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ABSTRACT

We introduce a simple permutation equivariant layer for deep learning with set
structure. This type of layer, obtained by parameter-sharing, has a simple im-
plementation and linear-time complexity in the size of each set. We use deep
permutation-invariant networks to perform point-could classification and MNIST-
digit summation, where in both cases the output is invariant to permutations of
the input. In a semi-supervised setting, where the goal is make predictions for
each instance within a set, we demonstrate the usefulness of this type of layer
in set-outlier detection as well as semi-supervised learning with clustering side-
information.

1 INTRODUCTION

Recent progress in deep learning (LeCun et al., 2015) has witnessed its application to structured
settings, including graphs (Bruna et al., 2013; Duvenaud et al., 2015) groups (Gens & Domingos,
2014; Christopher, 2014; Cohen & Welling, 2016), sequences and hierarchies (Irsoy & Cardie, 2014;
Socher et al., 2013). Here, we introduce a simple permutation-equivariant layer for deep learning
with set structure, where the primary dataset is a collection of sets, possibly of different sizes. Note
that each instance may have a structure of its own, such as graph, image, or another set. In typ-
ical machine-learning applications, iid assumption implies that the entire data-set itself has a set
structure. Therefore, our special treatment of the set structure is only necessary due to multiplic-
ity of distinct yet homogeneous (data)sets. Here, we show that a simple parameter-sharing scheme
enables a general treatment of sets within supervised and semi-supervised settings.

In the following, after introducing the set layer in Section 2, we explore several novel applications.
Section 3 studies supervised learning with sets that requires “invariance” to permutation of inputs.
Section 3.1 considers the task of summing multiple MNIST digits, and Section 3.2 studies an im-
portant application of sets in representing low-dimensional point-clouds. Here, we show that deep
networks can successfully classify objects using their point-cloud representation.

Section 4 presents numerical study in semi-supervised setting where the output of the multi-layer
network is “equivariant” to the permutation of inputs. We use permutation-equivariant layer to per-
form outlier detection on CelebA face dataset in Section 4.1 and improve galaxy red-shift estimates
using its clustering information in Section 5.

2 PERMUTATION-EQUIVARIANT LAYER

Let xn ∈ X denote use x = [x1, . . . , xN ] to denote a vector of xn instances. Here, xn, could be a
feature-vector, an image or any other structured object. Our goal is to design neural network layers
that are “indifferent” to permutations of instances in x. Achieving this goal amounts to treating x as
a “set” rather than a vector.

The function f : XN → YN is equivariant to the permutation of its inputs iff

f(πx) = πf(x) ∀π ∈ SN
where the symmetric group SN is the set of all permutation of indices 1, . . . , N . Similarly, the func-
tion f : <N → < is invariant to permutation of its inputs –i.e., a.k.a. a symmetric function (David
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Figure 1: Classification accuracy of different schemes in predicting the sum of a (left) N=3 and (right) N=6
MNIST digits without access to individual image labels. The training set was fixed to 10,000 sets.

et al., 1966)– iff f(πx) = f(x) ∀π ∈ SN . Here, the action of π on a vector x ∈ <N can be
represented by a permutation matrix. With some abuse of notation, we use π ∈ {0, 1}N×N to also
denote this matrix.

Given two permutation equivariance function f : XN → YN and g : YN → ZN , their composition
is also permutation-equivariance; this is because g(f(πx)) = g(πf(x)) = πg(f(x)).

Consider the standard neural network layer

fΘ(x)
.
= σ(Θx) Θ ∈ <N×N (1)

where Θ is the weight vector and σ : < → < is a nonlinearity such as sigmoid function. σ : <N →
<N is the point-wise application of σ to its input vector. The following theorem states the necessary
and sufficient conditions for permutation-equivariance in this type of function.
Theorem 2.1. The function fΘ : <N → <N as defined in Eq. (1) is permutation equivariant iff all
the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well,

Θ = λI + γ (11T) λ, γ ∈ < 1 = [1, . . . , 1]T ∈ <N (2)

where I is the identity matrix.1

This function is simply a non-linearity applied to a weighted combination of I) its input Ix and; II)
the sum of input values (11T)x. Since summation does not depend on the permutation, the layer is
permutation-equivariant. Therefore we can manipulate the operations and parameters in this layer,
for example to get another variation

f(x)
.
= σ(λIx− γ(max

n
x)1) (3)

where the max operation over elements of the set is (similar to summation) commutative and using
−γ instead of +γ amounts to a reparametrization. In practice using this variation performs better
in some applications. This may be due to the fact that for λ = γ, the input to the non-linearity is
max-normalized.

For multiple input-output channels, we may speed up the operation of the layer using matrix
multiplication. Suppose we haveK input channels –corresponding toK features for each instance in
the set– with a set of sizeN , andK ′ output channels. Here, x ∈ <N×K and fΘ : <N×K → <N×K′

.
The permutation-equivariant layer parameters are Λ,Γ ∈ <K,K′

(replacing λ and γ in Eq. (2)). The
output of this layer becomes

y = σ
(
xΛ + 11TxΓ

)
Similarly, the multiple input-output channel variation of the Eq. (3) is

y = σ
(
xΛ − 1xmaxΓ

)
(4)

where xmax = (maxn x) ∈ <1×K is a row-vector of maximum value of x ∈ <N×K over the
“set” dimension. In practice, we may further reduce the number of parameters in favor of better
generalization by factoring Γ and Λ and keeping a single λ ∈ <K,K′

y = σ
(
β +

(
x − 1(max

n
x)
)
Γ
)

(5)

1See the Appendix A for the proof.
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Figure 2: Examples for 8 out of 40 object classes (column) in the ModelNet40. Each point-cloud is produces
by sampling 1000 particles from the mesh representation of the original MeodelNet40 instances. Two point-
clouds in the same column are from the same class. The projection of particles into xy, zy and xz planes are
added for better visualization.

where β ∈ <K′
is a bias parameter. This final variation of permutation-equivariant layer is simply a

fully connected layer where input features are max-normalized within each set.

With multiple input-output channels, the complexity of this layer for each set is O(N K K ′). Sub-
tracting the mean or max over the set also reduces the internal covariate shift (Ioffe & Szegedy,
2015) and we observe that for deep networks (even using tanh activation), batch-normalization is
not required.

When applying dropout (Srivastava et al., 2014) to regularize permutation-equivariant layers with
multiple output channels, it is often beneficial to simultaneously dropout the channels for all in-
stances within a set. In particular, when set-members share similar features, independent dropout
effectively does not regularize the model as the the network learns to replace the missing features
from other set-members.

In the remainder of this paper, we demonstrate how this simple treatment of sets can solve novel and
non-trivial problems that occasionally have no alternative working solutions within deep learning.

3 SUPERVISED LEARNING

The permutation-equivariant layers that we introduced so far are useful for semi-supervised learning
(or transductive) setting, where we intend to predict a value per each instance in every set. In super-
vised (or inductive) setting the task is to make a prediction for each set (rather than instances within
them), and we require permutation “invariance” of f : XN → Y . A pooling operation over the
set-dimension can turn any permutation equivariant function f : XN → YN , permutation invariant
f(x)

.
=
⊕

n f(x). Here ⊕ is any commutative operation such as summation or maximization.

In a related work Chen et al. (2014) construct deep permutation invariant features by pairwise cou-
pling of features at the previous layer, where fi,j([xi, xj ])

.
= [|xi − xj |, xi + xj ] is invariant to

transposition of i and j.2 In another related work Vinyals et al. (2015) approach unordered instances
by finding “good” orderings.

As we see shortly in Section 3.1, in the supervised setting, even simple application of set-pooling,
without max-normalization of Eq. (5) performs very well in practice, where we need permutation
invariance. However, in semi-supervised setting since there is no pooling operation, the permutation
invariant layer requires max-normalization in order to obtain the required information about the
context of each instance – i.e., permutation equivariance.

3.1 PREDICTING THE SUM OF MNIST DIGITS

MNIST dataset (LeCun et al., 1998) contains 70,000 instances of 28×28 grey-scale stamps of digits
in {0, . . . , 9}. We randomly sample a subset of N images from this dataset to build 10,000 “sets”
of training and 10,000 sets of validation images, where the set-label is the sum of digits in that set
(i.e., individual labels per image is unavailable).

2Due to change in the number of features/channels in each layer this approach cannot produce permutation-
“equivariant” layers. Also, this method requires a graph to guide the multi-resolution partitioning of the nodes,
which is then used to define pairing of features in each layer.
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Table 1: Classification accuracy and the (size of) representation used by different methods on the ModelNet40
dataset.

model instance size representation accuracy
set-layer + transformation (ours) 5000× 3 point-cloud 90± .3%

set-layer (ours) 1000× 3 point-cloud 87± 1%

set-pooling only (ours) 1000× 3 point-cloud 83± 1%

set-layer (ours) 100× 3 point-cloud 82± 2%

KNN graph-convolution (ours) 1000× (3 + 8) directed 8-regular graph 58± 2%

3DShapeNets (Wu et al., 2015) 303 voxels (using convolutional deep belief net) 77%

DeepPano (Shi et al., 2015) 64× 160 panoramic image (2D CNN + angle-pooling) 77.64%

VoxNet (Maturana & Scherer, 2015) 323 voxels (voxels from point-cloud + 3D CNN) 83.10%

MVCNN (Su et al., 2015) 164× 164× 12 multi-vew images (2D CNN + view-pooling) 90.1%

VRN Ensemble (Brock et al., 2016) 323 voxels (3D CNN, variational autoencoder) 95.54%

3D GAN (Wu et al., 2016) 643 voxels (3D CNN, generative adversarial training) 83.3%

In our first experiment, each set contains N = 3 images, and the set label is a number between
0 ≤ y ≤ 3 ∗ 9 = 27. We then considered four different models for predicting the sum:

I) Concatenating instances along the horizontal axis.
II) Stacking images in each set as different input channels.
III) Using set-pooling without max-normalization.
IV) Using the permutation equivariant layer of Eq. (5) with set-pooling.

All models are defined to have similar number of layers and parameters; see Appendix B.1 for
details. The output of all models is a (9N + 1)-way softmax, predicting the sum of N digits.

Figure 1(left) show the prediction accuracy over the validation-set for different models for N = 3.
We see that using the set-layer performs the best. However, interestingly, using set-pooling alone
produces similarly good results. We also observe that concatenating the digits eventually performs
well, despite its lack of invariance. This is because due to the sufficiently large size of the dataset
most permutations of length three appear in the training set.

However, as we increase the size of each set to N = 6, permutation invariance becomes crucial; see
Figure 1(right). We see that using the default dropout rate of 20%, the model simply memorizes the
input instances (indicated by discrepancy of training/validation error) and by increasing this dropout
rate, the model simply predicts values close to the mean value. However, the permutation-invariant
layer learns to predict the sum of six digits with> 80% accuracy, without having access to individual
image labels. Performance using set-pooling alone is similar.

3.2 POINT CLOUD CLASSIFICATION

A low-dimensional point-cloud is a set of low-dimensional vectors. This type of data is fre-
quently encountered in various applications from robotics and vision to cosmology. In these ap-
plications, point-cloud data is often converted to voxel or mesh representation at a preprocessing
step (e.g., Maturana & Scherer, 2015; Ravanbakhsh et al., 2016; Lin et al., 2004). Since the out-
put of many range sensors such as LiDAR – which are extensively used in applications such as
autonomous vehicles – is in the form of point-cloud, direct application of deep learning methods to
point-cloud is highly desirable. Moreover, when working with point-clouds rather than voxelized
3D objects, it is easy to apply transformations such as rotation and translation as differentiable layers
at low cost.

Here, we show that treating the point-cloud data as a set, we can use the set-equivariant layer of
Eq. (5) to classify point-cloud representation of a subset of ShapeNet objects (Chang et al., 2015),
called ModelNet40 (Wu et al., 2015). This subset consists of 3D representation of 9,843 training and
2,468 test instances belonging to 40 classes of objects; see Fig. 2. We produce point-clouds with
100, 1000 and 5000 particles each (x, y, z-coordinates) from the mesh representation of objects
using the point-cloud-library’s sampling routine (Rusu & Cousins, 2011). Each set is normalized
by the initial layer of the deep network to have zero mean (along individual axes) and unit (global)
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variance. Additionally we experiment with the K-nearest neighbor graph of each point-cloud and
report the results using graph-convolution; see Appendix B.3 for model details.

Table 1 compares our method against the competition.3 Note that we achieve our best accuracy using
5000×3 dimensional representation of each object, which is much smaller than most other methods.
All other techniques use either voxelization or multiple view of the 3D object for classification. In-
terestingly, variations of view/angle-pooling (e.g., Su et al., 2015; Shi et al., 2015) can be interpreted
as set-pooling where the class-label is invariant to permutation of different views. The results also
shows that using fully-connected layers with set-pooling alone (without max-normalization over the
set) works relatively well.

We see that reducing the number of particles to only 100, still produces comparatively good results.
Using graph-convolution is computationally more challenging and produces inferior results in this
setting. The results using 5000 particles is also invariant to small changes in scale and rotation
around the z-axis; see Appendix B.3 for details.

Figure 3: Each box is the particle-cloud maximizing the activation of a unit at the firs (top) and second
(bottom) permutation-equivariant layers of our model. Two images of the same column are two different views
of the same point-cloud.

Features. To visualize the features learned by the set layers, we used Adamax (Kingma & Ba, 2014)
to locate 1000 particle coordinates maximizing the activation of each unit.4 Activating the tanh units
beyond the second layer proved to be difficult. Figure 3 shows the particle-cloud-features learned
at the first and second layers of our deep network. We observed that the first layer learns simple
localized (often cubic) point-clouds at different (x, y, z) locations, while the second layer learns
more complex surfaces with different scales and orientations.

4 SEMI-SUPERVISED LEARNING

In semi-supervised or transductive learning, some/all instances within each training set are labelled.
Our goal is to make predictions for individual instances within a test set. Therefore, the permutation
equivariant layer leverages the interaction between the set-members to label individual member.
Note that in this case, we do not perform any pooling operation over the set dimension of the data.

4.1 SET ANOMALY DETECTION

The objective here is for the deep model to find the anomalous face in each set, simply by observing
examples and without any access to the attribute values. CelebA dataset (Liu et al., 2015) contains

3The error-bar on our results is due to variations depending on the choice of particles during test time and it
is estimated over three trials.

4We started from uniformly distributed set of particles and used a learning rate of .01 for Adamax, with first
and second order moment of .1 and .9 respectively. We optimized the input in 105 iterations. The results of
Fig. 3 are limited to instances where tanh units were successfully activated. Since the input at the first layer of
our deep network is normalized to have a zero mean and unit standard deviation, we do not need to constrain
the input while maximizing unit’s activation.
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Figure 4: Each row shows a set, constructed from CelebA dataset, such that all set members except for an
outlier, share at least two attributes (on the right). The outlier is identified with a red frame. The model
is trained by observing examples of sets and their anomalous members, without access to the attributes. The
probability assigned to each member by the outlier detection network is visualized using a red bar at the bottom
of each image. The probabilities in each row sum to one. See Appendix B.2 for more examples.

202,599 face images, each annotated with 40 boolean attributes. We use 64 × 64 stamps and using
these attributes we build 18,000 sets, each containingN = 16 images (on the training set) as follows:
after randomly selecting two attributes, we draw 15 images where those attributes are present and a
single image where both attributes are absent. Using a similar procedure we build sets on the test
images. No individual person’s face appears in both train and test sets.

Our deep neural network consists of 9 2D-convolution and max-pooling layers followed by 3
permutation-equivariant layers and finally a softmax layer that assigns a probability value to each
set member (Note that one could identify arbitrary number of outliers using a sigmoid activation at
the output.) Our trained model successfully finds the anomalous face in 75% of test sets. Visu-
ally inspecting these instances suggests that the task is non-trivial even for humans; see Fig. 4. For
details of the model, training and more identification examples see Appendix B.2.

As a baseline, we repeat the same experiment by using a set-pooling layer after convolution layers,
and replacing the permutation-equivariant layers with fully connected layers, with the same number
of hidden units/output-channels, where the final layer is a 16-way softmax. The resulting network
shares the convolution filters for all instances within all sets, however the input to the softmax is not
equivariant to the permutation of input images. Permutation equivariance seems to be crucial here as
the baseline model achieves a training and test accuracy of∼ 6.3%; the same as random selection.

5 IMPROVED RED-SHIFT ESTIMATION USING CLUSTERING INFORMATION

An important regression problem in cosmology is to estimate the red-shift of galaxies, corresponding
to their age as well as their distance from us (Binney & Merrifield, 1998). Two common types of
observation for distant galaxies include a) photometric and b) spectroscopic observations, where the
latter can produce more accurate red-shift estimates.

One way to estimate the red-shift from photometric observations is using a regression model (Con-
nolly et al., 1995). We use a multi-layer Perceptron for this purpose and use the more accurate
spectroscopic red-shift estimates as the ground-truth. As another baseline, we have a photometric
redshift estimate that is provided by the catalogue and uses various observations (including cluster-
ing information) to estimate individual galaxy-red-shift. Our objective is to use clustering informa-
tion of the galaxies to improve our red-shift prediction using the multi-layer Preceptron.

Note that the prediction for each galaxy does not change by permuting the members of the galaxy
cluster. Therefore, we can treat each galaxy cluster as a “set” and use permutation-equivariant layer
to estimate the individual galaxy red-shifts.
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For each galaxy, we have 17 photometric features 5 from the redMaPPer galaxy cluster catalog (Rozo
& Rykoff, 2014), which contains photometric readings for 26,111 red galaxy clusters. In this task in
contrast to the previous ones, sets have different cardinalities; each galaxy-cluster in this catalog has
between ∼ 20− 300 galaxies – i.e., x ∈ <N(c)×17, where N(c) is the cluster-size. See Fig. 5(a) for
distribution of cluster sizes. The catalog also provides accurate spectroscopic red-shift estimates for
a subset of these galaxies as well as photometric estimates that uses clustering information. Fig. 5(b)
reports the distribution of available spectroscopic red-shift estimates per cluster.

We randomly split the data into 90% training and 10% test clusters, and use the following simple
architecture for semi-supervised learning. We use four permutation-equivariant layers with 128,
128, 128 and 1 output channels respectively, where the output of the last layer is used as red-shift
estimate. The squared loss of the prediction for available spectroscopic red-shifts is minimized.6
Fig. 5(c) shows the agreement of our estimates with spectroscopic readings on the galaxies in the
test-set with spectroscopic readings. The figure also compares the photometric estimates provided
by the catalogue (see Rozo & Rykoff, 2014), to the ground-truth. As it is customary in cosmology
literature, we report the average scatter |zspec−z|

1+zspec
, where zspec is the accurate spectroscopic mea-

surement and z is a photometric estimate. The average scatter using our model is .023 compared to
the scatter of .025 in the original photometric estimates for the redMaPPer catalog. Both of these
values are averaged over all the galaxies with spectroscopic measurements in the test-set.

We repeat this experiment, replacing the permutation-equivariant layers with fully connected layers
(with the same number of parameters) and only use the individual galaxies with available spec-
troscopic estimate for training. The resulting average scatter for multi-layer Perceptron is .026,
demonstrating that using clustering information indeed improves photometric red-shift estimates.

Figure 5: application of permutation-equivariant layer to semi-supervised red-shift prediction using clustering
information: a) distribution of cluster (set) size; b) distribution of reliable red-shift estimates per cluster; c)
prediction of red-shift on test-set (versus ground-truth) using clustering information as well as RedMaPPer
photometric estimates (also using clustering information).

CONCLUSION

We introduced a simple parameter-sharing scheme to effectively achieve permutation-equivariance
in deep networks and demonstrated its effectiveness in several novel supervised and semi-supervised
tasks. Our treatment of set structure also generalizes various settings in multi-instance learning (Ray
et al., 2011; Zhou et al., 2009). In addition to our experimental settings, the permutation-invariant
layer can be used for distribution regression and classification which have become popular recently
(Szabo et al., 2016). In our experiments with point-cloud data we observed the model to be robust
to the variations in the number of particles in each cloud, suggesting the usefulness of our method in
the general setting of distribution regression – where the number of samples should not qualitatively
affect our representation of a distribution. We leave further investigation of this direction to future
work.

5We have a single measurement for each u,g,r, i and z band as well as measurement error bars, location of
the galaxy in the sky, as well as the probability of each galaxy being the cluster center. We do not include the
information regarding the richness estimates of the clusters from the catalog, for any of the methods, so that
baseline multi-layer Preceptron is blind to the clusters.

6We use mini-batches of size 128, Adam (Kingma & Ba, 2014), with learning rate of .001, β1 = .9 and
β2 = .999. All layers except for the last layer use Tanh units and simultaneous dropout with 50% dropout rate.
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Appendix

A PROOFS

Proof. of the Theorem 2.1
From definition of permutation equivariance fΘ(πx) = πfΘ(x) and definition of f in Eq. (1), the
condition becomes σ(Θπx) = πσ(Θx), which (assuming sigmoid is a bijection) is equivalent to
Θπ = πΘ. Therefore we need to show that the necessary and sufficient conditions for the matrix
Θ ∈ <N×N to commute with all permutation matrices π ∈ Sn is given by Eq. (2). We prove this in
both directions:

• To see why Θ = λI + γ (11T) commutes with any permutation matrix, first note that
commutativity is linear – that is

Θ1π = πΘ1 ∧Θ2π = πΘ2 ⇒ (aΘ1 + bΘ2)π = π(aΘ1 + bΘ2).

Since both Identity matrix I, and constant matrix 11T, commute with any permutation
matrix, so does their linear combination Θ = λI + γ (11T).

• We need to show that in a matrix Θ that commutes with “all” permutation matrices

– All diagonal elements are identical: Let πk,l for 1 ≤ k, l ≤ N, k 6= l, be a trans-
position (i.e., a permutation that only swaps two elements). The inverse permutation
matrix of πk,l is the permutation matrix of πl,k = πT

k,l. We see that commutativity of
Θ with the transposition πk,l implies that Θk,k = Θl,l:

πk,lΘ = Θπk,l ⇒ πk,lΘπl,k = Θ ⇒ (πk,lΘπl,k)l,l = Θl,l ⇒ Θk,k = Θl,l

Therefore, π and Θ commute for any permutation π, they also commute for any trans-
position πk,l and therefore Θi,i = λ ∀i.

– All off-diagonal elements are identical: We show that since Θ commutes with any
product of transpositions, any choice two off-diagonal elements should be identical.
Let (i, j) and (i′, j′) be the index of two off-diagonal elements (i.e., i 6= j and i′ 6= j′).
Moreover for now assume i 6= i′ and j 6= j′. Application of the transposition πi,i′Θ,
swaps the rows i, i′ in Θ. Similarly, Θπj,j′ switches the jth column with j′th column.
From commutativity property of Θ and π ∈ Sn we have

πj′,jπi,i′Θ = Θπj′,jπi,i′ ⇒ πj′,jπi,i′Θ(πj′,jπi,i′)
−1 = Θ ⇒

πj′,jπi,i′Θπi′,iπj,j′ = Θ ⇒ (πj′,jπi,i′Θπi′,iπj,j′)i,j = Θi,j ⇒ Θi′,j′ = Θi,j

where in the last step we used our assumptions that i 6= i′, j 6= j′, i 6= j and i′ 6=
j′. In the cases where either i = i′ or j = j′, we can use the above to show that
Θi,j = Θi′′,j′′ and Θi′,j′ = Θi′′,j′′ , for some i′′ 6= i, i′ and j′′ 6= j, j′, and conclude
Θi,j = Θi′,j′ .

B DETAILS OF MODELS

In the following, all our implementations use Tensorflow (Abadi et al., 2016).

B.1 MNIST SUMMATION

All nonlinearities are exponential linear units (ELU Clevert et al., 2015). All models have 4 con-
volution layers followed by max-pooling. The convolution layers have respectively 16-32-64-128
output channels and 5× 5 receptive fields.

Each pooling, fully-connected and set-layer is followed by a 20% dropout. For models III and IV
we use simultaneous dropout. In models I and II, the convolution layers are followed by two fully-
connected layers with 128 hidden units. In model III, after the first fully connected layer we perform
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Figure 6: Each row of the images shows a set, constructed from CelebA dataset images, such that all set mem-
bers except for an outlier, share at least two attributes. The outlier is identified with a red frame. The model
is trained by observing examples of sets and their anomalous members and without access to the attributes.
The probability assigned to each member by the outlier detection network is visualized using a red bar at the
bottom of each image. The probabilities in each row sum to one.

set-pooling followed by another dense layer with 128 hidden units. In the model IV, the convolution
layers are followed by a permutation-equivariant layer with 128 output channels, followed by set-
pooling and a fully connected layer with 128 hidden units. For optimization, we used a learning rate
of .0003 with Adam using the default β1 = .9 and β2 = .999.

B.2 FACE OUTLIER DETECTION MODEL

Our model has 9 convolution layers with 3 × 3 receptive fields. The model has convolution lay-
ers with 32, 32, 64 feature-maps followed by max-pooling followed by 2D convolution layers with
64, 64, 128 feature-maps followed by another max-pooling layer. The final set of convolution layers
have 128, 128, 256 feature-maps, followed by a max-pooling layer with pool-size of 5 that reduces
the output dimension to batch− size.N × 256, where the set-size N = 16. This is then forwarded
to three permutation-equivariant layers with 256, 128 and 1 output channels. The output of final
layer is fed to the Softmax, to identify the outlier. We use exponential linear units (Clevert et al.,
2015), drop out with 20% dropout rate at convolutional layers and 50% dropout rate at the first two
set layers. When applied to set layers, the selected feature (channel) is simultaneously dropped in
all the set members of that particular set. We use Adam (Kingma & Ba, 2014) for optimization and
use batch-normalization only in the convolutional layers. We use mini-batches of 8 sets, for a total
of 128 images per batch.
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B.3 MODELS FOR POINT-CLOUDS CLASSIFICATION

Set convolution. We use a network comprising of 3 permutation-equivariant layers with 256 chan-
nels followed by max-pooling over the set structure. The resulting vector representation of the set is
then fed to a fully connected layer with 256 units followed by a 40-way softmax unit. We use Tanh
activation at all layers and dropout on the layers after set-max-pooling (i.e., two dropout operations)
with 50% dropout rate. Applying dropout to permutation-equivariant layers for point-cloud data
deteriorated the performance. We observed that using different types of permutation-equivariant
layers (see Section 2) and as few as 64 channels for set layers changes the result by less than 5% in
classification accuracy.

For the setting with 5000 particles, we increase the number of units to 512 in all layers and randomly
rotate the input around the z-axis. We also randomly scale the point-cloud by s ∼ U(.8, 1./.8). For
this setting only, we use Adamax (Kingma & Ba, 2014) instead of Adam and reduce learning rate
from .001 to .0005.

Graph convolution. For each point-cloud instance with 1000 particles, we build a sparse K-nearest
neighbor graph and use the three point coordinates as input features. We normalized all graphs at the
preprocessing step. For direct comparison with set layer, we use the exact architecture of 3 graph-
convolution layer followed by set-pooling (global graph pooling) and dense layer with 256 units.
We use exponential linear activation function instead of Tanh as it performs better for graphs. Due
to over-fitting, we use a heavy dropout of 50% after graph-convolution and dense layers. Similar
to dropout for sets, all the randomly selected features are simultaneously dropped across the graph
nodes. the We use a mini-batch size of 64 and Adam for optimization where the learning rate is .001
(the same as that of permutation-equivariant counter-part).

Despite our efficient sparse implementation using Tensorflow, graph-convolution is significantly
slower than the set layer. This prevented a thorough search for hyper-parameters and it is quite
possible that better hyper-parameter tuning would improve the results that we report here.
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