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ABSTRACT

Feature maps contain rich information about image intensity and spatial corre-
lation. However, previous online knowledge distillation methods only utilize the
class probabilities. Thus in this paper, we propose an online knowledge distilla-
tion method that transfers not only the knowledge of the class probabilities but
also that of the feature map using the adversarial training framework. We train
multiple networks simultaneously by employing discriminators to distinguish the
feature map distributions of different networks. Each network has its correspond-
ing discriminator which discriminates the feature map from its own as fake while
classifying that of the other network as real. By training a network to fool the
corresponding discriminator, it can learn the other network’s feature map distri-
bution. Discriminators and networks are trained concurrently in a minimax two-
player game. Also, we propose a novel cyclic learning scheme for training more
than two networks together. We have applied our method to various network ar-
chitectures on the classification task and discovered a significant improvement of
performance especially in the case of training a pair of a small network and a large
one.

1 INTRODUCTION

With the advent of Alexnet (Krizhevsky et al., 2012), deep convolution neural networks have
achieved remarkable success in a variety of computer vision tasks. However, high-performance of
deep neural network is often gained by increasing the depth or the width of a network. Deep and
wide networks cost a large number of computation as well as memory storage which is not suitable
for a resource-limited environment such as mobile or embedded systems. To overcome this issue,
many researches have been conducted to develop smaller but accurate neural networks. Some of the
well-known methods in this line of research are parameter quantization or binarization (Rastegari
et al., 2016), pruning (Li et al., 2016) and knowledge distillation (KD) (Hinton et al., 2015).

KD has been an active area of research as a solution to improve the performance of a light-weight
network by transferring the knowledge of a large pre-trained network (or an ensemble of small net-
works) as a teacher network. KD sets the teacher network’s class probabilities as a target which a
small student network tries to mimic. By aligning the student’s predictions to those of the teacher, the
student can improve its performance. Recently, some studies have shown that rather than using a pre-
trained teacher, simultaneously training networks to learn from each other in a peer-teaching manner
is also possible. This approach is called online distillation. Deep mutual learning (DML) (Zhang
et al., 2018) and on-the-fly native ensemble (ONE) (Lan et al., 2018) are the representative online
distillation methods that show appealing results in the image classification tasks. Conventional dis-
tillation method requires pre-training a powerful teacher network and performs an one-way transfer
to a relatively small and untrained student network. On the other hand, in online mutual distillation,
there is no specific teacher-student role. All the student networks learn simultaneously by teach-
ing each other from the start of training. It trains with the conventional cross-entropy loss from
the ground truth label along with the mimicry loss to learn from its peers. Networks trained in
such an online distillation way achieve results superior not only to the networks trained with the
cross-entropy loss alone but also to those trained in conventional offline distillation manner from a
pre-trained teacher network.
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Figure 1: The concept of online Adversarial Feature map Distillation (AFD) Each point represents
a feature map for the corresponding input denoted by different colors. The thin line arrow indicates
the evolvement of feature map data points as iteration goes on and the broader arrow indicates the
way each method compares the feature maps from different networks. (a) In direct feature map
alignment, networks are trained such that the distance between each pair of points with the same
color is minimized. (b) In AFD, the discriminators contain information on feature map distributions
and thus the networks are trained such that the distributions match. (best viewed in color)

However, aforementioned online distillation methods make use of only the logit information. While
the logit contains the probabilistic information over classes, the feature map, the output of convo-
lution layer, has more meaningful and abundant feature information on image intensity and spatial
correlation. In offline distillation which utilizes a pre-trained model as a teacher network, many
methods such as FitNet (Romero et al., 2014), attention transfer (AT) (Zagoruyko & Komodakis,
2016a) and factor transfer (FT) (Kim et al., 2018) make use of this intermediate feature repre-
sentation as a target to learn for the student network, but in online distillation, to the best of our
knowledge, no feature map-based knowledge distillation method has been proposed.

This is due to some challenges. Unlike the offline methods that have a clear target to mimic, there
is no static target to follow in an online method. At every training iteration, the feature maps of
the co-trained network change, thus in online feature map-level distillation, the problem turns into
mimicking the moving target properly. While each node of the logit is confined to represent its
assigned class probability which does not change drastically over iterations, at the feature map-level,
much more flexibility comes into play, which makes the problem more challenging. Therefore, the
direct aligning method such as using L1 or L2 distance is not suitable for online mutual feature map
distillation because it updates the network parameters to generate a feature map that tries to mimic
the current output feature map of the other network. In other words, the direct alignment method
only tries to minimize the distance between the two feature map points (one for each network),
hence it ignores the distributional difference between the two feature maps (Fig. 1(a)).

To alleviate this problem, in this paper, we propose a novel online distillation method that transfers
the knowledge of feature maps adversarially as well as a cyclic learning framework for training more
than two networks simultaneously. Unlike the direct aligning method, our adversarial distillation
method enables a network to learn the overall feature map distribution of the co-trained network (Fig.
1(b)). Since the discriminator is trained to distinguish the difference between the networks’ feature
map distributions (containing the history of feature maps for different input images) at every training
iteration, by fooling the discriminator, the network learns the co-trained network’s changing feature
map distribution. Exchanging the knowledge of feature map distribution facilitates the networks to
converge to a better feature map manifold that generalizes better and yields more accurate results.

Our method consists of two major losses: 1) logit-based loss and 2) feature map-based loss. Logit-
based loss is defined by two different loss terms which are conventional cross-entropy (CE) loss and
the mutual distillation loss using the Kullback-Leibler divergence (KLD). Our newly proposed fea-
ture map-based loss is to distill the feature map indirectly via discriminators. We use the feature map
from the last convolution layer since deeper convolution layer generates more meaningful features
with a high-level abstraction (Kim et al., 2018). The adversarial training scheme of generative ad-
versarial networks (GAN) (Goodfellow et al., 2014) is utilized to transfer the knowledge at feature
map-level.

The contributions of this paper can be summarized as follows: 1) we propose an online knowledge
distillation method that utilizes not only the logit but also the feature map from the convolution
layer. 2) Our method transfers the knowledge of feature maps not by directly aligning them using
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the distance loss but by learning their distributions using the adversarial training via discriminators.
3) We propose a novel cyclic learning scheme for training more than two networks simultaneously.

2 RELATED WORK

The idea of model compression by transferring the knowledge of a high performing model to a
smaller model was originally proposed by Buciluǎ et al. (2006). Then in recent years, this research
area got invigorated due to the work of knowledge distillation (KD) by Hinton et al. (2015). The
main contribution of KD is to use the softened logit of pre-trained teacher network that has higher
entropy as an extra supervision to train a student network. KD trains a compact student network to
learn not only by the conventional CE loss subjected to the labeled data but also by the final outputs
of the teacher network. While KD only utilizes the logit, method such as FitNet (Romero et al.,
2014), AT (Zagoruyko & Komodakis, 2016a), FT (Kim et al., 2018) and KTAN (Liu et al., 2018)
use the intermediate feature representation to transfer the knowledge of a teacher network.

Online Knowledge Distillation: Conventional offline methods require training a teacher model in
advance while online methods do not require any pre-trained model. Instead, the networks teach
each other mutually by sharing their knowledge throughout the training process. Some examples of
recent online methods are DML (Zhang et al., 2018) and ONE (Lan et al., 2018) which demonstrate
promising results. DML simply applies KD losses mutually, treating each other as teachers, and it
achieves results that is even better than the offline KD method. The drawback of DML is that it lacks
an appropriate teacher role, hence provides only limited information to each network. ONE pointed
out this defect of DML. Rather than mutually distilling between the networks, ONE generates a
gated ensemble logit of the training networks and uses it as a target to align for each network. ONE
tries to create a powerful teacher logit that can provide more generalized information. The flaw of
ONE is that it can not train different network architectures at the same time due to its architecture
of sharing the low-level layers for the gating module. The common limitation of existing online
methods is that they are dependent only on the logit and do not make any use of the feature map
information. Considering that KD loss term is only applicable to the classification task, transferring
knowledge at feature map-level can enlarge the applicability to other tasks. Therefore, our method
proposes a distillation method that utilizes not only the logit but also the feature map via adversarial
training, moreover, our method can be applied in case where the co-trained networks have different
architectures.

Generative Adversarial Network (GAN): GAN (Goodfellow et al., 2014) is a generative model
framework that is proposed with an adversarial training scheme, using a generator network G and
a discriminator network D. G learns to generate the real data distribution while D is trained to dis-
tinguish the real samples of the dataset from the fake results generated by G. The goal of G is to
trickD to make a mistake of determining the fake results as the real samples. Though it was initially
proposed for generative models, its adversarial training scheme is not limited to data generation.
Adversarial training has been adapted to various tasks such as image translation (Isola et al., 2017;
Zhu et al., 2017), captioning (Dai et al., 2017), semi-supervised learning (Miyato et al., 2016; Sprin-
genberg, 2015), reinforcement learning (Pfau & Vinyals, 2016), and many others. In this paper, we
utilize GAN’s adversarial training strategy to transfer the knowledge at feature map-level in an on-
line manner. The networks learn the other networks’ feature map distributions by trying to deceive
the discriminators while the discriminators are trained to distinguish the different distributions of
each network.

3 PROPOSED METHOD

In this section, we describe the overall process of our proposed Online Adversarial Feature map
Distillation (AFD). As can be seen in Figure 2, when training two different networks, Θ1 and Θ2,
in an online manner, we employ two discriminators, D1 and D2. We train D1 such that the feature
map of Θ2 is regarded as a real and that of Θ1 is classified as a fake and do vice versa for discrimi-
nator D2. Then, each network Θ1 and Θ2 are trained to fool its corresponding discriminator so that
it can generate a feature map that mimics the other network’s feature map. Throughout this adver-
sarial training, each network learns the feature map distribution of the other network. By exploiting
both logit-based distillation loss and feature map-based adversarial loss together, we could observe
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Figure 2: Overall schematic of online adversarial feature map distillation (AFD). At feature map-
level, each network is trained to deceive the corresponding discriminator so that it can mimic the
other network’s feature map distribution. While at logit-level, KL loss to learn the peer network’s
logit is applied as well as the conventional CE loss.

a significant improvement of performance in various pairs of network architectures especially when
training small and large networks together. Also we introduce a cyclic learning scheme for train-
ing more than two networks simultaneously. It reduces the number of required discriminators from
2×2 CK(when employing discriminators bidirectionally between every network pairs.) to K where
K is the number of networks participating. This cyclic learning framework not only requires less
computation than the bidirectional way but also achieves better results compared to other online
training schemes for multiple networks.
First, we explain the conventional mutual knowledge distillation method conducted among the net-
works at the logit-level. Then we introduce our novel online feature map distillation method using
the adversarial training scheme in addition to the cyclic learning framework for training more than
two networks at the same time.

3.1 LOGIT-BASED MUTUAL KNOWLEDGE DISTILLATION

We use two loss terms for logit-based learning, one is the conventional cross-entropy(CE) loss and
the other is mutual distillation loss between networks based on Kullback Leibler(KL) divergence.
We formulate our proposed method assuming training two networks. Training scheme for more than
two networks will be explained in Sec 3.3. Below is the overall logit-based loss for two networks:

L1
logit = Lce(y, σ(z1)) + T 2 × Lkl(σ(z2/T ), σ(z1/T )) (1)

L2
logit = Lce(y, σ(z2)) + T 2 × Lkl(σ(z1/T ), σ(z2/T )). (2)

Here, σ(·) refers to softmax function and z ∈ RC is the logit produced from a network for C-
class classification problem. The temperature term T is used to control the level of smoothness in
probabilities. As the temperature term T goes up, it creates a more softened probability distribution.
We use T = 3 for every experiment. Lce is the CE loss between the ground truth label y and the
softmax output σ(z) that is commonly used in image classification. Lkl is the KL loss between
the softened logit of each network. We multiply the KL loss term with T 2 because the gradients
produced by the soft targets are scaled by 1/T 2. While the CE loss is between the correct labels
and the outputs of the model, the KL loss is the KL distance between the outputs of two training
networks. The KL loss provides an extra information from the peer network so that the network
can improve its generalization performance. The difference with DML is that while DML updates
asynchronously which means that it updates one network first and then the other network, our AFD
updates the networks synchronously, not alternatingly. The CE loss trains the networks to predict the
correct truth label while the mutual distillation loss tries to match the outputs of the peer-networks,
enabling the networks to share the knowledge at logit-level.
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3.2 FEATURE MAP-BASED LEARNING VIA ADVERSARIAL TRAINING

Our AFD uses adversarial training to transfer knowledge at feature map-level. We formulate our ad-
versarial feature map distillation for two networks which will be extended for more networks later.
We divide a network into two parts, one is the feature extractor part that generates a feature map and
the other is the classifier part that transforms the feature map into a logit. Each network also has a cor-
responding discriminator which distinguishes different feature map distributions. The architecture
of the discriminator is simply a series of Conv-Batch Normalization-Leaky ReLU-Conv-Sigmoid.
It takes a feature map of the last layer and it reduces the spatial size and the number of channel of
the feature map as it goes through the convolution operation so that it can produce a single scalar
value. Then we apply the sigmoid function of the value to normalize it between 0 and 1.
We utilize the feature extractor part to enable feature map-level distillation. For the convenience
of mathematical notation, we name the feature extractor part as Gk and its discriminator as Dk, k
indicates the network number. As depicted in Figure 2, each network has to fool its discriminator to
mimic the peer network’s feature map and the discriminator has to discriminate from which network
the feature map is originated. Following LSGAN (Mao et al., 2017), our overall adversarial loss for
discriminator and the feature extractor can be written as below:

LD1
= [1−D1(G2(x))]2 + [D1(G1(x))]2 (3)

LG1 = [1−D1(G1(x))]2. (4)

The feature extractors G1 and G2 take input x and generate feature maps. The discriminator D1

takes a feature map and yields a scalar between 0 (fake) and 1 (real). It is trained to output 1 if the
feature map came from the co-trained network (in this case, G2) or 0 if the feature map is produced
from the network it belongs to (G1 in this case). The goal ofD1 is to minimize the discriminator loss
term LD1 by correctly distinguishing the two different feature map distributions while G1’s goal is
to minimize the loss term LG1 by fooling D1 to make mistake of determining G1’s feature map as
real and yield 1. Each training network’s object is to minimize LGk

to mimic the peer network’s
feature map distribution. This adversarial scheme works exactly the same by changing the role of
two networks.

In case where the two networks’ feature map outputs have different channel sizes, for example a
pair like (WRN-16-2, WRN-16-4) (Zagoruyko & Komodakis, 2016b), we use a transfer layer that is
composed of a convolution layer, a batch normalization and a ReLU which converts the number of
channels to that of peer network. The above loss terms change as LD1 = [1−D1(T2(G2(x)))]2 +
[D1(T1(G1(x)))]2 and LG1 = [1−D1(T1(G1(x)))]2 when using the transfer layer Tk.

Optimization: Combining both logit-based loss and the adversarial feature map-based loss, the
overall loss for each network Θ1 and Θ2 are as follows:

LΘ1
= L1

logit + LG1
, LΘ2

= L2
logit + LG2

(5)

However, the logit-based loss termLk
logit and the feature map-based loss termLGk

are not optimized
by the same optimizer. In fact, they are optimized alternatingly in a same mini-batch. At every mini-
batch iteration, we infer an image into a model and it computes a logit and a feature map. Then we
calculate the two loss terms and optimize the networks based on the two losses separately, meaning
that we update the parameters by the logit-based loss once and then update again by the feature
map-based loss. The reason we optimize separately for each loss term is because they use different
learning rates. The adversarial loss requires much slower learning rate thus if we use the same
optimizer with the same learning rate, the networks would not be optimized. Note that we do not
infer for each loss term, inference is conducted only once, only the optimization is conducted twice,
one for each loss term.

3.3 CYCLIC LEARNING FRAMEWORK

Our method proposes a novel cyclic peer-learning scheme for training more than two networks
simultaneously. As can be seen in Figure 3, each network transfers its knowledge to its next peer
network in an one-way cyclic manner. If we train K number of networks together, each network
distills its knowledge to its next network except the last network transfers its knowledge to the first
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Figure 3: Schematic of cyclic-learning framework for training 3 networks simultaneously.

network, creating a cyclic knowledge transfer flow as 1 → 2, 2 → 3, · · · , (K − 1) → K,K → 1.
The main contribution of using this cyclic learning framework is to avoid employing too many
number of discriminators. If we apply our adversarial loss for every pair of networks, it would
demand two times the amount of every possible pair of K networks which would cost a lot of
computation. Also in Sec 4.5, we empirically show that our cyclic training scheme is better than
other online methods’ training scheme for multiple networks.

4 EXPERIMENT

In this section, to show the adequacy of our method, we first present comparison experiment with
distance method and ablation study to analyze our method. Then we compare our approach with
existing online knowledge distillation methods under different settings. First of all, we demonstrate
results on using the same sub-network architectures in Sec 4.3. Then, we apply our method on sub-
networks with different architectures in Sec 4.4. In Sec 4.5, we also show the results of training
more than two networks to demonstrate that our method generalizes well even when the number of
networks increases.

In most of the experiments, we use the CIFAR-100 (Krizhevsky et al.) dataset. It consists of 50K
training images and 10K test images over 100 classes, accordingly it has 600 images per each class.
All the reported results on CIFAR-100 are average of 5 experiments. Since our method uses two loss
terms, logit-based loss and feature map-based loss, we use different learning details for each loss
term. For overall learning schedule, we follow the learning schedule of ONE(Lan et al., 2018) to
conduct fair comparison which is 300 epochs of training. In terms of logit-based loss, the learning
rate starts at 0.1 and is multiplied by 0.1 at 150, 225 epoch. We optimize the logit-based loss using
SGD with mini-batch size of 128, momentum 0.9 and weight decay of 1e-4. This learning details
for logit-based loss is equally applied to other compared online distillation methods. For feature
map-based loss, the learning rate starts at 2e-5 for both discriminators and feature extractors and is
decayed by 0.1 at 75, 150 epoch. The feature map-based loss is optimized by ADAM(Kingma &
Ba, 2014) with the same mini-batch size and weight decay of 1e-1.

In tables, ‘2 Net Avg’ and ‘Ens’ represents the average accuracy of the two sub-networks and the
ensemble accuracy respectively. The average ensemble is used for AFD, DML and KD while ONE
uses gated ensemble of sub-networks according to its methodology.

4.1 COMPARISON WITH DIRECT FEATURE MAP ALIGNMENT METHODS

Since our goal is to distill feature map information that suits for mutual online distillation, we briefly
compare our method with conventional direct alignment method in Table 1. We train two networks
together, in one setting, we use the same architecture (ResNet-32 (He et al., 2016)) and in the other,
we use different types (WRN-16-2, WRN-28-2 (Zagoruyko & Komodakis, 2016b)). For L1, each
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Table 1: Top-1 accuracy(%) comparison with direct alignment methods using CIFAR-100 dataset.

Model Type L1 L1+ KD L1+ KD (offline) AFD Vanilla
Same Arch. 2 Net Avg Ens 2 Net Avg Ens Student Teacher Ens 2 Net Avg Ens Net
ResNet-32 66.82 70.69 70.16 72.44 71.91 69.79 72.07 74.03 75.64 69.38

Different Arch. Net1 Net2 Ens Net1 Net2 Ens Student Teacher Ens Net1 Net2 Ens Net1 Net2
WRN-(16-2,28-2) 69.84 73.41 74.63 72.35 74.82 75.10 73.94 73.62 76.56 75.88 77.08 77.82 71.07 73.50

Table 2: Ablation study of AFD. Top-1 accuracy(%) on CIFAR-100 dataset.

Model Type w/o KD (Adv only) w/o Adv (KD only) Full model (AFD)
Same Arch. 2 Net Avg Ens 2 Net Avg Ens 2 Net Avg Ens
ResNet-32 70.09 74.77 73.38 75.21 74.03 75.64
WRN-16-2 71.94 75.92 74.81 76.20 75.33 76.34

Different Arch. Net1 Net2 Ens Net1 Net2 Ens Net1 Net2 Ens
WRN-(16-2,28-2) 72.05 73.80 76.82 74.99 76.64 77.28 75.88 77.08 77.82

network is trained not only to follow the ground-truth label by CE loss, but also to mimic the other
network’s feature map using the L1 distance loss. For L1+ KD, KD (Hinton et al., 2015) loss is
applied mutually along with the L1 loss between the feature maps. We also compare our results
with offline method, L1+ KD (offline) employs a pre-trained network as a teacher network and
distills its feature map knowledge to an untrained student network by L1 loss as well as the KD
loss at logit level. ResNet-32 and WRN-28-2 that shows 69.79% and 73.62% accuracy are used
as the teacher networks in the two settings respectively. The results clearly show that learning the
distributions of feature maps with adversarial loss performs better than direct alignment method
in both mutual online distillation and offline distillation. We could observe that using L1 distance
loss actually disturbs the networks to learn good features in online environment. The accuracy of
ResNet-32 has dropped more than 2% compared to its vanilla version accuracy (69.38%) and the
accuracy of WRN-16-2 is also lower than its vanilla network (71.07%). Even when combined with
KD loss(L1 + KD), direct alignment method shows poor performance compared to ours in both
online and offline manner. Though distance loss is used in many conventional offline methods, they
suffer when it comes to online environment. In case of different architecture types, our method
also outperforms the direct alignment method. It indicates that when it comes to online feature map
distillation, transferring feature map information with direct alignment method such as L1 distance
is worse than indirect distillation that uses feature map distribution via adversarial loss.

4.2 ABLATION STUDY

Table 2 shows the ablation study of our proposed method. We conduct experiments using the same
and different sub-network architectures. We run three experiments with different training settings for
each model case. The three settings are full model, without mutual knowledge distillation at logit-
level and without adversarial feature map distillation. When trained without the adversarial feature
map distillation, the accuracy decreases in all three model cases. The accuracy of both ResNet-32
and WRN-16-2 dropped by 0.65% and 0.52% respectively, and those of (WRN-16-2, WRN-28-2)
pair declined by 0.89% and 0.44% compared to the full model. Ensemble results are also lower than
those of the full models. When only the adversarial feature map distillation is applied, the accuracy
has increased by 0.71% and 0.87% compared to the vanilla versions of ResNet-32 and WRN-16-2
respectively. Especially in case of different sub-network architecture, the accuracy of WRN-16-2
has increased by almost 1%. Based on these experiments, we could confirm that adversarial feature
map distillation has some efficacy of improving the performance in online environment.

4.3 SAME ARCHITECTURE

We compare our method with DML and ONE for training two sub-networks with the same architec-
ture. The vanilla network refers to the original network trained without any distillation method. As
shown in Table 3, in both ResNet and WRN serises, DML, ONE and AFD all improves the networks’
accuracy compared to the vanilla networks. However, AFD shows the highest improvement of per-
formance in both sub-network and ensemble accuracy among the compared distillation methods.
Especially in case of ResNet-20, ResNet-32 and WRN-16-2, our method significantly improves the
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Table 3: Top-1 accuracy(%) comparison with other online distillation methods for training two same
architecture networks as a pair on the CIFAR-100 dataset. The numbers in parentheses refer to the
amount of increase in accuracy compared to the vanilla network.

Model Type DML ONE AFD Vanila2 Net Avg Ens 2 Net Avg Ens 2 Net Avg Ens
ResNet-20 70.90(+3.42%) 72.08 70.56(+3.08%) 72.26 71.72(+4.24%) 72.98 67.48
ResNet-32 73.40(+4.02%) 74.89 72.61(+3.23%) 74.07 74.03(+4.65%) 75.64 69.38
ResNet-56 75.48(+1.64%) 76.73 76.45(+2.61%) 77.16 77.25(+3.41%) 78.35 73.84
WRN-16-2 74.68(+3.61%) 75.81 73.85(+2.78%) 74.84 75.33(+4.26%) 76.34 71.07
WRN-16-4 78.17(+2.79%) 79.06 77.32(+1.94%) 77.79 78.55(+3.17%) 79.28 75.38
WRN-28-2 77.02(+3.52%) 78.64 76.67(+3.17%) 77.40 77.22(+3.72%) 78.72 73.50
WRN-28-4 79.16(+2.56%) 80.56 79.25(+2.65%) 79.73 79.46(+2.86%) 80.65 76.60

Table 4: Top-1 accuracy(%) comparison with other online distillation methods for training two dif-
ferent architectures as a pair on CIFAR-100 dataset.

Model Types KD DML AFD
Net1 Net2 Net1 Net2 Ens Net1 Net2 Ens Net1 Net2 Ens

ResNet-32 ResNet-56 72.92 76.27 76.71 73.48 76.35 76.74 74.13 76.69 77.11
ResNet-32 WRN-16-4 72.67 77.26 76.94 73.48 77.43 77.01 74.43 77.82 77.67
ResNet-56 WRN-28-4 75.48 78.91 79.23 76.03 79.32 79.38 77.95 79.21 80.01
ResNet-20 WRN-28-10 70.08 78.17 76.12 71.03 77.70 75.78 72.62 77.83 76.70
WRN-16-2 WRN-16-4 74.87 77.42 77.30 74.87 77.17 76.96 75.81 78.00 77.84
WRN-16-2 WRN-28-2 74.86 76.45 77.29 75.11 76.91 77.24 75.88 77.08 77.82
WRN-16-2 WRN-28-4 74.51 78.18 77.60 74.95 78.23 77.67 76.23 78.26 78.28

Average 73.63 77.52 77.31 74.14 77.59 77.25 75.29 77.84 77.92

accuracy by more than 4% compared to the vanilla version while other distillation methods improve
around 3% on average except the ResNet-32 of DML.

4.4 DIFFERENT ARCHITECTURE

In this section, we compare our method with DML and KD using different network architectures.
We set Net2 as the higher capacity network. For KD, we use the ensemble of the two sub-networks
as a teacher to mimic at every iteration. The difference with original KD (Hinton et al., 2015) is that
it is an online learning method, not offline. We did not include ONE because ONE can not be applied
in case where the sub-networks have different model types due to its architecture of sharing the low-
level layers. In table 4, we could observe that our method shows better performance improvement
than other methods in both Net1 and Net2 except for a couple of cases. The interesting result is
that when AFD is applied, the performance of Net1 (smaller network) is improved significantly
compared to other online distillation methods. This is because AFD can transfer the higher capacity
network’s meaningful knowledge (feature map distribution) to the lower capacity one better than
other online methods. When compared with KD and DML, AFD’s Net1 accuracy is higher by 1.66%
and 1.15% and the ensemble accuracy is better by 0.61% and 0.67% on average respectively. In case
of (WRN-16-2, WRN-28-4) pair, the Net1’s parameter size (0.70M) is more than 8 times smaller
than Net2 (5.87M). Despite the large size difference, our method improves both networks’ accuracy,
particularly our Net1 performance is better than KD and DML by 1.72% and 1.28% respectively.
The performance of KD and DML seems to decline as the difference between the two model sizes
gets larger. Throughout this experiment, we have shown that our method also works properly for
different architectures of sub-networks even when two networks have large difference in their model
sizes. Using our method, smaller network considerably benefits from the large network.

4.5 EXPANSION TO 3 NETWORKS

To show our method’s expandability for training more than two networks, we conduct experiment
of training 3 networks in this section. As proposed in Sec 3.3, our method uses a cyclic learning
framework rather than employing adversarial loss between every network pairs in order to reduce

8



Under review as a conference paper at ICLR 2020

Table 5: Top-1 accuracy(%) comparison with other online distillation methods using 3 networks on
CIFAR-100 dataset. ’3 Net Avg’ represents the average accuracy of the 3 networks.

Model Type DML ONE AFD Vanilla3 Net Avg Ens 3 Net Avg Ens 3 Net Avg Ens
ResNet-32 73.43 76.11 73.25 74.94 74.14 76.64 69.38
ResNet-56 76.11 77.83 76.49 77.38 77.37 79.18 73.84
WRN-16-2 75.15 76.93 73.87 75.26 75.65 77.54 71.07
WRN-28-2 77.12 79.41 76.66 77.53 77.20 79.78 73.50

Table 6: Top-1 accuracy(%) comparison with DML on ImageNet dataset.

Model Types DML AFD Vanilla
Net1 Net2 Net1 Net2 Ens Net1 Net2 Ens Net1 Net2

ResNet-18 ResNet-34 70.19 73.57 73.33 70.39 74.00 74.47 69.76 73.27

the amount of computation and memory. DML calculates the mutual knowledge distillation loss
between every network pairs and uses the average of the losses. ONE generates a gated ensemble of
the sub-networks and transfers the knowledge of the ensemble logit to each network. As it can be
seen in Table 5, AFD outperforms the compared online distillation methods on both 3 Net average
and ensemble accuracy in every model types. Comparing the results of Table 5 to that of Table 3,
the overall tendency of performance gains compared to DML and ONE is maintained.

4.6 IMAGENET EXPERIMENT

We evaluate our method on ImageNet dataset to show that our method can also be applicable to a
large scale image dataset. We use ImageNet LSVRC 2015 (Russakovsky et al., 2015) which has
1.2M training images and 50K validation images over 1,000 classes. We compare our method with
DML using two pre-trained networks ResNet-18 and ResNet-34 as a pair. The results are after 30
epochs of training. As shown in Table 6, our method improves the networks better than DML.

5 CONCLUSION

We proposed an online knowledge distillation method that transfers the knowledge not only at logit-
level but also at feature map-level using the adversarial training scheme. Unlike existing online
distillation methods, our method utilizes the feature map information and showed that knowledge
transfer at feature map-level is possible even in an online environment. Through extensive experi-
ments, we demonstrated the adequacy of adopting the distribution learning via adversarial training
for online feature map distillation and could achieve better performance than existing online meth-
ods. We also introduced a novel cyclic learning framework for training multiple networks concur-
rently and presented its efficacy by comparing with existing approaches. We also confirmed that our
method is broadly suitable to various architecture types from a very small network (ResNet-20) to
a large (WRN-28-4) network. We hope that due to the work of our research, the area of knowledge
distillation can be further advanced and studied by many researchers.

REFERENCES
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