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ABSTRACT

The visual world is vast and varied, but its variations divide into structured and
unstructured factors. Structured factors, such as scale and orientation, admit clear
theories and efficient representation design. Unstructured factors, such as what it
is that makes a cat look like a cat, are too complicated to model analytically, and
so require free-form representation learning. We compose structured Gaussian
filters and free-form filters, optimized end-to-end, to factorize the representation
for efficient yet general learning. Our experiments on dynamic structure, in which
the structured filters vary with the input, equal the accuracy of dynamic inference
with more degrees of freedom while improving efficiency.

1 INTRODUCTION

Although the visual world is varied, there is nevertheless ubiquitous structure. Free-form learned
representations are structure-agnostic, making them general, but their not harnessing structure is
computationally and statistically inefficient. Structured representations like steerable filtering (Free-
man & Adelson, 1991; Jacobsen et al., 2016), scattering (Bruna & Mallat, 2013), and steerable
networks (Cohen & Welling, 2017) efficiently express certain structures, but are constrained. We
propose the semi-structured composition of Gaussian and free-form filters to blur the line between
free-form and structured representations.

The effectiveness of strongly structured representations hinges on whether they encompass the true
structure of the data. If not, the representation is limiting, and subject to error. At least, such is
the case when structure substitutes for learning. In this work we compose structured and free-form
filters and learn both end-to-end (Figure 1). The free-form parameters are not constrained by our
composition for generality. The structured parameters are low-dimensional for efficiency.

We choose Gaussian structure to represent the spatial structures of scale, aspect, and orientation
through covariance (Lindeberg, 1994). Optimizing these structured covariance parameters carries
out a form of differentiable architecture search over receptive fields. Since this structure is low-
dimensional, it is computationally efficient and could be learned from limited data.

2 COMPOSING GAUSSIAN AND FREE-FORM FILTERS

Our composition fθ ◦ gΣ combines a free-form fθ with a structured Gaussian gΣ. This semi-
structured composition factorizes the representation into spatial Gaussian receptive fields and free-
form features. Composing filters in this fashion is a novel approach to making receptive field shape
differentiable, low-dimensional, and decoupled from the number of parameters.

The structure of a Gaussian is controlled by its covariance Σ, which for a spatial 2D Gaussian is[
σ2
y ρ

ρ σ2
x

]
with elements σ2

y , σ2
x for the y, x coordinates and ρ for their correlation. The standard,

isotropic Gaussian has identity covariance [ 1 0
0 1 ]. Covariances come in families with progressively

richer structure: spherical has one parameter for scale, diagonal has two parameters for scale and
aspect, and full has three parameters for scale, aspect, and orientation/slant.

Covariance Parameterization & Optimization The covariance Σ is symmetric positive definite,
so it requires proper parameterization for optimization. The log-Cholesky parameterization (Pin-
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Figure 1: We compose free-form filters fθ and structured Gaussian filters gΣ by convolution ∗ to
define a more general family of semi-structured filters than can be learned by either alone. Our
composition makes receptive field scale, aspect, and orientation differentiable in a low-dimensional
parameterization for efficient end-to-end learning.

heiro & Bates, 1996) is a good choice for iterative optimization because it is simple and quick to
compute: Σ = U ′U for upper-triangular U with positive diagonal. We can keep the diagonal posi-
tive by storing its log, hence log-Cholesky, and exponentiating it when forming Σ.

Composing with Convolution and Covariance The computation of our composition reduces to
convolution, and so it inherits the efficiency of aggressively tuned convolution implementations.
Convolution is associative, so compositionally filtering an input I decomposes into two steps of
convolution by

I ∗ (gΣ ∗ fθ) = I ∗ gΣ ∗ fθ. (1)

This decomposition has computational advantages. The Gaussian step can be done by specialized
filtering that harnesses separability, cascade smoothing, and other Gaussian structure. Memory can
be spared by only keeping the covariance parameters and recreating the Gaussian filters as needed
(which is quick, although it is a space-time tradeoff). Each compositional filter can always be
explicitly formed by gΣ ∗ fθ for visualization (see Figure 1) or other analysis.

Both θ and Σ are differentiable for end-to-end learning.

Dynamic Gaussian Structure Semi-structured composition can learn a rich family of receptive
fields, but visual structure is richer still, because structure locally varies while our filters are fixed.
Even a single image contains variations in scale and orientation, so one-size-and-shape-fits-all struc-
ture is suboptimal. Dynamic inference replaces static, global parameters with dynamic, local pa-
rameters that are inferred from the input to adapt to these variations. Composing with structure by
convolution cannot locally adapt, since the filters are constant across the image. We can neverthe-
less extend our composition to dynamic structure by representing local covariances and instantiating
local Gaussians accordingly. Our composition makes dynamic inference efficient by decoupling
low-dimensional, Gaussian structure from high-dimensional, free-form filters.

There are two routes to dynamic Gaussian structure: local filtering and deformable sampling. Local
filtering has a different filter kernel for each position, as done by dynamic filter networks (De Bra-
bandere et al., 2016). This ensures exact filtering for dynamic Gaussians, but is too computationally
demanding for large-scale recognition networks. Deformable sampling adjusts the position of fil-
ter taps by arbitrary offsets, as done by deformable convolution (Dai et al., 2017). We exploit
deformable sampling to dynamically form sparse approximations of Gaussians.

We constrain deformable sampling to Gaussian structure by setting the sampling points through co-
variance. Figure 2 illustrates these Gaussian deformations. We relate the default deformation to
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(a)
3× 3 filter

(b)
free-form

(c)
standard Gauss.

(d)
spherical Gauss.

(e)
diagonal Gauss.

(f)
full Gauss.

Figure 2: Gaussian deformation (c-f) structures dynamic receptive fields by controlling the sampling
points (blue) through the covariance. The low-dimensionality of covariance is more efficient than
free-form deformation (b) for learning and inference. Although it is less general, it still expresses a
variety of shapes.

the standard Gaussian by placing one point at the origin and circling it with a ring of eight points
on the unit circle at equal distances and angles. We consider the same progression of spherical,
diagonal, and full covariance for dynamic structure. This low-dimensional structure differs from
the high degrees of freedom in a dynamic filter network, which sets free-form filter parameters, and
deformable convolution, which sets free-form offsets. In this way our semi-structured composition
requires only a small, constant number of covariance parameters independent of the sampling reso-
lution and the kernel size k, while deformable convolution has constant resolution and requires 2k2

offset parameters for a k × k filter.

To infer the local covariances, we follow the deformable approach (Dai et al., 2017), and learn a
convolutional regressor for each dynamic filtering step. The regressor, which is simply a convolution
layer, first infers the covariances which then determine the dynamic filtering that follows. The low-
dimensional structure of our dynamic parameters makes this regression more efficient than free-form
deformation, as it only has three outputs for each full covariance, or even just one for each spherical
covariance. Since the covariance is differentiable, the regression is learned end-to-end from the task
loss without further supervision.

3 EXPERIMENTS

We experiment on semantic segmentation of CityScapes (Cordts et al., 2016), a challenging dataset
of varied urban scenes captured by a car-mounted camera. We score results by the common
intersection-over-union metric (IU). We choose the fully convolutional DRN-A (Yu et al., 2017)
as our base architecture. We choose deformable convolution (Dai et al., 2017) as strong baseline for
local, dynamic inference without structure. We train all methods with the same optimization settings
for fair comparison.

Note that the backbone is an aggressively-tuned architecture which required significant model search
and engineering effort. Our composition is still able to deliver improvement through learning with-
out further engineering.

We compare our static composition and our Gaussian deformation with free-form deformation in
Table 1. We augment the last, output stage with our composition and optimize end-to-end. Static
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Cityscapes Validation

method dyn.? no. dyn.
params IU

DRN-A (Yu et al., 2017) - 72.4
+ Gaussian by Convolution (ours) - 73.5
+ Gaussian by Deformation (ours) X 1 76.6
+ Free-form Deformation (Dai et al., 2017) X 2k2 76.6
Cityscapes Test
DRN-A (Yu et al., 2017) - 71.2
+ Gauss. Deformation (ours) X 1 74.3
+ Free-form Deformation (Dai et al., 2017) X 2k2 73.6

Table 1: Dynamic Gaussian deformation reduces parameters, improves computational efficiency,
and rivals the accuracy of free-form deformation. Even restricting the deformation to scale by spher-
ical covariance suffices to equal the free-form accuracy.

composition by convolution improves on the backbone by 1 point while dynamic Gaussian defor-
mation gives a further +3 points.

Controlling deformable convolution by Gaussian structure improves efficiency while preserving ac-
curacy to within one point. While free-form deformations are more general in principle, in practice
there is a penalty in efficiency. Recall that the size of our structured parameterization is independent
of the free-form filter size. On the other hand the original, unstructured deformable convolution
requires 2k2 parameters for a k × k filter.

Our results show that making scale dynamic through spherical covariance suffices to achieve equal
(or near equal) accuracy. Scale is perhaps the most ubiquitous transformation in the distribution
of natural images, so scale modeling might suffice to handle many transformations. Our low-
dimensional parameterization, needing only one scale parameter at the extreme, can be efficiently
optimized on limited data.

4 CONCLUSION

Composing structured Gaussian filters and free-form filters enables efficient receptive field learning.
This kind of factorization points to a reconciliation of structure and learning, through which known
visual structure is respected and unknown visual detail is learned freely.
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