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ABSTRACT

In this paper we show strategies to easily identify fake samples generated with the
Generative Adversarial Network framework. One strategy is based on the statistical
analysis and comparison of raw pixel values and features extracted from them.
The other strategy learns formal specifications from the real data and shows that
fake samples violate the specifications of the real data. We show that fake samples
produced with GANs have a universal signature that can be used to identify fake
samples. We provide results on MNIST, CIFAR10, music and speech data.

1 INTRODUCTION

Fake samples generated with the Generative Adversarial Networks (Goodfellow et al., 2014a) frame-
work have fooled humans and machines to believe that they are indistinguishable from real samples.
Although this might be true for the naked eye and the discriminator fooled by the generator, it is
unlikely that fake samples are numerically indistinguishable from real samples. Inspired by formal
methods, this paper focuses on the evaluation of fake samples with respect to statistical summaries
and formal specifications computed on the real data.

Since the Generative Adversarial Networks paper (Goodfellow et al., 2014a) , most GAN related
publications use a grid of image samples to accompany theoretical and empirical results. Unlike
Variational Autoencoders (VAEs) and other models (Goodfellow et al., 2014a), most of the evaluation
of the output of GAN trained Generators is qualitative: authors normally list higher sample quality
as one of the advantages of their method over other methods. Although numerical measures like
the inception score are used to evaluate GAN samples (Salimans et al., 2016), interestingly, little is
mentioned about the numerical properties of fake samples and how these properties compare to real
samples.

In the context of Verified Artificial Intelligence (Seshia & Sadigh, 2016), it is hard to systematically
verify that the output of a model satisfies the specifications of the data it was trained on, specially when
verification depends on the existence of perceptually meaningful features. For example, consider a
model that generates images of humans: although it is possible to compare color histograms of real
and fake samples, we do not yet have robust algorithms to verify if an image follows specifications
derived from anatomy.

This paper is related to the systematic verification of fake samples and focuses on comparing numerical
properties of fake and real samples. In addition to comparing statistical summaries, we investigate
how the Generator approximates modes in the real distribution and verify if the generated samples
violate specifications derived from it. We offer the following main contributions:

• We show that fake samples have properties that are barely noticed with visual inspection

• We show that these properties can be used to identify the source of the data (real or fake)

• We show that fake samples violate formal specifications learned from real data

2 RELATED WORK

Despite its youth, several publications ((Arjovsky & Bottou, 2017), (Salimans et al., 2016), (Zhao
et al., 2016), (Radford et al., 2015)) have investigated the use of the GAN framework for sample
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generation and unsupervised feature learning. Following the procedure described in (Breuleux et al.,
2011) and used in (Goodfellow et al., 2014a), earlier GAN papers evaluated the quality of the fake
samples by fitting a Gaussian Parzen window1 to the fake samples and reporting the log-likelihood
of the test set under this distribution. As mentioned in (Goodfellow et al., 2014a), this method has
some drawbacks, including its high variance and bad performance in high dimensional spaces. The
inception score is another widely adopted evaluation metric that fails to provide systematic guidance
on the evaluation of GAN models(Barratt & Sharma, 2018).

Unlike other optimization problems, where analysis of the empirical risk is a strong indicator of
progress, in GANs the decrease in loss is not always correlated with increase in image quality (Ar-
jovsky et al., 2017), and thus authors still rely on visual inspection of generated images. Based on
visual inspection, authors confirm that they have not observed mode collapse or that their framework
is robust to mode collapse if some criteria is met ((Arjovsky et al., 2017), (Gulrajani et al., 2017),
(Mao et al., 2016), (Radford et al., 2015)). In practice, github issues where practitioners report mode
collapse or not enough variety abound.

In their publications, (Mao et al., 2016), (Arjovsky et al., 2017) and (Gulrajani et al., 2017) propose
alternative objective functions and algorithms that circumvent problems that are common when using
the original GAN objective described in (Goodfellow et al., 2014a). The problems addressed include
instability of learning, mode collapse and meaningful loss curves (Salimans et al., 2016).

These alternatives do not eliminate the need, or excitement2, to visually inspect GAN samples during
training, nor do they provide quantitative information about the generated samples.

3 METHODOLOGY

The experiments in this paper focus on three points: the first shows that fake samples have properties
that are hardly noticed with visual inspection and tightly related to the requirements of differentiability;
the second shows that there are numerical differences between statistical moments computed on
features extracted from real and fake samples that can be used to identify the data; the third shows that
fake samples violate formal specifications learned from the real data. In the following subsections we
enumerate the datasets, features and GAN frameworks herein used.

3.1 DATASETS

In our experiments, we use MNIST, CIFAR10, a MIDI dataset of 389 Bach Chorales downloaded
from the web and a subsample of the NIST 2004 speech dataset used in (Cai et al., 2018).

3.2 FEATURES

The spectral centroid (Peeters, 2004) is a feature commonly used in the audio domain, where it
represents the barycenter of the spectrum. This feature can be applied to other domains and we invite
the reader to visualize Figure 12 for examples on MNIST and Mel-Spectrograms (Peeters, 2004). For
each column in an image, we transform the pixel values into row probabilities by normalizing them
by the column sum, after which we take the expected row value, thus obtaining the spectral centroid.

The spectral slope adapted from (Peeters, 2004) is computed by applying linear regression using
an overlapping sliding window of size 7. For each window, we regress the spectral centroids on the
column number mod the window size. Figure 13 shows these features computed on MNIST and
Mel-Spectrograms.

3.3 GAN FRAMEWORKS

We investigate samples produced with the DCGAN architecture using the Least-Squares GAN
(LSGAN) (Mao et al., 2016) and the improved Wasserstein GAN (IWGAN/WGAN-GP) (Gulrajani
et al., 2017). We also compare adversarial MNIST samples produced with the fast gradient sign

1Kernel Density Estimation
2Despite of authors promising on Twitter to never train GANs again.
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method (FGSM) (Goodfellow et al., 2014b). We evaluate the normally used non-linearities, sigmoid
and tanh, on the output of the generator and other transformations such as the scaled tanh and identity.

4 EXPERIMENTS

4.1 MNIST

This experiment focuses on showing numerical properties of fake MNIST samples and features
therein, unknown to the naked eye, that can be used to identify them as produced by a GAN.

We start by comparing the distribution of features computed over the MNIST training set to other
datasets, including the MNIST test set, samples generated with GANs and adversarial samples
computed using the FGSM. The training data is scaled to [0, 1] and the random baseline is sampled
from a Bernoulli distribution with probability equal to the mean value of pixel intensities in the
MNIST training data, 0.13. Each GAN model is trained until the loss plateaus and the generated
samples look similar to the real samples. The datasets compared have 10 thousand samples each.

Visual inspection of the generated samples in Figure 14 show that IWGAN seems to produce better
samples than LSGAN. Quantitatively, we use the MNIST training set as a reference and compare the
distribution of pixel intensities. Table 1 reveals that although samples generated with LSGAN and
IWGAN look similar to the training set, they are considerably different from the training set given the
Kolgomorov-Smirnov (KS) Two Sample Test and the Jensen-Shannon Divergence (JSD), specially
with respect to the same statistics on the MNIST test data.

KS Two Sample Test JSD
Statistic P-Value

mnist_train 0.0 1.0 0.0
mnist_test 0.003177 0.0 0.000029
mnist_lsgan 0.808119 0.0 0.013517
mnist_iwgan 0.701573 0.0 0.014662
mnist_adversarial 0.419338 0.0 0.581769
mnist_bernoulli 0.130855 0.0 0.0785009

Table 1: Statistical comparison over the distribution of pixel values for different samples using
MNIST training set as reference.

These numerical phenomena can be understood by investigating the empirical CDFs in Figure 1. The
distribution of pixel values of the samples generated with the GAN framework is mainly bi-modal and
asymptotically approaches the modes of the distribution in the real data, values 0 and 1. Expectedly,
the FGSM method, noted as mnist_adversarial, causes a shift on the modes of the distribution that
can be easily identified.

Figure 1: Pixel empirical CDF of training data as reference (green) and other datasets(red)

In addition, plots of the distribution of statistical moments of the spectral centroid in 2 suggests
that the fake images are more noisy than the real images. Consider for example images produced by
randomly sampling a Bernoulli distribution with parameter estimated from the training data. These
images have pixel values of 0 or 1 that are equally distributed 3 over the image. Well, an image that
has pixels values distributed in such a manner will have a distribution of mean spectral centroid with
a mode at the center row of the image. This and the similarity between the distribution of mean

3This spatial distribution is independent of the parameter of the Bernoulli distribution.
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spectral centroids from fake data and Bernoulli data suggest that the fake images have noise that are
also equally spatially distributed.

Figure 2: Distribution of moments of spectral centroids computed on each image.

Last, Figure 3 shows that the GAN generated samples smoothly approximate the modes of the
distribution. This smooth approximation is considerably different from the training and test sets.
Although not perceptually meaningful, these properties can be used to identify the source of the data.

Figure 3: Histogram of pixel values for each dataset. First row shows values within [0, 1] and 100
bins. Second row shows values within [0.11, and 0.88] and 100 bins.

Our first hypothesis for the smooth approximation of the modes of the distribution was that it would
be present in any data produced with a generator that is trained using stochastic gradient descent and
a saturating activation function, such as sigmoid or tanh, at the output of the generator. To evaluate
this hypothesis, we conducted a set of experiments using different GAN architectures (WGAN-GP,
LSGAN, DCGAN) with different activation functions, including linear and the scaled tanh, at the
output of the Generator, keeping the Discriminator fixed.

To our surprise, we noticed that the models trained with linear or scaled tanh activations were partially
able to produce images that were similar to the MNIST training data and the distribution of pixel
intensities, although uni-modal around zero, still possessed a smooth looking curve. This is illustrated
in Figure 4.

We then postulated that the smooth behavior was due to smoothness in the pixels intensities of the
training data itself. To evaluate this, we binarized the real data by first scaling it between [0, 1] and
then thresholding it at 0.5. With this alteration the distribution of the pixel intensities of the real
data becomes completely bi-modal with modes at 0 and 1. Figure 5 shows that the smooth behavior
remained.

With this empirical evidence at hand, we provide an informal analysis of the smoothness of the
distribution of pixels of the generated data from the perspective of optimization, differentiation and
function approximation with neural networks. We know that backpropagation and stochastic gradient
descent are used to update the weights of a neural network model based on the gradient of the loss
with respect to the weights. We also know that differentiation requires the function that is being
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(a) Linear (b) Scaled Tanh

Figure 4: Fake MNIST samples and pixel distribution from generators trained with DCGAN, Batch
Norm and linear or scaled tanh activation functions.

(a) DCGAN Linear, Binary data (b) WGAN-GP Linear, Binary data

Figure 5: Fake MNIST samples and pixel distribution from generators trained on binarized real data
with DCGAN and WGAN-GP, Batch Norm and linear activation functions.

differentiated to have some high degree of smoothness and be differentiable almost everywhere.
Hence, we conjecture that the inductive bias of this learning setup is that of smoothness given the
requirements of differentiation.

We also speculate that this inductive bias is responsible for the smoothness of the distribution of pixel
values at any iteration during training and that the U shape of the distribution of pixel values, similar
to blurring, is the byproduct of an smooth approximation of the function that is being learned4.

4.2 CIFAR10

Expecting that the results we obtained during our MNIST experiments would generalize to other
images, we briefly investigate the properties of CIFAR10 fake samples generated with the IWGAN
framework and using the DCGAN architecture. The models were trained using the CIFAR10’s
training set with 50k samples and following the experimental setup provided by the IWGAN authors.

We report results on CIFAR10 train, test and IWGAN generated samples, all with ten thousand
items each. An informal analysis of Figure 6a shows that the distribution of pixels per channel is
different between the real and fake data, specially for pixels values close to −1. Numerically, we
can see in Table 6b that the JSD between the samples from the training data and IWGAN samples is
considerably large with respect to the same statistics on the test data.

Figure 7 shows a behavior seen in our MNIST experiments: the GAN generated samples smoothly
approximate the mode of the pixel value distribution at 1 and this smooth approximation is consid-
erably different from the training set. As we previously explained, these properties can be used to
identify the GAN samples although they might be not perceptible with the naked eye.

4.3 BACH CHORALES

We investigate the properties of Bach chorales generated with the GAN framework and verify if they
satisfy musical specifications learned from real data. Bach chorales are polyphonic pieces of music,

4Consider approximating a function with polynomials of increasing degrees.
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(a) Distribution of pixel intensities from real and fake samples

KS Two Sample Test JSD
Statistic P-Value

train 0.0 1.0 0.0
test 0.0061 0.0 0.00005
iwgan 0.0107 0.0 0.21378

(b) Test statistics

Figure 6: CIFAR10 pixel distribution and test statistics

Figure 7: Distribution of pixel intensities from real and fake samples. The pixel distribution computed
over fake samples is continuous and smoothly approximates the mode at 1.0

normally written for 4 or 5 voices, that follow a set of specifications or rules5. For example, a global
specification could assert that only a set of durations are valid; a local specification could assert that
only certain transitions between states (notes) are valid depending on the current harmony.

For this experiment, we convert the dataset of Bach chorales to piano rolls. The piano roll is a
representation in which the rows represent note numbers, the columns represent time steps and
the cell values represent note intensities. We compare the distribution of features computed over
the training set, test set, GAN generated samples and a random baseline sampled from a Bernoulli
distribution with probability equal to the normalized mean value of intensities in the training data.
After scaling and thresholding, the intensities in the training and test data are strictly bi-modal and
equal to 0 or 1. Figure 15 below shows training, test, IWGAN and Bernoulli samples, with modes on
0 and 1. Each dataset has approximately 1000 image patches.

Figure 8 shows a behavior that is similar to our previous MNIST experiments: the IWGAN asymptot-
ically approximates the modes of the distribution of intensity values.

Following, we investigate if the generated samples violate the specifications of Bach chorales. We use
these piano rolls to compute boolean Chroma (Peeters, 2004) features and to compute an empirical
Chroma transition matrix, where the positive entries represent existing and valid transitions. The
transition matrix built on the training data is taken as the reference specification, i.e. anything that is
not included is a violation of the specification. Table 2 shows the number of violations given each
dataset.

Although Figure 15 shows generated samples that look similar to the real data, the IWGAN samples
have over 5000 violations, 10 times more than the test set! Violation of specifications is a strong
evidence that fake samples do not come from the same distribution as the real data. Furthermore, to
the trained ear the fake samples violate the style of Bach. We invite the readers to listen to them.

5The specifications define the characteristics of the musical style.
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Figure 8: Bach Chorales intensity distribution

bach_train bach_test bach_iwgan bach_bernoulli
Number of Violations 0 429 5029 58284

Table 2: Number of specification violations with training data as reference.

In addition to experiments with Chroma features, we computed the distribution of note durations on
the boolean piano roll described above. Figure 9a shows the distribution of note durations within
each dataset. The train and test data are approximately bi-modal and, again, the improved WGAN
smoothly approximates the dominating modes of the distribution. Table 9b provides a numerical
comparison between datasets.

(a) Histogram of note durations

KS Two Sample Test JSD
Statistic P-Value

train 0.0 1.0 0.0
test 0.09375 0.929 0.002
iwgan 0.21875 0.080 0.084
bernoulli 0.93750 0.0 0.604

(b) Test statistics

Figure 9: Bach Chorales distribution of note durations and statistics

4.4 SPEECH

Within the speech domain, we investigate real and fake samples from Mel-Spectrograms. We divide
the NIST 2004 dataset into training and test set, generate samples with the GAN framework and use
a random baseline sampled from a Exponential distribution with parameters chosen using heuristics.
The generated samples can be seen in Figure 16. We obtain the Mel-Spectrogram by projecting a
spectrogram onto a mel scale, which we do with the python library librosa (McFee et al., 2015).
More specifically, we project the spectrogram onto 64 mel bands, with window size equal to 1024
samples and hop size equal to 160 samples, i.e. frames are 100ms long. Dynamic range compression
is computed as described in (Lukic et al., 2016), with log(1 + C ∗M), where C is the compression
constant scalar set to 1000 and M is the matrix representing the Mel-Spectrogram. Each dataset
has approximately 1000 image patches and the GAN models are trained using DCGAN with the
improved Wasserstein GAN algorithm.

Figure 10a shows the empirical CDFs of intensity values. Unlike our previous experiments where
intensities (Bach Chorales) or pixel values (MNIST, CIFAR10) were linear and discrete, in this
experiment intensities are continuous and compressed using the log function. This considerably
reduces the distance between the empirical CDFs of the training data and GAN samples, specially
around the saturating points of the tanh non-linearity, −1 and 1 in this case.
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(a) Empirical CDF computed on intensities. Training data in blue and
other datasets.

KS Two Sample Test JSD
Statistic P-Value

train 0.0 1.0 0.0
test 0.03685 0.0 0.00080
iwgan 0.22149 0.0 0.00056
bernoulli 0.36205 0.0 0.11423

(b) Test statistics

Figure 10: Empirical CDF and statistical tests of speech intensity

Table 10b shows a significant difference between the KS-Statistic of test samples and fake samples
with respect to the training data. However, an adversary can manipulate the fake samples to consider-
ably decrease this difference and still keep the high similarity in features harder to simulate such as
moments of spectral centroid or slope.

Figure 11 shows the distribution of statistical moments computed on spectral centroids and slope. The
distributions from different sources considerably overlap, indicating that the generator has efficiently
approximated the real distribution of these features.

(a) Spectral Centroid Moments (b) Spectral Slope Moments

Figure 11: Moments of spectral centroid (left) and slope(right)

5 CONCLUSIONS

In this paper we investigated numerical properties of samples produced with adversarial methods,
specially Generative Adversarial Networks. We showed that fake samples have properties that
are barely noticed with visual inspection of samples, namely the fact that fake samples smoothly
approximate the dominating modes of the distribution due to stochastic gradient descent and the
requirements of differentiability. We analysed statistical measures of divergence between real data
and other data and the results showed that even in simple cases, e.g. distribution of pixel intensities,
the divergence between training data and fake data is large with respect to test data. Finally, we mined
specifications from real data and showed that, unlike test data, the fake data considerably violates the
specifications of the real data.

In the context of adversarial attacks, these large differences in distribution and specially violations of
specification can be used to identify data that is fake. In our results we show that, although some
of the features used to learn specifications in this paper are weakly perceptually correlated with the
content of the image, they certainly can be used to identify fake samples.

Although not common practice, one could possibly circumvent the difference in support between
the real and fake data by training Generators that explicitly sample a distribution that replicates the
support of the real data, i.e. 256 values in the case of discretized images. Conversely, one could mine
specifications that are easy to learn from real data but hardly differentiable. These are topics that are
not limited to GANs and remain to be explored in the larger domain of Verified Artificial Intelligence
considered in (Seshia & Sadigh, 2016).

8



Under review as a conference paper at ICLR 2019

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In NIPS 2016 Workshop on Adversarial Training. In review for ICLR, volume 2016,
2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973,
2018.

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Quickly generating representative samples
from an rbm-derived process. Neural Computation, 23(8):2058–2073, 2011.

Wilson Cai, Anish Doshi, and Rafael Valle. Attacking speaker recognition with deep generative
models. arXiv preprint arXiv:1801.02384, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Yanick Lukic, Carlo Vogt, Oliver Dürr, and Thilo Stadelmann. Speaker identification and clustering
using convolutional neural networks. In Machine Learning for Signal Processing (MLSP), 2016
IEEE 26th International Workshop on, pp. 1–6. IEEE, 2016.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. arXiv preprint ArXiv:1611.04076, 2016.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and
Oriol Nieto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th python
in science conference, 2015.

Geoffroy Peeters. A large set of audio features for sound description (similarity and classification) in
the cuidado project. Technical report, IRCAM, 2004.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. CoRR, abs/1606.03498, 2016. URL http://arxiv.
org/abs/1606.03498.

Sanjit A. Seshia and Dorsa Sadigh. Towards verified artificial intelligence. CoRR, abs/1606.08514,
2016. URL http://arxiv.org/abs/1606.08514.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126, 2016.

9

http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.08514


Under review as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

We are thankful to Ryan Prenger and Kevin Shih for their feedback on this paper. We acknowledge
NVIDIA for providing us with the Titan X GPU used in these experiments.

APPENDIX A SPECTRAL CENTROID AND SLOPE IMAGES

(a) MNIST samples and centroids (b) Mel-Spectrograms and centroids

Figure 12: Spectral centroids on digits and Mel-Spectrograms

(a) MNIST samples and slopes (b) Mel-Spectrograms and slopes

Figure 13: Spectral slopes on digits and Mel-Spectrograms

APPENDIX B MNIST IMAGES

Figure 14: Samples drawn from MNIST train, test, LSGAN, IWGAN, FSGM and Bernoulli
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APPENDIX C BACH CHORAL IMAGES

Figure 15: Samples drawn from Bach Chorales train, test, IWGAN, and Bernoulli respectively.

APPENDIX D MEL-SPECTROGRAM IMAGES

Figure 16: Samples drawn from NIST2004 train, test, IWGAN, and exponential respectively.

11


	Introduction
	Related work
	Methodology
	Datasets
	Features
	GAN Frameworks

	Experiments
	MNIST
	CIFAR10
	Bach Chorales
	Speech

	Conclusions
	Appendices
	Appendix Spectral Centroid and Slope Images
	Appendix MNIST Images
	Appendix Bach Choral Images
	Appendix Mel-Spectrogram Images

