
Under review as a conference paper at ICLR 2018

PER-WEIGHT CLASS-BASED LEARNING RATES VIA
ANALYTICAL CONTINUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of training deep fully connected neural networks. Despite
much progress in the design of activation functions, novel normalization tech-
niques, and various skip-connection techniques, such networks remain challeng-
ing to train due to vanishing or exploding gradients. Our method is based on em-
ploying a different class-dependent learning rate to each network weight. Since
the learning rates are hyperparameters and not part of the network, we perform
an analytical continuation of the network, and create a generalized network. Fol-
lowing this reparameterization, the set of per-class per-weight learning rates are
being manipulated during the training iterations. Our results show that the new
algorithm leads to improved classification accuracy for both classical and modern
activation functions.

1 INTRODUCTION

The success of deep neural networks in computer vision, voice recognition and synthesis, and NLP
is undeniable. What is common in all of these application domains is the use of weight sharing,
either spatially, in CNNs, or through time, in recurrent architectures such as RNN or LSTM. It is far
less clear whether vanilla fully connected networks demonstrate the same advantage over alternative
machine learning methods, such as the gradient boosted trees algorithm (Friedman, 2000), which
seems to be the method of choice in many machine learning competitions.

Indeed, learning deep, fully-connected, neural networks is prone to converge to poor local minima.
This can be mitigated by advanced optimization methods, by the usage of normalization, and by
carefully designing the activation functions. In this work, we propose a new alternative, which is to
manipulate the learning rate of each neuron during training in a manner that is class dependent.

The learning rate of each individual weight is based on the label of the learned sample. In other
words, the label is used not only for the loss, but also to control the weight updates during training.
What makes our work different than an ineffective brute force attempt to learn a predefined sub-
network per class, is the ability to share activations based on patterns that emerge during training.
The class-based differentiation occurs due to local modifications of the learning rates, and does not
follow a predetermined or a global program.

The influence of each sample on the individual weights is controlled by a set of hyperparameters.
The optimization of these hyperparameters is usually not clear. We introduce a method that is based
on the idea of network lifting, i.e., we construct a generalized network that contains both the original
network’s parameters and hyperparameters as its own parameters. The learned hyperparameters are
not used for inference. Therefore, the resulting network is as fast in its inference time as a regular
feed-forward network.

2 RELATED WORK

Fully Connected Networks are typically shallow, as a result of vanishing or exploding gradients.
This challenge is often tackled by normalization schemes, such as Batch Normalization (Ioffe &
Szegedy, 2015), Layer Normalization (Ba et al., 2016) and Weight Normalization (Salimans &
Kingma, 2016). These methods aim to have the output or input of each layer follow a zero-mean
and a standard deviation of 1 distribution.

1



Under review as a conference paper at ICLR 2018

Very recently, a new type of activation function named SELU Klambauer et al. (2017) was con-
structed with a specific goal of creating networks that are self-normalized (do not require added nor-
malization). This is done by using exponential linear units (Clevert et al., 2015) with pre-calculated
coefficients such that the normalization property stays intact during the network’s forward propaga-
tion.

Our method also works well with all other activation functions we have experimented with, including
the time tested tanh non-linearity, and the common ReLU activation. However, acknowledging the
experimental success of SELU, we focus on demonstrating that our method is able to improve the
results of fully connected networks with SELU activations, and this is evaluated where SELU does
best.

Somewhat related is the task of learning the network’s structure during training, e.g., (Saxena &
Verbeek, 2016; Wen et al., 2016; Liu et al., 2015; Feng & Darrell, 2015; Lebedev & Lempitsky,
2016). This differs from our work, in which the network structure remains fixed, except that during
the weight update step of the training phase, different parts of the network change at a difference
pace, depending on the class of the training sample.

3 METHOD

In order to add class dependency to our weights, we modify the weight update procedure of the
gradient descent algorithm. Specifically, we learn a set of per-class learning rates for each of the
network’s weights.

The parametric form of the modified weight update, for every single network weight w, is given by

w → w − α(µTwy)
∂L(w, x, y)

∂w
(1)

where α is a global learning rate, µw ∈ Rk is a vector of learned parameters, k being the number of
classes, y =

[
y1, y2, . . . , yk

]> ∈ Y = (0, 1)k is a one-hot encoding vector that has the value of 1
for the class of sample x ∈ X , and L(w, x, y) is the network loss for the training sample (x, y) as a
function of w.

Given µw for all weights w in the network, the update rule is well-defined, and clearly class depen-
dent. Since {µw}w are external to the network, and do not take part in its optimization, one cannot
update these weights by using a direct gradient method.

In order to derive the update step for these weights, we consider an analytical continuation of our
network, where a ”handle” zw is placed. In other words, we define an extended, sample-dependent,
network with parametrized weights zw (α, x, y), such that at zw(0, x, y) = w for all pairs (x, y) ∈
X × Y . Specifically, we define z to be (omitting for brevity w, x and y)

z (α) = w − α(µTwy)
∂L

∂w
. (2)

Note that for α � 1, L (z (α), x, y) 6 L (w, x, y), since L (z (α), x, y) represents the original
network after one step of SGD.

When the class label is not j, i.e., yj = 0, the jth weight of µw, denoted by µjw does not play any
role, since in that case z (α) is independent of it. When yj = 1, the gradient descent update role of
µjw is proportional to the square of the derivative of the loss by the specific weight w. Both these
cases stem from the chain rule:

∂L(z(α), x, y)

∂µjw
=
∂L

∂z

∂z

∂µjw
=
∂L

∂z

(
−αyj ∂L

∂w

)
(3)

A Taylor expansion w.r.t α can be performed on Eq. 3. We assume α� 1 and consider the elements
up to order O

(
α2

)
. Then, we can write it as

∂L

∂z
=
∂L

∂w

∂w

∂z
=
∂L

∂w

(
1 + α

(
µTw

)
y
∂L

∂z∂w

)
=
∂L

∂w
+O (α) . (4)

2



Under review as a conference paper at ICLR 2018

The gradient of the loss w.r.t to µjw then follows immediately:

∂L

∂µjw
= −αyj

(
∂L

∂w

)2

+O
(
α2

)
≈ −αyj

(
∂L

∂w

)2

(5)

Given the gradient of the loss w.r.t µjw, we obtain the update rule

µjw → µjw + αµαy
j

(
∂L

∂w

)2

, (6)

where in our experiments we set the learning rate of µw using cross validation.

The initialization of each of µjw is set to 1, which results in the conventional gradient descent.
However, at each optimization step, µjw can only increase, since a positive element is added to it.
Noting that unlike the network weights, µ are specific for the specific training landscape, one can
reset these after each update. However, since we learn them by a gradient descent update rule, we
opt to accumulate the updates for exactly half an epoch, after which we reset all µjw to be 1.

4 EXPERIMENTS

We evaluate our method on the UCI repository on datasets that contain more than 1000 samples.
These are exactly the datasets where SELU was shown to allow fully connected neural networks
to outperform other learning methods1. Moreover, instead of performing cross validation over the
architectures, we select the architecture pointed to by Klambauer et al. (2017), after extensive cross
validation experiments. These hyperparameters, which are listed in Tab. 1, were extracted from the
authors’ github repository2. Following that work, all experiments were also run for 100 epochs,
however, we differ in that no early stopping is employed. In some experiments, Klambauer et al.
(2017) report using a high learning rate of 0.1 for some of the models. However, in our runs these
models diverged. We, therefore, decided to use a learning rate of 0.01 for all experiments.

The choice of using the hyperparameters that provided the best SELU outcomes clearly challenges
us, since we compete against SELU specifically where it excels. Therefore, due to the diminishing
returns principle, our ability to greatly outperform is reduced. It is also likely that the results of our
algorithm would improve, given the chance to select different hyperparameters.

During our experiments we set αµ = 105 for SELU and tanh, and αµ = 104 for ReLU. If the net-
work did not converge, we reduced it to by a factor of 10. For computational reasons, we limited the
number of layers with our per-weight/per-class learning rates to be the bottom 16 layers, whereas
any additional layer is a regular fully connected one. In addition, the topmost (representation) layer
is not manipulated, since softmax is applied instead of the activation function. Therefore, for ex-
ample, 8 or 16 layers architectures employ specific learning rates to all layers, except the top one,
whereas in our experiments, 32 layer architectures would have such layers only for the bottom 16
layers. The reason that the bottom layers were selected is that the lower layers, which are further
away from the loss, would benefit more from the additional class-based information.

The loss function is generally non-convex, however around the minima, we can treat it locally as
a convex function. Given a convex function, following the regular gradients would bring us to the
minima, and adaptive learning rates are no longer needed. Moreover, the µjw parameters change in a
cyclic manner every half an epoch, which might hinder the last steps of convergence. We, therefore,
introduce a cutoff of 10, 20 or 30 epochs, after which we stop using our local learning rates, and
return to using the normal gradients. We use cross-validation in order to decide on the position of
this cutoff for each of the datasets. Except for the clear rule for selecting αµ above, this binary
choice is the only added hyperparameter parameter introduced by our method that is not set to a
single fixed value throughout the experiments.

The right way to use the UCI datasets for comparing algorithms is debated in the litera-
ture (Fernández-Delgado et al., 2014; Klambauer et al., 2017; Wainberg et al., 2016). We follow

1The SELU work had an exceptionally high number of validating experiments, beyond what we could clone
in reasonable time using our resources.

2 https://github.com/gklambauer/SelfNormalizingNetworks/tree/master/
Hyperparameters/UCI

3

https://github.com/gklambauer/SelfNormalizingNetworks/tree/master/Hyperparameters/UCI
https://github.com/gklambauer/SelfNormalizingNetworks/tree/master/Hyperparameters/UCI


Under review as a conference paper at ICLR 2018

Table 1: The hyperparameters used during our experiments for each of the UCI datasets. Shown
are the number of layers, the number of hidden neurons per layer, the architecture, and the dropout
constant. Conic layers start with the given number of hidden units in the first layer and then decrease
the number of hidden units to the size of the output layer, according to the geometric progression.
Rectangular ones have a fixed number of hidden neurons per layer.

dataset # layers #hidden Architecture α-Dropout
Abalone 8 512 Conic 0
Adult 8 512 Conic 0.05
Bank 3 512 Conic 0.05
Car 4 512 Rectangular 0
Cardiotocography 10clases 16 512 Conic 0
Cardiotocography 3clases 4 256 Rectangular 0.05
Chess krvk 32 1024 Rectangular 0
Chess krvkp 8 512 Rectangular 0.05
Connect 4 8 1024 Rectangular 0
Contrac 16 512 Rectangular 0.05
Hill Valley 32 256 Conic 0.05
Image Segmentation 3 512 Conic 0.05
Led Display 3 512 Conic 0.05
Letter 4 512 Rectangular 0.05
Magic 3 512 Conic 0
Miniboone 4 1024 Rectangular 0
Molec biol splice 8 256 Rectangular 0.05
Mushroom 16 256 Rectangular 0.05
Nursery 3 1024 Conic 0
Oocytes merluccius nucleus 4d 8 1024 Conic 0
Oocytes merluccius states 2f 8 256 Rectangular 0
Optical 8 256 Rectangular 0.05
Ozone 3 512 Conic 0.05
Page blocks 16 256 Conic 0
Pendigits 4 256 Rectangular 0.05
Plants margin 4 256 Rectangular 0.05
Plants shape 8 256 Rectangular 0
Plants texture 2 512 Rectangular 0.05
Ringnorm 4 256 Conic 0
Semeion 16 1024 Rectangular 0.05
Spambase 3 512 Rectangular 0
Statlog german credit 2 256 Rectangular 0.05
Statlog image 3 1024 Conic 0
Statlog landsat 16 1024 Rectangular 0
Statlog shuttle 3 512 Rectangular 0
Steel plates 16 1024 Rectangular 0
Thyroid 3 1024 Conic 0.05
Titanic 8 256 Conic 0
Twonorm 8 256 Conic 0
Wall following 4 256 Conic 0
Waveform 4 256 Rectangular 0.05
Waveform Noise 2 1024 Conic 0.05
Wine quality red 32 1024 Rectangular 0
Wine quality white 32 1024 Rectangular 0
Yeast 3 256 Conic 0.05

4



Under review as a conference paper at ICLR 2018

the splitting of train set and test set suggested by Fernández-Delgado et al. (2014). For validation
we leave out a random subset of 15% of the training set. The same train, validation, and test splits
are used across the various methods. This protocol follows the one of Klambauer et al. (2017). How-
ever, different validation splits are used, and our SELU results, which employ the public PyTorch
implementation release with PyTorch 0.20, do not fully match the numbers reported by Klambauer
et al. (2017).

Nothing in the proposed method is tailored toward SELU or any other activation function. Our
method is general and could work well with any other activation function. Therefore, in addition
to the SELU experiments, we also experiment with other activation functions. These experiments
employ exactly the same architectures used per dataset for SELU. The only architectural difference
between these experiments and the SELU ones is in the use of a regular Dropout instead of the
AlphaDropout prescribed by Klambauer et al. (2017).

The results are reported in Tab. 2 As can be seen, using the SELU activation together with our
purposed method benefits 21 experiments out of 45, where only 14 experiments suffer a loss in
performance. In 10 datasets the results are identical. Since, in many cases, the results are similar, we
applied McNemar’s test in order to compare the algorithms. The test is applied for correct/incorrect
classification of test samples. In 13 cases, our method outperforms the baseline SELU method with
a p-value smaller than 0.05. In 6 of the datasets the baseline method outperforms at that significance
level.

Two common activation functions are ReLU and the hyperbolic tangent (tanh). When using the
ReLU activation function, 23 datasets benefit from using our method, whereas 11 datasets have
suffered a performance reduction. In 11 datasets, the results are identical. When using tanh as
an activation function, in 15 datasets an improvement is seen and only 9 datasets suffer a loss in
performance. In 21 datasets the results are identical.

An interesting question to ask is whether the different learning rates per class lead to per-class
specialization of the neurons. In order to answer this, we mark a neuron as class-specific if its
activations across the test samples have a Wilcoxon ranksum p-value lower than 10−7 (the low
threshold is taken to mitigate the multiple hypothesis situation). In other words, for each class, we
separate the activations of each neuron to those obtained for the class and to those obtained for
all other classes, and compute the Wilcoxon ranksum p-value for the difference between the two
distributions. In Tab. 3 we report the mean over all classes of the ratio of neurons which are found
to be “class-specialized”. As can be seen, there is little difference for the baseline networks, in
comparison to the situation when applying our method.

5 CONCLUSIONS

We employ the technique of analytical continuation in order to control the learning rate hyperpa-
rameter during training. We chose to manipulate this parameter in a per-class per-neuron fashion.
Other options include per sample manipulation, per-layer, grouping based on side-information and
many combinations of these. In addition, the technique can be used in order to dynamically control
other hyperparameters, e.g., introducing per-weight regularization terms or determining class-based
trade-off parameters.

Our experimental results show that compared with the SELU technique, exactly where it was shown
to excel, our method leads to an improvement in accuracy nearly two out of three times. The situation
is similar for other classical and modern activation functions. Being able to win convincingly in a
diverse set of experiments, with variations in both datasets and activation functions, indicates that our
method is a useful tool to add to one’s toolbox. The underlying technique of analytical continuation
can also be used to create many other such tools.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

5



Under review as a conference paper at ICLR 2018

Table 2: All datasets from the UCI Repository with over 1000 samples. For each activation function,
we run the baseline network and the network with our per-class learning rate method. The bold fonts
mark the best performance per each pair for matching experiments.

dataset SELU SELU+ ReLU ReLU+ tanh tanh+
class lr class lr class lr

Abalone 65.18 65.33 64.51 65.33 64.99 64.99
Adult 81.50 81.36 81.81 81.82 81.81 81.86
Bank 89.25 89.38 88.89 89.25 89.16 88.63
Car 96.18 96.18 95.95 96.06 93.40 93.40
Cardiotocography 10clases 82.41 79.77 75.82 74.13 80.34 80.53
Cardiotocography 3clases 88.62 88.71 89.28 89.28 91.72 90.40
Chess krvk 79.51 81.69 76.58 77.02 78.49 80.27
Chess krvkp 98.00 98.00 97.93 98.19 98.00 98.50
Connect 4 84.00 85.00 84.61 84.48 85.80 85.85
Contrac 53.40 51.36 50.68 50.95 50.27 50.27
Hill Valley 51.49 51.49 50.83 50.83 55.45 50.83
Image Segmentation 75.24 75.24 74.29 74.29 73.33 73.33
Led Display 70.00 70.60 69.00 69.20 70.00 70.00
Letter 96.40 96.47 96.20 96.25 96.40 96.45
Magic 86.77 87.36 86.94 86.35 86.76 86.21
Miniboone 92.77 93.03 92.15 92.32 92.55 92.55
Molec biol splice 80.75 80.75 77.99 77.68 81.07 81.38
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00
Nursery 99.68 99.65 99.31 99.31 99.34 99.35
Oocytes merluccius nucleus 4d 75.34 75.73 78.86 76.32 81.02 80.63
Oocytes merluccius states 2f 91.39 91.98 91.98 91.78 92.56 92.56
Optical 96.86 96.91 97.12 97.17 96.91 96.96
Ozone 96.77 96.69 96.77 97.16 96.69 96.69
Page blocks 96.75 96.56 96.86 96.56 96.86 96.49
Pendigits 98.64 98.67 99.23 99.23 99.17 99.17
Plants margin 79.12 79.38 76.00 76.63 78.87 79.00
Plants shape 62.62 61.88 45.87 46.00 58.00 58.00
Plants texture 77.35 77.35 77.85 77.85 78.72 78.72
Ringnorm 96.81 96.68 96.46 96.57 91.86 91.24
Semeion 89.20 88.57 84.30 78.77 89.70 89.70
Spambase 92.57 92.57 93.26 93.26 93.09 92.87
Statlog german credit 74.00 74.60 75.00 75.80 74.00 74.60
Statlog image 95.50 95.58 95.67 95.67 95.50 95.50
Statlog landsat 89.35 87.96 88.41 88.59 87.64 87.64
Statlog shuttle 99.93 99.93 99.84 99.87 99.89 99.88
Steel plates 68.97 68.04 62.78 65.15 71.75 71.75
Thyroid 97.88 98.09 97.61 97.56 98.04 98.04
Titanic 78.45 78.45 78.45 78.45 78.45 78.45
Twonorm 96.84 96.86 96.65 96.65 97.22 97.24
Wall following 88.75 88.67 86.73 86.95 87.98 88.01
Waveform 86.10 85.80 86.20 86.24 86.00 86.72
Waveform Noise 84.50 84.72 85.20 85.40 85.00 85.12
Wine quality red 54.44 54.82 56.32 56.20 57.07 57.07
Wine quality white 53.61 54.19 54.84 55.37 53.61 53.61
Yeast 60.65 60.51 60.38 60.24 62.80 62.80

J. Feng and T. Darrell. Learning the structure of deep convolutional networks. In 2015 IEEE
International Conference on Computer Vision (ICCV), pp. 2749–2757, Dec 2015. doi: 10.1109/
ICCV.2015.315.

6



Under review as a conference paper at ICLR 2018

Table 3: Mean % of neurons with class specialization based on Wilcoxon rank- sum test (p < 10−7).

dataset SELU SELU+ ReLU ReLU+ tanh tanh+
class lr class lr class lr

Abalone 70.63 69.59 73.67 72.95 73.61 73.32
Adult 84.08 85.03 84.77 84.93 82.19 81.28
Bank 44.14 49.61 42.84 43.75 42.71 43.88
Car 22.29 22.36 34.61 34.63 27.23 27.21
Cardiotocography 10clases 43.15 43.04 56.77 55.45 47.10 47.89
Cardiotocography 3clases 58.33 58.27 61.82 61.69 58.04 58.11
Chess krvk 56.42 56.37 73.64 73.36 61.74 61.82
Chess krvkp 82.81 82.86 81.25 81.64 80.64 80.52
Connect 4 56.73 64.11 75.71 76.01 61.28 60.86
Contrac 23.95 23.60 36.92 36.57 18.28 18.14
Hill Valley 0.07 0.05 0.00 0.00 0.37 0.44
Image Segmentation 6.34 6.34 6.06 6.06 7.05 7.05
Led Display 41.50 41.60 41.09 41.09 42.10 42.07
Letter 70.87 70.69 72.36 72.36 73.04 72.99
Magic 81.12 81.38 81.12 82.55 80.99 80.73
Miniboone 95.83 96.26 95.43 96.00 96.34 96.58
Molec biol splice 66.73 66.50 68.16 68.00 62.13 62.08
Mushroom 92.80 92.75 95.29 95.04 93.90 94.21
Nursery 62.15 61.98 62.13 62.25 64.24 64.29
Oocytes merluccius nucleus 4d 9.29 9.43 18.14 15.15 13.76 13.76
Oocytes merluccius states 2f 60.14 62.66 69.56 69.61 65.56 65.54
Optical 71.55 71.62 71.28 71.16 71.26 71.31
Ozone 11.59 11.72 10.68 10.68 12.76 13.41
Page blocks 60.65 60.27 76.90 76.26 64.50 64.48
Pendigits 79.26 79.19 79.04 79.03 80.94 80.83
Plants margin 0.00 0.00 0.00 0.00 0.00 0.00
Plants shape 0.00 0.00 0.00 0.00 0.00 0.00
Plants texture 0.00 0.00 0.00 0.00 0.00 0.00
Ringnorm 64.84 65.53 74.41 75.10 64.75 64.45
Semeion 51.01 51.02 55.63 56.09 42.84 42.85
Spambase 70.05 69.66 71.35 71.35 71.81 72.01
Statlog german credit 5.47 5.47 5.27 5.27 4.49 4.49
Statlog image 64.80 64.65 64.82 64.69 67.39 67.38
Statlog landsat 76.50 76.11 80.95 81.01 74.86 75.29
Statlog shuttle 50.22 50.28 49.04 48.86 51.57 51.49
Steel plates 36.94 36.97 49.45 49.46 42.66 42.31
Thyroid 45.65 45.52 45.72 45.55 45.72 45.54
Titanic 73.49 73.24 82.18 82.13 75.44 75.63
Twonorm 88.28 88.96 91.31 91.50 91.31 91.36
Wall following 59.23 58.28 64.43 64.67 67.65 67.55
Waveform 83.04 82.68 80.11 79.75 80.92 80.96
Waveform Noise 71.66 71.83 71.12 71.12 71.66 71.64
Wine quality red 11.80 11.98 25.45 23.97 13.70 13.51
Wine quality white 14.64 15.58 35.79 33.38 19.38 20.77
Yeast 26.56 26.77 24.80 24.69 25.33 25.27

7



Under review as a conference paper at ICLR 2018

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? J. Mach. Learn. Res., 15(1):3133–
3181, January 2014. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=
2627435.2697065.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232, 2000.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems (NIPS), 2017.

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 806–814, 2015.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

Shreyas Saxena and Jakob Verbeek. Convolutional Neural Fabrics. In Advances in Neural
Information Processing Systems (NIPS), Barcelona, Spain, December 2016. URL https:
//hal.inria.fr/hal-01359150.

Michael Wainberg, Babak Alipanahi, and Brendan J. Frey. Are random forests truly the best classi-
fiers? Journal of Machine Learning Research, 17(110):1–5, 2016. URL http://jmlr.org/
papers/v17/15-374.html.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

8

http://dl.acm.org/citation.cfm?id=2627435.2697065
http://dl.acm.org/citation.cfm?id=2627435.2697065
https://hal.inria.fr/hal-01359150
https://hal.inria.fr/hal-01359150
http://jmlr.org/papers/v17/15-374.html
http://jmlr.org/papers/v17/15-374.html

	Introduction
	Related work
	Method
	Experiments
	Conclusions

