Workshop track - ICLR 2018

BOOSTING GRADIENT-BASED OPTIMIZERS FOR ASYN-
CHRONOUS PARALLELISM

Shuai Li, Yi Ren, Dongchang Xu, Lin Guo, Hang Xiang, Di Zhang, Jinhui Li
Alibaba Inc.

Beijing, China
{voolc.1li,hengrui.ry,dongchang.xu,lin.gl}@alibaba-inc.com
{xingzhi.xh,di.zhangd, jinhui.li}@alibaba-inc.com

ABSTRACT

Stochastic gradient descent methods have been broadly used in training deep neu-
ral network models. However, the classic approaches may suffer from gradient
delay and thus perturb the training under asynchronous parallelism. In this paper,
we present an approach tackling this challenge by adaptively adjusting the size
of each optimization step. We demonstrate that our approach significantly boost
SGD, AdaGrad and Momentum optimizers for two very different tasks: image
classification and click through rate prediction.

1 INTRODUCTION

Deep learning techniques have demonstrated great potential in many industrial applications, e.g.,
computer vision (He et al.,[2016)) , speech recognition (Sak et al.| 2014), natural language process-
ing (Gehring et al.| 2017)), and computational advertising (Wang et al., 2017), etc. The rise of deep
neural networks requires massive data and is accelerated by the modern advance in computing tech-
nologies. Parallel and distributed computation has greatly benefited deep learning implementations
(Dean et al.| 2012) by drastically reducing training times, such that larger amount of data or more
demanding algorithms can be explored within an acceptable time cost.

Stochastic Gradient Descent optimizing(Bottoul, |1998)) approach has been proven extremely useful
for solving large-scale machine learning problems, due to its simplicity and robustness. However,
subtle work is needed to tune the hyper-parameters to train the model efficiently, i.e., achieving a
better convergence within fewer iterations. Extensive research efforts have been made to develop
more efficient optimizers. For example, Adaptive gradient (AdaGrad(Duchi et al.| 2011))) a simple
but popular method. With an adaptively decaying learning rate, AdaGrad is suitable for sparse data
and asynchronous parallel training.

Many works have been conducted on extending traditional optimizing algorithms to parallel and
distributed deep learning, especially on Asynchronous Stochastic Gradient Descent (ASGD) opti-
mization (McMahan & Streeter} 2014;|Liu et al.,|2015; [Zheng et al.,[2016). ASGD allows each local
worker to work independently, i.e., computing the gradient over its own mini-batch of data, adding
the gradient to the global model, and then pulling the updated global model back for the next step of
iteration. Without the barrier of synchronization among workers as classic synchronous Stochastic
Gradient Descent, each worker continues its training process immediately after communicating with
the global model. As a result, large-scale parallel training is significantly speeded up.

For asynchronous parallelism under parameter server framework, a local worker computes the gra-
dient g, based on the global model status (denoted by w,) at global step ¢t. Before g, is applied to
update the global model, the global model has already been updated to w; . by the gradients from
other workers. Therefore, g; becomes delayed for the global model. Updating the global model
with delayed gradients is not always mathematically safe, and may perturb the training trajectory.
Moreover, this perturbation becomes more severe as the parallelism scales up.

In this paper, we propose an optimizing approach tackling the challenges from the gradient delay
and training perturbations. For each trainable parameter of the neural network model, our approach
utilizes it’s relative increment between ¢ 4+ 7 and ¢ to adjust the learning rate adaptively, and thus

Workshop track - ICLR 2018

the perturbation is relieved. We introduced this adaptive mechanism to boost SGD, AdaGrad and
Momentum optimizers and conducted the experiments in two very different scenarios: image clas-
sification and click through rate (CTR (McMabhan et al., [2013)) prediction. Results show that our
approaches outperform all the original optimizers.

2 METHODOLOGY

I
Aw }—»
global model QQD—’@ o >@; @ . ‘ -g |

3 |
____l_________________'__________ decreaselgl b
’ ; |
: |
|
|
|

l
workern _, ________ }
|
L — !
workerms 1 @_> | :

|
increase gl -:
|

Figure 1: Asgd training process.

With respect to g;, the weight relative increment between w,_ and wy is defined as

Aw, = Wiyr — We- (D

As illustrated in Fig. [} work,, receives global model w;, and then passes the calculated gradient
G back to the global model which has already been updated by other workers to w4, during the
same time. For each trainable parameter, we use the relative direction between g; and Aw; to adjust
the learning rate adaptively when updating w; .. When —g; and Aw, have the same sign, it implies
the model’s parameter has been updated towards the same direction as —g; during the past 7 steps
by the other works. Under this condition, the optimizer needs to be more conservative about the
magnitude of the new update. For this concern, the learning rate is tuned down to weaken the delay
gradient signal. On the other hand, if —g; has the opposite sign against Aw,, the gradient signal
may bring new information of exploration to the other direction. The optimizer increases learning
rate to encourage this exploration.

The algorithms of boosted SGD, AdaGrad and momentum optimizers with our approach are de-
scribed in algorithms and [3] respectively. The product of ¢ and Aw, is normalized into the
regime between —1 and 1, which is necessary to stabilize the algorithm. Two ways of normaliza-
tions are implemented. One way is simply picking up the sign, i.e.,
normalize_factor = sign(g - Aw).)
This produces an adorable performance for AdaGrad. SGD and momentum requires a more delicate
adjustment, i.e.,
normalize_factor = g - Aw/reduce_maz(|g - Awl), 3)

where reduce_max returns the maximum for all model parameters. A hyper parameter A is intro-
duced to control the magnitude of adjustment. We found that A = 0.3 ~ 0.4 produces best in our
experiments.

3 EXPERIMENTS

We demonstrate the effectiveness of our approach for two tasks: image classification and CTR
prediction. For image classification, we trained AlexNet(Krizhevsky et al., 2012) on cifarl0, a

Workshop track - ICLR 2018

Algorithm 1 boosted-SGD
1: normalize_factor = g - Aw/reduce_maz(|g - Aw|)
2: g < (1 — XA x normalize_factor) * g
3w~ w—n*xg

Algorithm 2 boosted-AdaGrad
1: normailze_factor = sign(g - Aw)
2: s < s+ (1 + Axnormalize_factor) * g
3w+ w—n*g/sqri(s +e€)

2

Algorithm 3 boosted-momentum

1: normalize_factor = g - Aw/reduce_maz(|g - Awl)
2: g < (1 = Axnormaliz_factor) x g

3 m+ Bxm+nxg

4w w—m

public data set which consists of 32 x 32 color images drawn from 10 and 100 classes split into
50,000 train and 10,000 test images. For CTR prediction, we trained a deep neural network model
(Cheng et al 2016)), with 5 fully connected layers, on a data set collected from the online adverting
platform of our company. The training and test sets contain 4 billion and 800 million instances,
respectively, with 10 billion unique feature ids in total. For each model, we firstly generate a set of
randomized initial parameters to be leveraged by all the related experiments.

For each original optimizer and each task, we tuned the hyper-parameters to achieve the best perfor-
mance. The boosted version of optimizer was then applied with the same hyper-parameters to train
the same model. For each experiment configuration, we run 5 times to report the average numbers.
As presented in tables|l|and [2| our approach significantly enhance the performance of all the three
optimizers, i.e., SGD, AdaGrad and momentum, for the both tasks. Note that the image classifica-
tion and the CTR prediction are very different tasks. The success of our approach for the two tasks
manifests that our approach has the potential to be applied over a wide range of scenarios.

Table 1: Performance for CTR prediction. Relative AUC gain of boosted optimizers with respect to
original ones.
parallel num boosted-sgd boosted-moment boosted-adagrad
100 +0.012% +0.01% +0.012%
200 +0.028% +0.045% +0.051%

Table 2: Performance for Cifarl10. classification accuracy of boosted optimizers with respect to
original ones.

parallel num sgd boosted moment boosted adagrad boosted
30 8291% +0.43% 83.43% +0.2% 83.06% +0.25%
60 82.48% +0.56% 82.67% +0.25% 82.37% +0.46%

4 CONCLUSION

In this work, we proposed an approach to enhance large-scale asynchronous distributed optimiza-
tion for deep neural networks. Gradient delay and training perturbations are relieved by adaptively
adjusting the size of each optimization step. The effectiveness of our approach was demonstrated by
successfully boosting SGD, AdaGrad and Momentum optimizers for two very different tasks: image
classification and CTR prediction. For future work, we will further explore effective optimizations
under large-scale parallelism for industrial-level implementations.

Workshop track - ICLR 2018

REFERENCES

Léon Bottou. Online learning and stochastic approximations. On-line learning in neural networks,
17(9):142, 1998.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for rec-
ommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, pp. 7-10. ACM, 2016.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223-1231, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122,2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous
parallel stochastic coordinate descent algorithm. The Journal of Machine Learning Research, 16
(1):285-322, 2015.

Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed
online learning. In Advances in Neural Information Processing Systems, pp. 2915-2923, 2014.

H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click prediction: a view from
the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1222-1230. ACM, 2013.

Hagim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Fifteenth annual conference of the
international speech communication association, 2014.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
arXiv preprint arXiv:1708.05123, 2017.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation for distributed deep learning.
arXiv preprint arXiv:1609.08326, 2016.

	Introduction
	Methodology
	experiments
	conclusion

