the other three actions are sampled with equal
probability. In case the no-op action is chosen, an action repeat of {1, 2} steps is uniformly sampled.
In case of other actions, an action repeat of 1-5 steps is randomly and uniformly chosen. The robot
autonomously repeated this process and collected 230K interactions from two floors of an academic
building. If the robot crashes into an object, it performs a reset maneuver by first moving backwards
and then turning right/left by a uniformly sampled angle between 90-270 degrees. A separate floor
of the building with substantially different furniture layout and visual textures is then used for testing
the learned model.

Implementation Details The data collected by self-supervised exploration is then used to train our
recurrent forward-consistent GSP. The base architecture of our model is an ImageNet pre-trained
ResNet-50 (He et al., [2016) network. Input are the images and output are the actions of robot. The
forward consistency model is first pre-trained and then fine-tuned together end-to-end with the GSP.
The loss weight of the forward model is 0.1, and the objective is minimized using Adam (Kingma
& Ba,|2015) with learning rate of be — 4.

A.3 3D NAVIGATION IN VIizDooOM

Self-supervised Data Collection Our environment consists of two map. One map is used for
training and validation, with different textures for validation. Second map has different textures than
training and validation and is used for generalization experiments. For both curiosity and random
exploration, we collect a total of 1.5 million frames each with action repeat of 4 collected in the
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Maze Runs - Optimal Steps: 100 Loop Runs - Optimal Steps: 85
Model Name Run-1 Run-2 Run-3 Run-1 Run-2 Run-3
SIFT 2/20 (10) 1/20 (9) 3/20 (38) — — —
GSP-NoPrevAction-NoFwdConst ~ 12/20 (109)  14/20 (184) 20/20 (263) — — —
GSP-NoFwdConst 13/20 (147) 18/20 (325) 20/20 (166) 0/17 (0) 0/17 (0) 0/17 (0)
GSP (ours) 20/20 (353)  12/20 (194) 20/20 (168) 0/17 (0) 17/17 (243)  17/17 (165)

Table 4: Quantitative evaluation of TurtleBot’s performance at following visual demonstrations in
two conditions: maze and the loop. The fraction denotes how many landmarks it reaches out of the
total number of landmarks in the full demonstration. The bracketed number represents the number
of actions the agent took to reach its farthest landmark.

Same Map, Same Texture Same Map, Diff Texture Diff Map, Diff Texture
Model Name Mean %  Efficiency % | Mean %  Efficiency % | Mean %  Efficiency %

Random Exploration for Data Collection:

GSP-NoFwdConst 61.8 09 604 £2.1 37.6 £0.7 686+£25 | 4224+08 506+1.9
GSP (ours pixels) 61.0+1.0 680+22 |381+£07 691+£25 |403+09 642+23
GSP (ours features) 620+1.0 758+25 |37.0+£07 87.1+£28 | 487409 525+1.8

Curiosity-driven Exploration for Data Collection:

GSP-NoFwdConst 70709 669+14 | 498+08 558+22 |512+1.0 395+13
GSP-FwdRegularizer | 70.6 £09 679+16 | 519+08 493+16 | 483+10 493+18
GSP (ours pixels) 71.0£09 73.1+£27 |533+£09 534+£20 |522+£1.0 440%15
GSP (ours features) 68.8+1.0 720+1.7 |532+£08 53.0+£23 |528+09 37713

Table 5: Quantitative evaluation of our proposed GSP and the baseline models at following visual
demonstrations in VizDoom 3D Navigation. Means and standard errors are reported for demonstra-
tion completion and efficiency over 50 seeds and 5 human paths per environment type.

standard DoomMyWayHome map used for training in [Pathak et al.| (2017). ~ % of the data comes
from random-room resets, and ~ % of the data comes from a fixed-room reset (i.e, room number
10). The curiosity policy was half sampled and half greedy with the exact split being 40% greedy
policy random-room reset, 25% sample policy random-room reset, 25% sample policy fixed-room
reset, and 10% greedy policy fixed-room reset.

For each scenario, we collect 5 human demonstrations each and give every 10th frame as input to
the agent for the task of visual imitation. For each human path, we evaluate on 50 different seeds
where the agent starts with a uniformly sampled orientation. We then get the median across 250
(50x5) total runs for each type of environment and report median of the percentage of the human
path reached by the agent and how soon it got to that point relative to the human.

In the main paper, we report median accuracy and the confidence interval for median El Since the
initial position of the agent is randomized in orientation compared to the one in visual demonstration,
the mean results suffer from high variance due to outliers. Hence, median accuracy results in a more
reliable metric. However, we report mean results in Table [5|for the completion.

Implementation Details All models were trained with batch size 64, Adam Solver with 1e-4 learn-
ing rate, and landmark slices uniformly sampled between 5 to 15 action steps for each batch. The
observations are 42x42 resolution, grayscale images with only one-time channel both for goal and
current state. All models used the same goal recognizer that was trained on the curiosity data. For
selecting the hyper-parameters in forward regularizer, pixel-based forward consistency, and feature-
based forward consistency models, we selected the best loss coefficient among {0.01,0.05,0.1}
that achieved the highest median completion on our validation environment which consisted of the
training maps with novel textures.

2Formula for computing median confidence intervals: http://www.ucl.ac.uk/ich/
short-courses—-events/about-stats—courses/stats—-rm/Chapter_8_Content/
confidence_interval_single_median
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