
Published as a conference paper at ICLR 2019

SPHERICAL CNNS ON UNSTRUCTURED GRIDS

Chiyu “Max” Jiang
UC Berkeley

Jingwei Huang
Stanford University

Karthik Kashinath
Lawrence Berkeley Nat’l Lab

Prabhat
Lawrence Berkeley Nat’l Lab

Philip Marcus
UC Berkeley

Matthias Nießner
Technical University of Munich

ABSTRACT

We present an efficient convolution kernel for Convolutional Neural Networks
(CNNs) on unstructured grids using parameterized differential operators while fo-
cusing on spherical signals such as panorama images or planetary signals. To
this end, we replace conventional convolution kernels with linear combinations of
differential operators that are weighted by learnable parameters. Differential oper-
ators can be efficiently estimated on unstructured grids using one-ring neighbors,
and learnable parameters can be optimized through standard back-propagation.
As a result, we obtain extremely efficient neural networks that match or outper-
form state-of-the-art network architectures in terms of performance but with a
significantly smaller number of network parameters. We evaluate our algorithm
in an extensive series of experiments on a variety of computer vision and climate
science tasks, including shape classification, climate pattern segmentation, and
omnidirectional image semantic segmentation. Overall, we (1) present a novel
CNN approach on unstructured grids using parameterized differential operators
for spherical signals, and (2) show that our unique kernel parameterization allows
our model to achieve the same or higher accuracy with significantly fewer network
parameters.

1 INTRODUCTION

A wide range of machine learning problems in computer vision and related areas require processing
signals in the spherical domain; for instance, omnidirectional RGBD images from commercially
available panorama cameras, such as Matterport (Chang et al., 2017), panaramic videos coupled
with LIDAR scans from self-driving cars (Geiger et al., 2013), or planetary signals in scientific
domains such as climate science (Racah et al., 2017). Unfortunately, naively mapping spherical
signals to planar domains results in undesirable distortions. Specifically, projection artifacts near
polar regions and handling of boundaries makes learning with 2D convolutional neural networks
(CNNs) particularly challenging and inefficient. Very recent work, such as Cohen et al. (2018) and
Esteves et al. (2018), propose network architectures that operate natively in the spherical domain,
and are invariant to rotations in the SO(3) group. Such invariances are desirable in a set of problems
– e.g., machine learning problems of molecules – where gravitational effects are negligible and
orientation is arbitrary. However, for other different classes of problems at large, assumed orientation
information is crucial to the predictive capability of the network. A good example of such problems
is the MNIST digit recognition problem, where orientation plays an important role in distinguishing
digits “6” and “9”. Other examples include omnidirectional images, where images are naturally
oriented by gravity; and planetary signals, where planets are naturally oriented by their axis of
rotation.

In this work, we present a new convolution kernel for CNNs on arbitrary manifolds and topologies,
discretized by an unstructured grid (i.e., mesh), and focus on its applications in the spherical domain
approximated by an icosahedral spherical mesh. We propose and evaluate the use of a new parame-
terization scheme for CNN convolution kernels, which we call Parameterized Differential Operators
(PDOs), which is easy to implement on unstructured grids. We call the resulting convolution op-
erator that operates on the mesh using such kernels the MeshConv operator. This parameterization
scheme utilizes only 4 parameters for each kernel, and achieves significantly better performance
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Figure 1: Illustration for the MeshConv operator using parameterized differential operators to re-
place conventional learnable convolutional kernels. Similar to classic convolution kernels that es-
tablish patterns between neighboring values, differential operators computes “differences”, and a
linear combination of differential operators establishes similar patterns.

than competing methods, with much fewer parameters. In particular, we illustrate its use in various
machine learning problems in computer vision and climate science.

In summary, our contributions are as follows:

• We present a general approach for orientable CNNs on unstructured grids using parameter-
ized differential operators.

• We show that our spherical model achieves significantly higher parameter efficiency com-
pared to state-of-the-art network architectures for 3D classification tasks and spherical im-
age semantic segmentation.

• We release and open-source the codes developed and used in this study for other potential
extended applications1.

We organize the structure of the paper as follows. We first provide an overview of related studies
in the literature in Sec. 2; we then introduce details of our methodology in Sec. 3, followed by an
empirical assessment of the effectiveness of our model in Sec. 4. Finally, we evaluate the design
choices of our kernel parameterization scheme in Sec. 5.

2 BACKGROUND

Spherical CNNs The first and foremost concern for processing spherical signals is distortions
introduced by projecting signals on curved surfaces to flat surfaces. Su & Grauman (2017) process
equirectangular images with regular convolutions with increased kernel sizes near polar regions
where greater distortions are introduced by the planar mapping. Coors et al. (2018) and Zhao et al.
(2018) use a constant kernel that samples points on the tangent plane of the spherical image to reduce
distortions. A slightly different line of literature explores rotational-equivariant implementations of
spherical CNNs. Cohen et al. (2018) proposed spherical convolutions with intermediate feature
maps in SO(3) that are rotational-equivariant. Esteves et al. (2018) used spherical harmonic basis
to achieve similar results.

Reparameterized Convolutional Kernel Related to our approach in using parameterized differ-
ential operators, several works utilize the diffusion kernel for efficient Machine Learning and CNNs.
Kondor & Lafferty (2002) was among the first to suggest the use of diffusion kernel on graphs. At-
wood & Towsley (2016) propose Diffusion-Convolutional Neural Networks (DCNN) for efficient
convolution on graph structured data. Boscaini et al. (2016) introduce a generalization of classic
CNNs to non-Euclidean domains by using a set of oriented anisotropic diffusion kernels. Cohen &
Welling (2016) utilized a linear combination of filter banks to acquire equivariant convolution filters.

1Our codes are available on Github: https://github.com/maxjiang93/ugscnn
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Ruthotto & Haber (2018) explore the reparameterization of convolutional kernels using parabolic
and hyperbolic differential basis with regular grid images.

Non-Euclidean Convolutions Related to our work on performing convolutions on manifolds rep-
resented by an unstructured grid (i.e., mesh), works in geometric deep learning address similar
problems (Bronstein et al., 2017). Other methods perform graph convolution by parameterizing the
convolution kernels in the spectral domain, thus converting the convolution step into a spectral dot
product (Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017; Yi et al., 2017). Masci
et al. (2015) perform convolutions directly on manifolds using cross-correlation based on geodesic
distances and Maron et al. (2017) use an optimal surface parameterization method (seamless toric
covers) to parameterize genus-zero shapes into 2D signals for analysis using conventional planar
CNNs.

Image Semantic Segmentation Image semantic segmentation is a classic problem in computer
vision, and there has been an impressive body of literature studying semantic segmentation of pla-
nar images (Ronneberger et al., 2015; Badrinarayanan et al., 2015; Long et al., 2015; Jégou et al.,
2017; Wang et al., 2018a). Song et al. (2017) study semantic segmentation of equirectangular omni-
directional images, but in the context of image inpainting, where only a partial view is given as input.
Armeni et al. (2017) and Chang et al. (2017) provide benchmarks for semantic segmentation of 360
panorama images. In the 3D learning literature, researchers have looked at 3D semantic segmenta-
tion on point clouds or voxels (Dai et al., 2017a; Qi et al., 2017a; Wang et al., 2018b; Tchapmi et al.,
2017; Dai et al., 2017b). Our method also targets the application domain of image segmentation by
providing a more efficient convolutional operator for spherical domains, for instance, focusing on
panoramic images (Chang et al., 2017).

3 METHOD

3.1 PARAMETERIZED DIFFERENTIAL OPERATORS

We present a novel scheme for efficiently performing convolutions on manifolds approximated by
a given underlying mesh, using what we call Parameterized Differential Operators. To this end, we
reparameterize the learnable convolution kernel as a linear combination of differential operators.
Such reparameterization provides two distinct advantages: first, we can drastically reduce the num-
ber of parameters per given convolution kernel, allowing for an efficient and lean learning space;
second, as opposed to the cross-correlation type convolution on mesh surfaces (Masci et al., 2015),
which requires large amounts of geodesic computations and interpolations, first and second order
differential operators can be efficiently estimated using only the one-ring neighborhood.

In order to illustrate the concept of PDOs, we draw comparisons to the conventional 3×3 convolution
kernel in the regular grid domain. The 3 × 3 kernel parameterized by parameters θ: G3×3θ can be
written as a linear combination of basis kernels which can be viewed as delta functions at constant
offsets:

G3×3θ (x, y) =

1∑
i=−1

1∑
j=−1

θijδ(x− i, y − j) (1)

where x and y refer to the spatial coordinates that correspond to the two spatial dimensions over
which the convolution is performed. Due to the linearity of the cross-correlation operator (∗), the
output feature map can be expressed as a linear combination of the input function cross-correlated
with different basis functions. Defining the linear operator ∆ij to be the cross-correlation with a
basis delta function, we have:

∆ijF(x, y) :=F(x, y) ∗ δ(x− i, y − j) (2)

F(x, y) ∗ G3×3θ (x, y) =

1∑
i=−1

1∑
j=−1

θij∆ijF(x, y) (3)
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Figure 2: Schematics for model architecture for classification and semantic segmentation tasks, at a
level-5 input resolution. Ln stands for spherical mesh of level-n as defined in Sec. 3.2. MeshConv
is implemented according to Eqn. 4. MeshConvT first pads unknown values at the next level with 0,
followed by a regular MeshConv. DownSamp samples the values at the nodes in the next mesh level.
A ResBlock with bottleneck layers, consisting of Conv1x1 (1-by-1 convolutions) and MeshConv
layers is detailed above. In the decoder, ResBlock is after each MeshConvT and Concat.

In our formulation of PDOs, we replace the cross-correlation linear operators ∆ij with differential
operators of varying orders. Similar to the linear operators resulting from cross-correlation with
basis functions, differential operators are linear, and approximate local features. In contrast to cross-
correlations on manifolds, differential operators on meshes can be efficiently computed using Finite
Element basis, or derived by Discrete Exterior Calculus. In the actual implementation below, we
choose the identity (I , 0th order differential, same as ∆00), derivatives in two orthogonal spatial
dimensions (∇x,∇y , 1st order differential), and the Laplacian operator (∇2, 2nd order differential):

F(x, y) ∗ Gdiffθ = θ0IF + θ1∇xF + θ2∇yF + θ3∇2F (4)

The identity (I) of the input function is trivial to obtain. The first derivative (∇x,∇y) can be obtained
by first computing the per-face gradients, and then using area-weighted average to obtain per-vertex
gradient. The dot product between the per-vertex gradient value and the corresponding x and y
vector fields are then computed to acquire ∇xF and ∇yF . For the sphere, we choose the east-
west and north-south directions to be the x and y components, since the poles naturally orient the
spherical signal. The Laplacian operator on the mesh can be discretized using the cotangent formula:

∇2F ≈ 1

2Ai

∑
j∈N (i)

(cotαij + cotβij)(Fi −Fj) (5)

whereN (i) is the nodes in the neighboring one-ring of i,Ai is the area of the dual face correspond-
ing to node i, and αij and βij are the two angles opposing edge ij. With this parameterization of the
convolution kernel, the parameters can be similarly optimized via backpropagation using standard
stochastic optimization routines.

3.2 ICOSAHEDRAL SPHERICAL MESH

The icosahedral spherical mesh (Baumgardner & Frederickson, 1985) is among the most uniform
and accurate discretizations of the sphere. A spherical mesh can be obtained by progressively sub-
dividing each face of the unit icosahedron into four equal triangles and reprojecting each node to
unit distance from the origin. Apart from the uniformity and accuracy of the icosahedral sphere, the
subdivision scheme for the triangles provides a natural coarsening and refinement scheme for the
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Model Accuracy(%) Number of Parameters

S2CNN (Cohen et al., 2018) 96.00 58k
SphereNet (Coors et al., 2018) 94.41 196k

Ours 99.23 62k

Table 1: Results on the Spherical MNIST dataset for validating the use of Parameterized Differential
Operators. Our model achieves state-of-the-art performance with comparable number of training
parameters.

grid that allows for easy implementations of pooling and unpooling routines associated with CNN
architectures. See Fig. 1 for a schematic of the level-3 icosahedral spherical mesh.

For the ease of discussion, we adopt the following naming convention for mesh resolution: starting
with the unit icosahedron as the level-0 mesh, each progressive mesh resolution is one level above
the previous. Hence, for a level-l mesh:

nf = 20 · 4l;ne = 30 · 4l;nv = ne − nf + 2 (6)

where nf , ne, nv stands for the number of faces, edges, and vertices of the spherical mesh.

3.3 MODEL ARCHITECTURE DESIGN

A detailed schematic for the neural architectures in this study is presented in Fig. 2. The schematic
includes architectures for both the classification and regression network, which share a common en-
coder architecture. The segmentation network consists of an additional decoder which features trans-
pose convolutions and skip layers, inspired by the U-Net architecture (Ronneberger et al., 2015).
Minor adjustments are made for different tasks, mainly surrounding adjusting the number of input
and output layers to process signals at varied resolutions. A detailed breakdown for model architec-
tures, as well as training details for each task in the Experiment section (Sec. 4), is provided in the
appendix (Appendix Sec. B).

4 EXPERIMENTS

4.1 SPHERICAL MNIST

To validate the use of parameterized differential operators to replace conventional convolution oper-
ators, we implemented such neural networks towards solving the classic computer vision benchmark
task: the MNIST digit recognition problem (LeCun, 1998).

Experiment Setup We follow Cohen et al. (2018) by projecting the pixelated digits onto the sur-
face of the unit sphere. We further move the digits to the equator to prevent coordinate singularity
at the poles. We benchmark our model against two other implementations of spherical CNNs: a
rotational-invariant model by Cohen et al. (2018) and an orientable model by Coors et al. (2018).
All models are trained and tested with non-rotated digits to illustrate the performance gain from
orientation information.

Results and Discussion Our model outperforms its counterparts by a significant margin, achieving
the best performance among comparable algorithms, with comparable number of parameters. We
attribute the success in our model to the gain in orientation information, which is indispensable for
many vision tasks. In contrast, S2CNN (Cohen et al., 2018) is rotational-invariant, and thus has
difficulties distinguishing digits “6” and “9”.

4.2 3D OBJECT CLASSIFICATION

We use the ModelNet40 benchmark (Wu et al., 2015), a 40-class 3D classification problem, to
illustrate the applicability of our spherical method to a wider set of problems in 3D learning. For
this study, we look into two aspects of our model: peak performance and parameter efficiency.
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Figure 3: Parameter efficiency study on Model-
Net40, benchmarked against representative 3D
learning models consuming different input data
representations: PointNet++ using point clouds
as input, VoxNet consuming binary-voxel in-
puts, S2CNN consuming the same input struc-
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Figure 4: Parameter efficiency study on 2D3DS
semantic segmentation task. Our spherical seg-
mentation model outperforms the planar and
point-based counterparts by a significant margin
across all parameter regimes.

Experiment Setup To use our spherical CNN model for the object classification task, we pre-
process the 3D geometries into spherical signals. We follow Cohen et al. (2018) for preprocessing
the 3D CAD models. First, we normalize and translate each mesh to the coordinate origin. We
then encapsulate each mesh with a bounding level-5 unit sphere and perform ray-tracing from each
point to the origin. We record the distance from the spherical surface to the mesh, as well as the
sin, cos of the incident angle. The data is further augmented with the 3 channels corresponding to
the convex hull of the input mesh, forming a total of 6 input channels. An illustration of the data pre-
processing process is presented in Fig. 5. For peak performance, we compare the best performance
achievable by our model with other 3D learning algorithms. For the parameter efficiency study, we
progressively reduce the number of feature layers in all models without changing the overall model
architecture. Then, we evaluate the models after convergence in 250 epochs. We benchmark our
results against PointNet++ (Qi et al., 2017a), VoxNet (Qi et al., 2016), and S2CNN2.

Results and Discussion Fig. 3 shows a comparison of model performance versus number of
parameters. Our model achieves the best performance across all parameter ranges. In the low-
parameter range, our model is able to achieve approximately 60% accuracy for the 40-class 3D
classification task with a mere 2000+ parameters. Table 2 shows a comparison of peak performance
between models. At peak performance, our model is on-par with comparable state-of-the-art models,
and achieves the best performance among models consuming spherical input signals.

4.3 OMNIDIRECTIONAL IMAGE SEGMENTATION

We illustrate the semantic segmentation capability of our network on the omnidirectional image seg-
mentation task. We use the Stanford 2D3DS dataset (Armeni et al., 2017) for this task. The 2D3DS
dataset consists of 1,413 equirectangular images with RGB+depth channels, as well as semantic la-
bels across 13 different classes. The panoramic images are taken in 6 different areas, and the dataset
is officially split for a 3-fold cross validation. While we are unable to find reported results on the
semantic segmentation of these omnidirectional images, we benchmark our spherical segmentation
algorithm against classic 2D image semantic segmentation networks as well as a 3D point-based
model, trained and evaluated on the same data.

2We use the author’s open-source implementations: PointNet++, VoxNet, S2CNN. We run PointNet++ with
standard input of 1000 points with xyz coordinates for the classification task.
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Model Input Accu.
(%)

3DShapeNets (Wu et al., 2015) voxels 84.7
VoxNet (Maturana & Scherer, 2015) voxels 85.9
PointNet (Qi et al., 2017a) points 89.2
PointNet++ (Qi et al., 2017b) points 91.9
DGCNN (Wang et al., 2018b) points 92.2
S2CNN (Cohen et al., 2018) spherical 85.0
SphericalCNN (Esteves et al., 2018) spherical 88.9

Ours spherical 90.5

Table 2: Results on ModelNet40 dataset. Our method
compares favorably with state-of-the-art, and achieves
best performance among networks utilizing spherical in-
put signals.

(a) Original CAD
model and spher-
ical mesh.

(b) Resulting sur-
face distance sig-
nal.

Figure 5: Illustration of spherical signal
rendering process for a given 3D CAD
model.

Experiment Setup First, we preprocess the data into a spherical signal by sampling the original
rectangular images at the latitude-longitudes of the spherical mesh vertex positions. Input RGB-
D channels are interpolated using bilinear interpolation, while semantic labels are acquired using
nearest-neighbor interpolation. We input and output spherical signals at the level-5 resolution. We
use the official 3-fold cross validation to train and evaluate our results. We benchmark our semantic
segmentation results against two classic semantic segmentation networks: the U-Net (Ronneberger
et al., 2015) and FCN8s (Long et al., 2015). We also compared our results with a modified version
of spherical S2CNN, and 3D point-based method, PointNet++ (Qi et al., 2017b) using (x, y, z,r,g,b)
inputs reconstructed from panoramic RGBD images. We provide additional details toward the im-
plementation of these models in Appendix E. We evaluate the network performance under two stan-
dard metrics: mean Intersection-over-Union (mIoU), and pixel-accuracy. Similar to Sec. 4.2, we
evaluate the models under two settings: peak performance and a parameter efficiency study by vary-
ing model parameters. We progressively decimate the number of feature layers uniformly for all
models to study the effect of model complexity on performance.

Results and Discussion Fig. 4 compares our model against state-of-the-art baselines. Our spher-
ical segmentation outperforms the planar baselines for all parameter ranges, and more significantly
so compared to the 3D PointNet++. We attribute PointNet++’s performance to the small amount of
training data. Fig. 6 shows a visualization of our semantic segmentation performance compared to
the ground truth and the planar baselines.

4.4 CLIMATE PATTERN SEGMENTATION

To further illustrate the capabilities of our model, we evaluate our model on the climate pattern
segmentation task. We follow Mudigonda et al. (2017) for preprocessing the data and acquiring
the ground-truth labels for this task. This task involves the segmentation of Atmospheric Rivers
(AR) and Tropical Cyclones (TC) in global climate model simulations. Following Mudigonda et al.
(2017), we analyze outputs from a 20-year run of the Community Atmospheric Model v5 (CAM5)
(Neale et al., 2010). We benchmark our performance against Mudigonda et al. (2017) for the climate
segmentation task to highlight our model performance. We preprocess the data to level-5 resolution.

Model Background (%) TC (%) AR (%) Mean (%)

Mudigonda et al. (2017) 97 74 65 78.67
Ours 97 94 93 94.67

Table 3: We achieves better accuracy compared to our baseline for climate pattern segmentation.

7



Published as a conference paper at ICLR 2019

FCN8s UNet Ours Ground Truth
Legend:
 beam
 board
 bookcase
 ceiling
 chair
 clutter
 column
 door
 floor
 sofa
 table
 wall
 window

←− Failure
mode

Figure 6: Visualization of semantic segmentation results on test set. Our results are generated on a
level-5 spherical mesh and mapped to the equirectangular grid for visualization. Model underper-
forms in complex environments, and fails to predict ceiling lights due to incomplete RGB inputs.

Results and Discussion Segmentation accuracy is presented in Table 3. Our model achieves better
segmentation accuracy as compared to the baseline models. The baseline model (Mudigonda et al.,
2017) trains and tests on random crops of the global data, whereas our model inputs the entire
global data and predicts at the same output resolution as the input. Processing full global data
allows the network to acquire better holistic understanding of the information, resulting in better
overall performance.

5 ABLATION STUDY

We further perform an ablation study for justifying the choice of differential operators for our con-
volution kernel (as in Eqn. 4). We use the ModelNet40 classification problem as a toy example
and use a 250k parameter model for evaluation. We choose various combinations of differential
operators, and record the final classification accuracy. Results for the ablation study is presented in
Table 4. Our choice of differential operator combinations in Eqn. 4 achieves the best performance

Convolution kernel Accuracy

I + ∂
∂y +∇2 0.8748

I + ∂
∂x +∇2 0.8809

I +∇2 0.8801
I + ∂

∂x + ∂
∂y 0.8894

I + ∂
∂x + ∂

∂y +∇2 0.8979

Table 4: Results for the ablation study. The
choice of kernel that includes all differential
operator components achieve the best accu-
racy, validating our choice of kernel in Eqn.
4.

(a) Ground Truth (b) Predictions

Figure 7: Visualization of segmentation for Atmo-
spheric River (AR). Plotted in the background is In-
tegrated Vapor Transport (IVT), whereas red masks
indicates the existance of AR.
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among other choices, and the network performance improves with increased differential operators,
thus allowing for more degrees of freedom for the kernel.

6 CONCLUSION

We have presented a novel method for performing convolution on unstructured grids using param-
eterized differential operators as convolution kernels. Our results demonstrate its applicability to
machine learning problems with spherical signals and show significant improvements in terms of
overall performance and parameter efficiency. We believe that these advances are particularly valu-
able with the increasing relevance of omnidirectional signals, for instance, as captured by real-world
3D or LIDAR panorama sensors.
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APPENDIX

A ADDITIONAL DETAILS FOR IMPLEMENTING MESHCONV OPERATOR

In this section we provide more mathematical details for the implementation of the MeshConv Op-
erator as described in Sec 3.1. In particular, we will describe in details the implementation of the
various differential operators in Eqn. 4.

Identity Operator The identity operator as suggested by its definition is just the identical replica
of the original signal, hence no additional computation is required other than using the original
signal as is.

Gradient Operator Using a triangular mesh for discretizing the surface manifold, scalar functions
on the surface can be discritized as a piecewise linear function, where values are defined on each
vertex. Denoting the spatial coodinate vector as x, the scalar function as f(x), the scalar function
values stored on vertex i as fi, and the piecewise linear “hat” functions as φi(x), we have:

f(x) =

n∑
i=1

φi(x)fi (7)

the piecewise linear basis function φi(x) takes the value of 1 on vertex i and takes the value of 0 on
all other vertices. Hence, the gradient of this piecewise linear function can be computed as:

∇f(x) = ∇
n∑
i

φi(x)fi =

n∑
i=1

∇φi(x)fi (8)

Due to the linearity of the basis functions φi, the gradient is constant within each individual triangle.
The per-face gradient value can be computed with a single linear operatorG on the per-vertex scalar
function f :

∇f (f) = Gf (v) (9)

where the resulting per-face gradient is a 3-dimensional vector. We use the superscript (f), (v) to
distinguish per-face and per-vertex quantities. We refer the reader to Botsch et al. (2010) for detailed
derivations for the gradient operator G. Denoting the area of each face as a(f) (which can be easily
computed using Heron’s formula given coordinates of three points), the resulting per-vertex gradient
vector can be computed as an average of per-face gradients, weighted by face area:

∇f (v)i =

∑
j∈N (i) a

(f)
j ∇f

(f)
j∑

j∈N (i) a
(f)
j

(10)

denote the per-vertex polar (east-west) and azimuthal (north-south) direction fields as x̂(v) and ŷ(v).
They can be easily computed using the gradient operators detailed above, with the longitudinal and
latitudinal values as the scalar function, followed by normalizing each vector to unit length. Hence
two per-vertex gradient components can be computed as a dot-product against the unit directional
fields:

∇xf
(v) = ∇f (v) · x̂(v) (11)

∇yf
(v) = ∇f (v) · ŷ(v) (12)

Laplacian Operator The mesh Laplacian operator is a standard operator in computational and
differential geometry. We consider its derivation beyond the scope of this study. We provide the
cotangent formula for computing the mesh Laplacian in Eqn. 5. We refer the reader to Chapters 6.2
and 6.3 of Crane (2015) for details of the derivation.
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Notation Meaning

MeshConv(a, b) Mesh convolution layer with a input channels and producing b output
channels

MeshConv(a, b)T Mesh transpose convolution layer with a input channels and producing
b output channels.

BN Batch Normalization.
ReLU Rectified Linear Unit activation function
DownSamp Downsampling spherical signal at the next resolution level.
ResBlock(a, b, c) As illustrated in Fig. 1, where a, b, c stands for input channels, bottle

neck channels, and output channels.
[ ]Li The layers therein is at a mesh resolution of Li.
Concat Concatenate skip layers of same resolution.

Table 5: Network architecture notation list

B NETWORK ARCHITECTURE AND TRAINING DETAILS

In this section we provide detailed network architecture and training parameters for reproducing our
results in Sec. 4. We use Fig. 2 as a reference.

B.1 SPHERICAL MNIST

Architecture Since the input signal for this experiment is on a level-4 mesh, the input pathway is
slightly altered. The network architecture is as follows:

[MeshConv(1,16) + BN + ReLU]L4 + [DownSamp + ResBlock(16, 16, 64)]L3 + [DownSamp +
ResBlock(64, 64, 256)]L2 + AvgPool + MLP(256, 10)

Total number of parameters: 61658

Training details We train our network with a batch size of 16, initial learning rate of 1 × 10−2,
step decay of 0.5 per 10 epochs, and use the Adam optimizer. We use the cross-entropy loss for
training the classification network.

B.2 3D OBJECT CLASSIFICATION

Architecture The input signal is at a level-5 resolution. The network architecture closely follows
that in the schematics in Fig. 2. We present two network architectures, one that corresponds to the
network architecture with the highest accuracy score (the full model), and another that scales well
with low parameter counts (the lean model). The full model:

[MeshConv(6, 32) + BN + ReLU]L5 + [DownSamp + ResBlock(32, 32, 128)]L4 + [DownSamp +
ResBlock(128, 128, 512)]L3 + [DownSamp + ResBlock(512, 512, 2048)]L2 + AvgPool + MLP(2048,
40)

Total number of parameters: 3737160

The lean model:

[MeshConv(6, 8) + BN + ReLU]L5 + [DownSamp + ResBlock(8, 8, 16)]L4 + [DownSamp + Res-
Block(16, 16, 64)]L3 + [DownSamp + ResBlock(64, 64, 256)]L2 + AvgPool + MLP(256, 40)

Total number of parameters: 70192

Training details We train our network with a batch size of 16, initial learning rate of 5 × 10−3,
step decay of 0.7 per 25 epochs, and use the Adam optimizer. We use the cross-entropy loss for
training the classification network.
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B.3 OMNIDIRECTIONAL IMAGE SEGMENTATION

Architecture Input signal is sampled at a level-5 resolution. The network architecture is identical
to the segmentation network in Fig. 2. Encoder parameters are as follows:

[MeshConv(4,32)]L5 + [DownSamp + ResBlock(32, 32, 64)]L4 + [DownSamp + ResBlock(64, 64,
128)]L3 + [DownSamp + ResBlock(128, 128, 256)]L2 + [DownSamp + ResBlock(256, 256, 512)]L1
+ [DownSamp + ResBlock(512, 512, 512)]L0

Decoder parameters are as follows:

[MeshConvT(512,512) + Concat + ResBlock(1024, 256, 256)]L1 + [MeshConvT(256,256) + Con-
cat + ResBlock(512, 128, 128)]L2 + [MeshConvT(128,128) + Concat + ResBlock(256, 64, 64)]L3 +
[MeshConvT(64,64) + Concat + ResBlock(128, 32, 32)]L4 + [MeshConvT(32,32) + Concat + Res-
Block(64, 32, 32)]L5 + [MeshConv(32,15)]L5

Total number of parameters: 5180239

Training details Note that the number of output channels is 15, since the 2D3DS dataset has
two additional classes (invalid and unknown) that are not evaluated for performance. We train our
network with a batch size of 16, initial learning rate of 1 × 10−2, step decay of 0.7 per 20 epochs,
and use the Adam optimizer. We use the weighted cross-entropy loss for training. We weight the
loss for each class using the following weighting scheme:

wc =
1

1.02 + log(fc)
(13)

where wc is the weight corresponding to class c, and fc is the frequency by which class c appears in
the training set. We use zero weight for the two dropped classes (invalid and unknown).

B.4 CLIMATE PATTERN SEGMENTATION

Architecture We use the same network architecture as the Omnidirectional Image Segmentation
task in Sec. B.3. Minor difference being that all feature layers are cut by 1/4.

Total number of parameters: 328339

Training details We train our network with a batch size of 256, initial learning rate of 1 × 10−2,
step decay of 0.4 per 20 epochs, and use the Adam optimizer. We train using weighted cross-entropy
loss, using the same weighting scheme as in Eqn. 13.

C DETAILED STATISTICS FOR 2D3DS SEGMENTATION

We provide detailed statistics for the 2D3DS semantic segmentation task. We evaluate our model’s
per-class performance against the benchmark models. All statistics are mean over 3-fold cross vali-
dation.

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 0.5080 0.1777 0.4038 0.5914 0.9180 0.5088 0.4603 0.0875 0.4398 0.9480 0.2623 0.6865 0.7717 0.3481
FCN8s 0.4842 0.1439 0.4413 0.3952 0.8971 0.5244 0.5759 0.0564 0.5962 0.9661 0.0322 0.6614 0.7359 0.2682
PointNet++ 0.3349 0.1928 0.2942 0.3277 0.5448 0.4145 0.2246 0.3110 0.2701 0.4596 0.3391 0.4976 0.3358 0.1413

Ours 0.5465 0.1964 0.4856 0.4964 0.9356 0.6382 0.4309 0.2798 0.6321 0.9638 0.2103 0.6996 0.7457 0.3897

Table 6: Per-class accuracy comparison with baseline models

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 0.3587 0.0853 0.2721 0.3072 0.7857 0.3531 0.2883 0.0487 0.3377 0.8911 0.0817 0.3851 0.5878 0.2392
FCN8s 0.3560 0.0572 0.3139 0.2894 0.7981 0.3623 0.2973 0.0353 0.4081 0.8884 0.0263 0.3809 0.5849 0.1859
PointNet++ 0.2312 0.0909 0.1503 0.2210 0.4775 0.2981 0.1610 0.0782 0.1866 0.4426 0.1844 0.3332 0.3061 0.0755

Ours 0.3829 0.0869 0.3268 0.3344 0.8216 0.4197 0.2562 0.1012 0.4159 0.8702 0.0763 0.4170 0.6167 0.2349

Table 7: Mean IoU comparison with baseline models
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# of parameters 2558 6862 20828 70192 254648 960056 3737160

Runtime (ms) 2.9458 2.9170 2.8251 2.9222 3.0618 3.0072 2.9476

Table 8: Runtime analysis for classification network (as in ModelNet40 experiment in Sec. 4.2)
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Figure 8: Comparison of runtime for our model and the only other model of comparable peak
accuracy: PointNet++. Our model achieves a significant speed gain (5x) over the baseline in high
accuracy regime.

D RUNTIME ANAYLSIS

To further evaluate our model’s runtime gain, we record the runtime of our model in inference mode.
We tabulate the runtime of our model (across a range of model sizes) in Table 8. We also compare our
runtime with PointNet++, whose best performing model achieves a comparable accuracy. Inference
is performed on a single NVIDIA GTX 1080 Ti GPU. We use a batch size of 8, and take the average
runtime in 64 batches. Runtime for the first batch is disregarded due to extra initialization time. We
observe that our model achieves fast and stable runtime, even with increased parameters, possibly
limited by the serial computations due to network depth. We achieve a significant speedup compared
to our baseline (PointNet++) of nearly 5x, particularly closer to the high-accuracy regime. A frame
rate of over 339 fps is sufficient for real-time applications.

E IMPLEMENTION DETAILS FOR SEGMENTATION BASELINES

We provide further details for implementing the baseline models in the semantic segmentation task.

FCN8S and U-Net The two planar models are slightly modified by changing the first convolution
to take in 4 channels (RGBD) instead of 3. No additional changes are made to the model, and the
models are trained from scratch. We use the available open source implementation3 for the two
models.

PointNet++ We use the official implementation of PointNet++4, and utilize the same code for the
examplar ScanNet task. The number of points we use is 8192, same as the number of points used for
the ScanNet task. We perform data-augmentation by rotating around the z-axis and take sub-regions
for training.

3https://github.com/zijundeng/pytorch-semantic-segmentation
4https://github.com/charlesq34/pointnet2
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S2CNN S2CNN was not initially designed and evaluated for semantic segmentation tasks. How-
ever, we provide a modified version of the S2CNN model for comparison. To produce scalar fields
as outputs, we perform average pooling of the output signal only in the gamma dimension. Also
since no transpose convolution operator is defined for S2CNN, we maintain its bandwidth of 64
throughout the network. The current implementations are not particularly memory efficient, hence
we were only able to fit in low-resolution images of tiny batch sizes of 2 per GPU. Architecture
overview:

[S2Conv(4, 64) +BN+ReLU]b64 + [SO3Conv(64, 15)]b64 + AvgPoolGamma
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