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Abstract

We consider the problem of balancing exploration and exploitation in se-
quential decision making problems. This trade-off naturally lends itself to
probabilistic modelling. For a probabilistic approach to be effective, con-
sidering uncertainty about all immediate and long-term consequences of
agent’s actions is vital. An estimate of such uncertainty can be leveraged
to guide exploration even in situations where the agent needs to perform
a potentially long sequence of actions before reaching an under-explored
area of the environment. This observation was made by the authors of
the Uncertainty Bellman Equation model (O’Donoghue et al., 2018), which
explicitly considers full marginal uncertainty for each decision the agent
faces. However, their model still considers a fully factorised posterior over
the consequences of each action, meaning that dependencies vital for corre-
lated long-term exploration are ignored. We go a step beyond and develop
Successor Uncertainties, a probabilistic model for the state-action value
function of a Markov Decision Process with a non-factorised covariance.
We demonstrate how this leads to greatly improved performance on clas-
sic tabular exploration benchmarks and show strong performance of our
method on a subset of Atari baselines. Overall, Successor Uncertainties
provides a better probabilistic model for temporal difference learning at a
similar computational cost to its predecessors.

1 Introduction

We consider a sequential decision making problem in which an agent interacts with an
unknown environment, modelled as a Markov Decision Process (MDP). The agent’s goal is
to learn a policy that maximises the expected cumulative reward while keeping the total
number of interactions with the environment low. To do so, the agent has to balance
exploration of the environment and exploitation of the information it has already acquired.
Because the agent learns sequentially through interaction with a potentially stochastic envi-
ronment, the consequences of each action are not necessarily known ahead of time and this
complicates striking the optimal trade-off between exploration and exploitation. A partic-
ular strategy to address this issue is maintaining a probabilistic model that reflects agent’s
current knowledge, or lack thereof, about the future effects of each action for any given
state. Vitally, the model must incorporate uncertainty about not only the immediate but
also the downstream effects of agent’s actions, and reflect the varying degree of uncertainty
associated with different sequences of states encountered and actions taken by the agent.
We will therefore focus on two concepts we believe to be crucial for effective exploration
under uncertainty: propagation of uncertainty and incorporation of dependencies. We will
say that a probabilistic model of the Q function propagates uncertainty whenever the degree
of uncertainty over the Q value for each state-action pair is determined by the cumulative
uncertainty of all future state-actions the agent may encounter. Notice that for any joint
distribution of the Q function that propagates uncertainty, the model obtained by taking
the product of its marginal distributions over Q values also propagates uncertainty. In
other words, propagation of uncertainty does not guarantee that any dependencies between
individual Q values, like the one implied by the Bellman equation, are captured by the model.

1



Under review as a conference paper at ICLR 2019

To this end, we will say that a model incorporates dependencies if the dependency structure
of individual Q values obeys the Bellman equation. Further details are provided in section 3.
We illustrate importance of propagation of uncertainties and incorporation of dependencies
in figure 1. The agent is faced with a sequence of binary up/down choices and receives a
positive reward if and only if it executes a particularly long sequence of uninterrupted up
actions. In such a scenario, purely random exploration is extremely ineffective. Similarly,
exploration which considers just immediate consequences of actions also performs poorly —
shortsightedly reducing one-step uncertainty leads to exploration equivalent in expectation
to that of a uniform exploration policy (more on this in section 6). In contrast, a model which
propagates uncertainty and incorporates dependencies can be used to guide the agent into
under-explored areas irrespective of their distance from the current state, resulting in more
effective exploration of the environment. Whilst simple, this MDP captures the key features
of classic exploration benchmarks like Montezuma’s Revenge (Bellemare et al., 2013), where
exploration is hindered by sparse reward and low connectivity of the state-space.
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Figure 1: Binary tree MDP; in each state, agent moves either up or down. States with
odd indices are terminal. Reward is only obtained after a large fixed number of up actions.

The main contributions of our work are summarised below:
1. Identification of propagation of uncertainty and incorporation of uncertainties as

desirable attributes of models used for probabilistic exploration;
2. Introduction of Successor Uncertainties, a probabilistic model which both propa-

gates uncertainty and incorporates dependencies;
3. Empirical investigation demonstrating how lack of either propagation of uncertainty

or incorporation of dependencies can lead to inefficient exploration on classic explo-
ration benchmarks (Dearden et al., 1998). Experiments on the Atari benchmark
suite (Bellemare et al., 2013) confirming that Successor Uncertainties can be scaled
to work in complex domains.

2 Background

Before proceeding, we briefly review model-free reinforcement learning and Bayesian linear
regression. These are key concepts we shall use throughout the remainder of our paper.

Markov Decision Process We consider a finite MDP with a horizon H ∈ N, defined on
a probability space (Ω,F , P ). An MDP is a tuple (S,A, T ), where S is a finite state space,
A a finite action space, and T : S × A → P(S × R) a transition probability kernel with
R ⊂ R a bounded reward set, and P(·) the set of probability measures on given space. For
each time step t ∈ N, the agent selects an action At by sampling from a distribution specified
by the policy πt : S → P(A) for the current state St, and receives a new state and reward
(St+1, Rt+1) ∼ T (St, At). This gives rise to a random process (St, At)t≥0, Markov with
respect to its natural filtration (Ft)t≥0, and a sequence of random variables (Rt)t≥1. The
task of solving an MDP is that of finding an optimal policy π = (πt)0≤t≤H that maximises
the expected return Jπ = E[

∑H
τ=0 γ

τRτ+1] where γ ∈ [0, 1) is a discount factor.
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Model-free reinforcement learning All exploration methods we consider repose on
a model-free approach to solving MDPs. These approaches invariably use estimates of
state-action values and the corresponding Q function, Qπt = E[

∑H
τ=t γ

τ−tRτ+1 | Ft],
to guide exploration. Because computation of Qπt is usually intractable, it is esti-
mated for each (s, a) ∈ S × A using a (stationary) parametric model Q̂π : S ×A → R.
This model is trained to obey the Bellman equation, Qπt = E[Rt+1 | Ft] + γE

[
Qπt+1 | Ft

]
,

by minimising a monotonically increasing function of the temporal difference error
`td : (s, a, s′, r, π) 7→ |Q̂π(s, a)− r − γEa′∼π(s′)[Q̂π(s′, a′)]| on the data collected through
exploration. The result of this procedure is an estimate of the optimal pol-
icy defined by greedy behaviour with respect to Q̂πt , that is π? : s 7→ |A|−1δA with
A = {a : Q̂π(s, a) = maxa′∈A Q̂

π(s, a′)} and |A| its cardinality.

Bayesian linear regression The goal of linear regression is to fit a model of the form
r = 〈φ,w〉 using a data set D = {(φi, ri)}ti=0. We will treat estimation of w in a fully
Bayesian manner, assuming a multivariate normal prior Pw = N (0,Σp) for w and a Gaussian
likelihood Pr|φ,w = N (〈φ,w〉, β). By application of the Bayes’ rule, the posterior over
the weights given D is then Pw|D = N (µw,Σw). Here Σw = (Σp + β−1∑t

i=0 φiφ
T
i )−1 and

µw = Σw(
∑t
i=0 riφi). Both µw and Σw can be computed in an online fashion.

3 Probabilistic exploration in reinforcement learning

One of the most popular approaches to probabilistic exploration is posterior sampling (Dear-
den et al., 1998; Strens, 2000), also known as Thompson sampling (Thompson, 1933).
The key feature of this method is that a distribution PQ̂π over Q̂π is maintained instead
of a point estimate. Exploration then proceeds by iterating the following steps: (i) sample
Q̂π ∼ PQ̂π ; (ii) explore the environment using the greedy policy with respect to the sampled
Q̂π; (iii) update PQ̂π based on the collected data.
Effectiveness of posterior sampling is determined by properties of PQ̂π . We will focus on
two properties that we believe to be of vital importance.

1. Propagation of uncertainty: the marginal distribution over Q̂π(s, a) must reflect
the total downstream uncertainty about all Q̂π(s′, a′) that may be encountered
when taking action a in state s and then following policy π.

Propagation of uncertainty ensures that uncertainty at any step is connected to expected un-
certainties at subsequent time-steps (O’Donoghue et al., 2018). It is sufficient for approaches
based on marginal statistics, for example upper confidence bound exploration (Auer et al.,
2002), but does not guarantee coherence of individual samples.

2. Incorporation of dependencies: the set of random variables {Q̂π(s, a)}s∈S,a∈A
must (almost surely) obey dependencies specified by the Bellman equation.

Posterior sampling uses greedy policy with respect to a single sample from PQ̂π . It is thus
crucial that the value at any time-step is connected to the expected value at subsequent
time-steps for every such sample, not only in expectation. If a sample which does not satisfy
the Bellman equation is used, individual sampled Q values may carry conflicting information
at each time-step. Importantly for our discussion later, a model PQ̂π propagates uncertainty
if it incorporates dependencies but the converse is not necessarily true.

4 Uncertainty propagation through Successor Features

We present a new method, Successsor Uncertainties, which employs a probabilistic model
PQ̂π that does not assume a factorisation of the posterior over the state-action space. The
model both propagates uncertainties and incorporates dependencies, and thus leads to tem-
porally correlated exploration when combined with posterior sampling.
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4.1 The Successor Uncertainty model

Suppose that an embedding φ : S × A → Rd+ exists, d ∈ N, such that ||φ||2 = 1 and
E [Rt+1 | Ft] = 〈φt, w〉 for some w in Rd and φt = φ(St, At). Then

Qπt = E

[
H∑
τ=t

γτ−tRτ+1 | Ft

]
= E

[
H∑
τ=t

γτ−t〈φτ , w〉 | Ft

]
=
〈
Eπ

[
H∑
τ=t

γτ−tφτ | Ft

]
, w

〉
,

where the second equality follows from the tower property of conditional expectation and
the third is a simple application of the dominated convergence theorem. We define ψπt =
E[
∑H
τ=t γ

τ−tφτ | Ft] which allows us to express the Q function succinctly in terms of this
quantity as Qπt = 〈ψπt , w〉. The random vectors ψπt are known as successor features in the
literature (Dayan, 1993; Barreto et al., 2017), and correspond to the (discounted) expected
future occurrence of each feature when following a given policy π.
We develop the Successor Uncertainties model for Qπt , denoted by Q̂πSF, by modelling the
quantities w and ψπt . We use a stationary estimator of the successor features ψ̂π which will
be obtained by noting that ψπt = φt + γ E[ψπt+1 | Ft], meaning any standard temporal differ-
ence approach applies. We perform Bayesian linear regression to infer a distribution over w
using a Gaussian prior N (0, αI) and likelihood N (〈φ,w〉, β). This makes the computation
of the posterior over w given D, Pw|D = N (µw,Σw), with D the set of all so far observed
states and rewards, analytically tractable. Finally, stacking all successor feature estimates
into a matrix Ψ̂π = [ψ̂π(s, a)]>s∈S,a∈A, the implied distribution over Q̂πSF can be shown to be

Law(Q̂πSF) = N (Ψ̂πµw, Ψ̂πΣw(Ψ̂π)>) ,
highlighting the dependence between individual Q̂πSF(s, a) introduced by our construction.
A limitation of Successor Uncertainties is that only the rewards are explicitly treated in
a probabilistic way, whereas a point estimate is used for the transition model in construction
of ψ̂π. This issue may be partially alleviated following an argument analogous to the one
made by O’Donoghue et al. (2018). Specifically, if we are in a tabular setting and φ(s, a) are
one-hot encoded representations of individual state-actions, the posterior variance Σw will
be diagonal with β(nsa + β

α )−1 for its non-zero entries, where nsa the number of times the
tuple (s, a) has been observed. Combined with the above derived Law(Q̂πSF), the marginal
variance over Q̂πSF(s, a) will be proportional to βn−1

sa which will decrease at the same rate
as if we had incorporated a Dirichlet model over the transitions (O’Donoghue et al., 2018).
Thus, if α = β and β is treated as a hyperparameter (as in our experiments), setting β
sufficiently high can adjust our estimate for the uncertainty about the transition model.
As in (O’Donoghue et al., 2018), a similar argument can be made in terms of pseudo-
counts (Bellemare et al., 2016) for linear Q function models.
Finally, our derivations show that ψπ needs to be relearnt for each policy π which would
generally require a significant amount of computational resources. To address this issue,
we instead learn ψπ̄

? where π̄? =
∫
π?wdPw|D is the average over policies π?w; here π?w is

the greedy policy with respect to the particular Q function sample determined by w. This
approximation reduces coherence of the dependencies within each Q function sample, but
allows the algorithm to scale to large applications.

4.2 Successor Uncertainty with Neural Network embeddings

One of the main assumptions we made is that the embedding function φ is known a priori.
This section considers the scenario where φ has to be learnt jointly with other parameters.
To distinguish from the fixed φ, we use φ̂ : S ×A → Rd+ to refer to the fitted model. Denoting
(st, at) the state-action observed at step t, φ̂t = φ̂(st, at) and ψ̂πt = ψ̂π(st, at), we propose to
learn φ̂ and ψ̂π jointly by enforcing the known relationships between φt, ψπt and E[Rt+1|Ft]:
minimise ‖〈ŵ, ψ̂πt 〉 − γ(〈ŵ, ψ̂πt+1〉)− − rt+1‖22 + ‖〈ŵ, φ̂t〉 − rt+1‖22 w.r.t. φ̂t, ψ̂πt , ŵ (1)
subject to ψ̂πt = φ̂t + γ Eπ(st+1)[ψ̂π(st+1, a

′
t+1)] , (2)

φ̂t, ψ̂
π
t ≥ 0 elementwise and ‖φ̂t‖2 = 1 , (3)
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where rt+1 is the reward observed after taking action at in state st, (·)− means that the
quantity (·) is treated as fixed, and ŵ is an auxiliary variable which can be either optimised or
replaced with w and integrated out with respect toN (µw,Σw). Please note that the problem
is stated in terms of single step t to reduce clutter, but average over mini-batches sampled
from a replay buffer will be optimised.
To simplify the optimisation, we will only softly enforce the constraint in equation (2) by
adding a regularisation term ‖ψ̂πt − (φ̂t + γ Eπ(st+1)[ψ̂π(st+1, a

′
t+1)])−‖22 to the objective in

equation (1). Empirically, the weight of the regularisation term can be set to one for all
problems, eliminating what would otherwise be a hyperparameter.
Notice that the first term in equation (1) is the standard temporal difference learning
loss. Now if a solution achieving zero temporal difference loss exists, then setting each
φ̂t = ψ̂πt − γψ̂πt+1 for a particular policy π will make the second term in equation (1) zero.
In other words, the additional terms in equations (1) and (2) do not affect the set of param-
eters that solve the Q function estimation problem. Because the non-negativity condition is
trivially satisfied with ReLU activations, the only change with potentially significant impact
on optima is the ‖φ̂t‖2 = 1 restriction which impacts the norm of ψ̂t through equation (2).
In our experience, this constraint simplifies selection of the prior over w as it keeps the scale
of the inputs constant across all problems, increasing the robustness of our method.
We illustrate integration of neural network embeddings on our Atari architecture which is
a modification of the DDQN

check if the abbrev
already introduced
not previously
introduced

model of Van Hasselt et al. (2016). As you can see in figure 2,
Successor Uncertainties can be combined with existing reinforcement learning frameworks
simply by including an additional neural network head for prediction of immediate rewards.
The whole model is then optimised by minimising the above described relaxed version of
the problem in equations (1-3), with the unit norm constraint on φ̂ enforced by explicit
normalisation, and the non-negativity by using the ReLU activation.
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64× 64

conv conv flatten

3136

512

512

fc/relu ψ̂πsa

16× |A|
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ŵ Q̂πsa
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Figure 2: Architecture diagram for network used for Atari experiments.

We would like to emphasise that, unlike in previous work utilising successor embeddings
(Kulkarni et al., 2016; Machado et al., 2017; 2018), our approach does not employ an aux-
iliary state reconstruction or state-transition prediction model in order to learn meaningful
representations. This significantly reduces the implementation effort, and, importantly,
makes comparison of Successor Uncertainties to other methods easier as state-prediction is
in itself a very strong auxiliary loss even without improved exploration.

5 Related probabilistic exploration methods

Having introduced Successor Uncertainties, we now discuss several alternative probabilistic
models of the Q function, focusing on if and how they propagate uncertainties and incorpo-
rate dependencies.

Variational Q-learning Deep Q-learning (Mnih et al., 2015; Watkins & Dayan, 1992) is
a method which uses a deep neural network (Q-network) to estimate Q function of a partic-
ular exploration policy; the network is trained by minimising the temporal difference error
on past observations seen by the agent. Some recent methods have attempted to replace
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the deterministic Q-network with a Bayesian neural network (BNN) and apply posterior
sampling using the Bayesian uncertainty estimates (for example Lipton et al., 2016; Gal,
2016). A common feature of these approaches is that the Q value estimates are treated as if
they were real observations Q values in a regression problem. As shown by Riquelme et al.
(2018), if the Q value estimates are inaccurate, which often happens before the environ-
ment is sufficiently well explored, variational Q-learning uncertainty estimates can be slow
to converge and result in poor exploration.
What is more, uncertainty estimates of these methods rely only on the particular state-
action pair (s, a) under consideration. Whilst the temporal difference updates ensure that
the Q value for action a in state s does reflect the rewards that may be obtained by taking
action a and following a given policy π afterwards, uncertainty about those expected future
rewards is not explicitly propagated.

Bayesian linear Q-function prediction Linear Q function models, despite their sim-
plicity (or perhaps because of it), have proven a good modelling choice in reinforcement
learning (Levine et al., 2017; Osband et al., 2014; Lagoudakis & Parr, 2003). One of the pos-
sible explanations is that the tractability of the closed form updates often translates into
lower variance and better calibrated uncertainty estimates as compared to variational ap-
proaches (Riquelme et al., 2018).
Bayesian linear Q function prediction models, such as Bayesian Deep Q-Networks (BDQN
Azizzadenesheli et al., 2018) or Double Uncertain Value Networks (Moerland et al., 2017),
utilise a standard Q-network: state s ∈ S is mapped to a state embedding φπs , which is
then used together with a vector ua for each action a ∈ A to predict Q̂π(s, a) = 〈ua, φπs 〉.
An auxiliary Bayesian linear model is then used to independently model uncertainty over
each ua. Analogously to Successor Uncertainties, the outputs of the Bayesian linear models
define a distribution over Q functions PQ̂π , which is used for exploration through posterior
sampling. However, as in variational Q-learning, uncertainties are not explicitly propagated.

Uncertainty Bellman Equation The Uncertainty Bellman Equation (UBE) model
(O’Donoghue et al., 2018) introduces a dynamic programming rule for accumulating Q func-
tion uncertainty estimates such that they reflect expected uncertainty over all future con-
sequences. The method performs very well on the Atari benchmark suite (Bellemare et al.,
2013), achieving strong results on the Montezuma’s Revenge exploration benchmark.
The UBE model assumes that the MDP is acyclic and thus that Ri is independent of Rj
given π and T for j > i. It further assumes that local uncertainty estimates associated with
each state-action tuple are available. These are denoted Vt, and are estimated through the
use of a Bayesian linear model in the form V̂ : S × A → R+, as within the Bayesian Deep
Q-Networks method. UBE then defines the expected future uncertainty

Uπt = E

[
H∑
τ=t

γ2(τ−t)Vt+1 | Ft

]
= E[Vt+1 | Ft] + γ2Eπ

[
Uπt+1 | Ft

]
,

where the second equality follows by the assumption of independent rewards. The latter
expression for Uπt allows for efficient learning of a neural network estimator Û : S×A → R+
through the use of temporal difference updates.
In effect, UBE takes uncertainty estimates that do not propagate uncertainty, like those
of the previously discussed methods, and forms a corrected estimator Ûπ which does re-
flect downstream uncertainty. However, as Ûπ specifies a marginal distribution over each
Q̂π(s, a), but not a joint distribution over Q̂π, it does not incorporate dependencies be-
tween different states and actions as is apparent from the discussion before equation (3)
in (O’Donoghue et al., 2018) where the implicit posterior has diagonal covariance matrix
which implies independence in the case of jointly multivariate normal variables.
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6 Experiments

We present two sets of experiments. First, tabular experiments, where we provide an analysis
of a general scenario within which Successor Uncertainties outperforms Bayesian Deep Q-
Networks (BDQN) and the Uncertainty Bellman Equation (UBE). Second, we provide a
limited set of Atari experiments, where we show that Successor Uncertainties can provide
scores competitive with BDQN and UBE.

6.1 Tabular exploration problems

Our experiments are based on two problems, the binary decision tree introduces first pre-
sented in the introduction (figure 1) and the Chain problem, introduced in (Dearden et al.,
1998). The chain is illustrated in figure 3. The version we use follows from (Osband et al.,
2016), consisting of L+2 states and two actions corresponding to a move left and right along
the chain respectively. The horizon is L+9 allowing a maximal reward of 1.0. The simple to
discover sub-optimal solution ‘left always’ makes the problem challenging. These two prob-
lems isolate exploration, that is the acquisition of data informative about the MDP, from
learning, i.e. the manner in which that data is then used to learn a Q function estimator.
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1
1000 . . .0 0 1
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a2 a1

Figure 3: The Chain MDP illustrated

We present the return achieved by the three methods in these tabular problems within
figure 4. The poor performance of BDQN follows from its lack of propagation of uncertainty.
To understand the reason for the similarly poor performance of the Uncertainty Bellman
Equation model, note that prior to the reward being reached, µsa1 = µs2 = 0 in expectation.
Writing Q̂sai ∼ N (0, σsai) for the two actions up and down respectively, we see that
PA0|S0(a1 | s) = P(Q̂sa1 − Q̂sa2 > 0) = 1/2, irrespective of the variances σ2

sai . Thus, on this
task, posterior sampling with UBE uncertainty estimates results in exploration equivalent
to that induced by a uniform random policy. Successor Uncertainties on the other hand
distinctly outperforms both approaches. To see why, assume that si is the furthest state
seen thus far during exploration. Sample a weights vector w ∼ N (µw,Σw). Now if the entry
wi associated with si is high, not only does that increase the probability of selecting action
up in state si−1, but also for all states s0, . . . , si−1, as these contain a positive entry for si
in their successor representation ψπ. Thus exploration utilising Successor Uncertainties is
not equivalent to that of a uniform policy but instead explores in a correlated manner.

0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

(a) tree

0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

Succ. Uncert.
UBE
BDQN

(b) Chain

Figure 4: Test reward on Tree (left) and Chain (right), both with L=10. Episodes on
x-axis. Average over 250 runs plotted; 95% CI shaded.
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6.2 Atari experiments

We’ve run a series of small experiments (5M steps) on a subset of Atari games. Here, we
test the performance Successor Uncertainties using embeddings learnt online through the
constrained model-free reinforcement learning approach described in section 4.2.
We present our results in table 1, alongside results from related exploration methods. Test
scores reported are obtained using the standard procedure set out in the seminal work on
deep reinforcement learning for Atari (Mnih et al., 2015) and utilised subsequently (Van Has-
selt et al., 2016; O’Donoghue et al., 2018). Games were selected by looking at training curves
shown in (Azizzadenesheli et al., 2018) and the classification of game exploration difficulty
in the appendix of (Ostrovski et al., 2017). Relatively difficult games where most of the
improvement in score can be attained early within training were chosen, allowing for infor-
mative experiments with only a modest computational budget.

Table 1: Results for selected Atari games for our proposed method Successor Uncertainty,
BDQN (Azizzadenesheli et al., 2018), UBE (O’Donoghue et al., 2018) and Double Deep
Q-Network (DDQN) with ε-greedy exploration (Van Hasselt et al., 2016). Numbers in
parenthesis indicate the number of interactions with the environment undertaken by each
method during training. Entries with dashes indicate no score was given in the source paper
for that given game.

Method

Game Succ. Uncert. UBE BDQN DDQN
(5M) (200M) (30-40M) (200M)

Bank Heist 1,224 718 720 340
Crazy Climber1 111,770 132,998 124,000 101,874
Enduro 1,614 31 1,120 380
Freeway 28 0 — 32
Ms Pacman1 2,777 3,141 — 3,210
Q*bert1 14,290 (8M) 16,772 — 14,875

Atari results are more difficult to interpret and analyse than results from tabular exper-
iments. Performance on these games is highly related to how well the method interacts
with the convolutional neural network model utilised, and is thus less clear in terms of an
evaluation of exploration performance. Our results are comparable to those of other com-
mon exploration methods, showing that Successor Uncertainties can be scaled to work in
complex domains where state-action embeddings have to be learnt in an online manner.

7 Discussion

We have introduced Successor Uncertainties, a probabilistic model for the Q function of
an MDP that allows for efficient exploration at cost comparable to that of previous Q-
learning methods. Our method separates local uncertainties from deterministic features
learnt by a temporal difference approach. The benefit is that information is propagated
within the state-action space of the MDP and statistical dependencies in the Q-function
values are accounted for. Because of this, our method is a truly reinforcement learning
exploration solution, rather than an adaptation of a contextual bandit method, like epsilon-
greedy, to a reinforcement learning problem. Our results show that we compare favourably
with UBE and BDQN, two related strong probabilistic modelling techniques, on a subset
of Atari problems. We also test on classic exploration benchmarks, which assess the ability
of methods to deal with sparse rewards and low connectivity of the state-space, both key
aspects of exploration that strong methods must be capable of handling. Here, Successor
Uncertanties significantly outperforms both BDQN and UBE, highlighting the importance
of incorporating dependencies in probabilistic Q function models.

1Crazy Climber, Ms Pacman and Q*bert scores were steadily increasing as experiments ended.
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