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ABSTRACT

Formal verification of machine learning models has attracted attention recently, and
significant progress has been made on proving simple properties like robustness to
misclassification under perturbations of the input features. In this context, it has
also been observed that folding the verification procedure into training makes it
easier to train verifiably robust models. In this paper, we extend the applicability
of verified training by extending it to (1) recurrent neural network architectures
and (2) complex specifications that go beyond simple adversarial robustness, par-
ticularly specifications that capture temporal properties like requiring that a robot
periodically visits a charging station or that a language model always produces
sentences of bounded length. Experiments show that while models trained using
standard training often violate desired specifications, our verified training method
produces models that both perform well (in terms of test error or reward) and can
be shown to be provably consistent with specifications.

1 INTRODUCTION

While deep neural networks (DNNs) have shown immense progress on diverse tasks (Sutskever et al.,
2014; Mnih et al., 2015; Silver et al., 2016), they are often deployed without formal guarantees
of their correctness and functionality. Their performance is typically evaluated using test data, or
sometimes with adversarial evaluation (Carlini & Wagner, 2017; Uesato et al., 2018; Ebrahimi et al.,
2018; Wang et al., 2019). However, such evaluation does not provide formal guarantees regarding the
absence of rare but possibly catastrophic failures (Administration; Board; Ross & Swetlitz, 2018).

Researchers have therefore started investigating formal verification techniques for DNNs. Most of
the focus in this direction has been restricted to feedforward networks and robustness to adversarial
perturbations (Tjeng et al., 2017; Raghunathan et al., 2018b; Ko et al., 2019). However, many
practically relevant systems involve DNNs that lead to sequential outputs (e.g., an RNN that generates
captions for images, or the states of an RL agent). These sequential outputs can be interpreted
as real-valued, discrete-time signals. For such signals, it is of interest to provide guarantees with
respect to temporal specifications (e.g., absence of repetitions in a generated sequence, or that a
generated sequence halts appropriately). Temporal logic provides a compact and intuitive formalism
for capturing such properties that deal with temporal abstractions.

Here, we focus on Signal Temporal Logic (STL) (Donzé & Maler, 2010) as the specification language
and exploit its quantitative semantics to integrate a verification procedure into training to provide
guarantees with regard to temporal specifications. Our approach builds on recent work (Mirman
et al., 2018; Gowal et al., 2018), which is based on propagating differentiable numerical bounds
through DNNs, to include specifications that go beyond adversarial robustness. Additionally, we
propose extensions to Mirman et al. (2018); Gowal et al. (2018) that allow us to train auto-regressive
GRUs/RNNs to certifiably satisfy temporal specifications. We focus on the problem of verified
training for consistency rather than post-facto verification. To summarize, our contributions are as:

• We present extensions to Mirman et al. (2018); Gowal et al. (2018) that allow us to extend
verified training to novel architectures and specifications, including complex temporal
specifications. To handle the auto-regressive decoder often used in RNN-based systems, we
leverage differentiable approximations of the non-differentiable operations.
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• We empirically demonstrate the applicability of our approach to ensure verifiable consistency
with temporal specifications while maintaining the ability of neural networks to achieve high
accuracy on the underlying tasks across domains. For supervised learning, verified training
on the train-data enables us to provide similar verification guarantees for unseen test-data.
• We show that verified training results in robust DNNs whose specification conformance is

significantly easier to guarantee than those trained adversarially or with data augmentation.

2 RELATED WORK

Here, we discuss the most closely related approaches covering AI safety and DNN verification.

2.1 NEURAL NETWORK VERIFICATION

There has been considerable recent progress on developing techniques for neural network verification,
starting with the pioneering work of Katz et al. (2017), where a satisfiability-modulo-theories
(SMT) solver was developed to verify simple properties for piecewise linear deep neural networks.
Subsequently, several mature solvers that rely on combinatorial search (Tjeng et al., 2017; Dutta
et al., 2017; Bunel et al., 2018) have helped scale these techniques to larger networks.

More recently, verification of neural networks using incomplete over-approximations – using dual
based approaches (Dvijotham et al., 2018), and propagating bounds through the neural network (Gehr
et al., 2018; Wang et al., 2018c; Weng et al., 2018a; Singh et al., 2019) – has emerged as a more
scalable alternative for neural network verification. Raghunathan et al. (2018a); Wong et al. (2018)
showed that folding the verification procedure into the training loop (called verified training) enables
us to obtain stronger guarantees. Building on this line of work, Gowal et al. (2018) showed that
training with simple interval bounds, with carefully chosen heuristics, is an effective approach towards
training for verifiability. However, the focus of the above mentioned works on verified training is
limited to adversarial robustness properties, and feedforward networks with monotonic activation
functions. In this work, we build on Mirman et al. (2018); Gowal et al. (2018) to consider richer
specifications that capture desired temporal behavior, and novel architectures with non-differentiable
components. Table 1 compares different methods developed for verified training.

Table 1: Comparison of methods developed for training for consistency with specifications.

Beyond ReLU Continuous
Input Features

Components
with Gating

Auto-
regressive

Temporal
Specifications

Raghunathan et al. (2018a); Wong et al. (2018) 3
Wang et al. (2018b)
Gowal et al. (2018); Mirman et al. (2018) 3 3

Ghosh et al. (2018); Xiao et al. (2018) 3 3 3 3
Li et al. (2017a)
Ours 3 3 3 3 3

In independent and concurrent work, Jia et al. (2019) develop an approach for verifying LSTMs,
CNNs and networks with attention-mechanism. They use a similar approach as developed in our
paper to compute bounds through the softmax function, word-substitutions, and also extend bound-
propagation to handle the gating mechanism. Their main focus is robustness to misclassification. In
contrast, we consider complex temporal specifications, and auto-regressive architectures.

2.2 SATISFACTION OF TEMPORAL PROPERTIES

Temporal Specifications While training networks to satisfy temporal logic specifications has been
considered before, it has largely been from the perspective of encouraging RL agents to do so through
a modified reward (Icarte et al., 2018b; Aksaray et al., 2016; Hasanbeig et al., 2018; Icarte et al.,
2018a; Sadigh et al., 2014; Wen et al., 2017; Li et al., 2017a). The temporal logic specification is used
to express the task to be performed by the agent, rather than as a verifiable property of the system.
Ghosh et al. (2018) encourage specification conformance during training by regularizing with a loss
arising from the desired specification. However, the specification is enforced on specific inputs and
does not guarantee that the property holds across continuous regions of the input space (e.g., all
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inputs in the neighborhood of a given image). In contrast, we train DNNs to verifiably satisfy rich
temporal specifications over large/continuous sets of inputs. Further, we note that there is work on
falsifying STL specifications using stochastic optimization(Annpureddy et al., 2011; Donzé, 2010),
however our focus here is on verified training.

Safe RL Safe exploration methods (Garcıa & Fernández, 2015) consider explorations that do not
visit unsafe states. Temporal logics, in general, permit richer specifications of desired temporal
behaviors than avoiding unsafe states. Junges et al. (2016) synthesize a scheduler that limits the
agent explorations to safe regions of the environment specified using probabilistic computation tree
logic (PCTL). An alternative mechanism, called shields, monitors actions of an agent and restricts
it to a safe subset ensuring conformance to specifications in linear temporal logic (Alshiekh et al.,
2018) or PCTL (Jansen et al., 2018). Instead of using external mechanisms to restrict the agent
choices, we incorporate temporal logic objectives into training and achieve verified training of our
agents. Furthermore, our work is not restricted to training verifiable RL agents. We demonstrate the
generality of our approach on image captioning and language generation tasks involving RNNs.

Verification using Interpretable Policies PIRL (Verma et al., 2018) and VIPER (Bastani et al.,
2018) extract interpretable policies that are also amenable to verification. These approaches first learn
DNN agents and then use imitation learning to extract interpretable/verifiable policies. Wang et al.
(2018a) analyze RNNs by distillation to a Deterministic Finite Automaton (DFA), and demonstrate
successful distillation on recognizing Tommika Grammar. However, this distillation is often difficult,
and remains an open challenge for vision/language processing tasks. Further, there are no guarantees
about the original DNN. In contrast, we focus on guarantees for the DNN itself.

3 FORMULATING TEMPORAL CONSTRAINTS ON ML MODELS WITH SIGNAL
TEMPORAL LOGIC

We consider the problem of verified training of a model with respect to a desired property. In what
follows, we describe how signal temporal logic provides a formalism to describe properties of interest.

3.1 PRELIMINARIES

We use Signal Temporal Logic (STL) (Donzé & Maler, 2010), an extension of Linear Temporal Logic
(LTL) (Pnueli, 1977) that can reason about real-valued signals.

Syntax and Qualitative Semantics STL has the following syntax:
ϕ := true | q(s) ≥ 0 | ¬ϕ |ϕ1 ∧ ϕ2 |ϕ1UIϕ2 (1)

where true is the Boolean constant for truth, and ¬ and ∧ are Boolean negation and conjunction
operators. The symbol q is a quantifier-free non-linear real-valued arithmetic function over the
vector-valued state denoted by s; the formula q(s) ≥ 0 is called an atom. The formula ϕ1UIϕ2 is the
until temporal operator, meaning ϕ1 holds until ϕ2 holds in the interval I . We define ♦Iϕ (meaning ϕ
eventually holds in the interval I) as trueUIϕ and �Iϕ (meaning ϕ always holds in I) as ¬♦I¬ϕ.

In this work, we interpret STL formulae over a trace σ which is a discrete-time, vector-valued signal;
σt denotes the value of the signal at time t. We write (σ, t) |= ϕ to indicate that ϕ holds for σ at
time t. An atom q(s) ≥ 0 holds at time t if q(σt) ≥ 0. Trivially, (σ, t) |= true always holds.
An until formula ϕ1UIϕ2, with I = [a, b], holds at a time instance t if (σ, t′) |= ϕ2 for some time
t′ ∈ [t+ a, t+ b] and (σ, t′′) |= ϕ1 for all t′′ ∈ [t, t′]. In the rest of the paper, we use t+ I to denote
[t+ a, t+ b] for I = [a, b]. A formula ϕ is said to be satisfied over a trace σ if (σ, 0) |= ϕ. In this
work, we restrict I to be bounded-intervals of time. We refer the reader to Donzé & Maler (2010) for
a detailed introduction to the semantics of STL specifications.

While bounded-time STL properties can be unrolled through time into logical properties using the
Boolean conjunction and disjunction operators (Raman et al., 2015), STL provides a succinct and
intuitive notation for expressing desired temporal properties. In contrast with prior work on verified
training that only considers adversarial robustness (a linear constraint on the logits), we consider
general specifications that assert temporal properties over input-output behaviors of neural networks.
Section 3.2 lists several examples of relevant properties that can be expressed in bounded-time STL.
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3.2 STL SPECIFICATIONS FOR LEARNING TASKS

To illustrate our approach, we consider three temporal properties that we want our networks to satisfy.

3.2.1 BOUNDING CAPTION LENGTH FOR IMAGE-CAPTIONING

Figure 1: MMNIST Image

Multi-MNIST images consist of non-overlapping MNIST digits on a
canvas of fixed size (Figure 1). The number of digits in each image
varies between 1 and 3. The task is to label the sequence of digits in
the image, followed by an end of sequence token. Prior work on this
task (Wang et al., 2019) has shown image-to-sequence models to be
vulnerable to generating sequences longer than the true number of digits in the image, under small
adversarially chosen perturbations. Here, we consider the task of training a DNN that does not output
sequences longer than the desired length, while achieving similar nominal task performance.

Let y := f(x) be the sequence of logits output by the RNN model when given input image x. For an
image x, the termination specification is formalized as follows:

∀∆x ∈ {s : ‖s‖∞ ≤ ε}.(f(x+ ∆x), 0) |= ϕx, (2)
where ϕx(y) := ♦[0,t∗x]

∧
i 6=e

(y[t]e − y[t]i) ≥ 0, t∗x is the true number of digits in the image x, e is the

label corresponding to the end of sequence token, ε > 0 is the perturbation bound. Informally, this
specification enforces that the end of sequence token is output no later than after the true number of
digits have been output by the RNN, for all inputs within ε distance from a true-image.

3.2.2 VERIFYING THAT A ROBOT NEVER RUNS OUT OF CHARGE

To demonstrate our approach in the RL setting, we consider a task with a vacuum cleaning robot.
We summarize this task here (See Appendix F for more details). The agent (robot) operates in a
continuous domain with its location in (x, y) ∈ [0, 25]2 (Figure 2, Appendix). The room is divided
into discrete cells, and the agent gets a reward for visiting any “dirty” cell which has not been
visited in the previous Tdirt time-steps. The agent must visit one of the recharge cells every Trecharge
time-steps, or the episode is terminated with no further reward. The policy maps observations (of the
agent location and a map of the room) to continuous velocity controls. We use fθ to denote the result
of applying the policy, parameterized by θ, followed by the environment update.

For this agent, we want to verify the specification: ∀z ∈ Sε.(fθ(z), 0) |= �[0,T ]♦[0,Trecharge]ϕrecharge,
where ϕrecharge corresponds to the agent being in one of the recharge cells. This specification ensures
that, for a set of feasible starting positions Sε, for every time-step t in [0, T ], the agent recharges itself
at least once within Trecharge time-steps. See Appendix F.1 for a detailed description of Sε.

3.2.3 VERIFYING GENERATED OUTPUTS FROM A LANGUAGE MODEL

A common failure mode for language models is their tendency to fall into degenerate loops, often
repeating a stop-word (Wang et al., 2019). To illustrate the applicability of STL specifications in
this setting, we show how to formalize the property that a GRU language model does not repeat
words consecutively. We call this specification bigram non-repetition. More concretely, the desired
specification is that the output sequence does not contain bigram repetition amongst the 100 most
frequent tokens in the training corpus vocabulary. We want to verify this property over a large set
of possible conditioning inputs for the generative model. Concretely, we define an input set S of
roughly 25 million prefixes generated from a syntactic template (See Appendix G.1 for details).
These prefixes are input to the LM, and then we evaluate the specification on the model output.

Now, consider a prefix x and the sequence of logits y output by the recurrent GRU network f
(i.e. y = f(x)), with y(t)k referring to the logit corresponding to the kth most-frequent token in the
vocabulary at time t. A compact formal specification ϕbigram ruling out bigram repetition is:

ϕbigram := �[0,Tsample]

∧
i=1,2,...,100

((∧
j 6=i

y(t)i ≥ y(t)j)→ ♦[0,1]¬(
∧
j 6=i

y(t)i ≥ y(t)j

))
(3)

where Tsample denotes the length of the generated sample, in our case 10. The RNN f is required to
satisfy the specification ∀x ∈ S.(f(x), 0) |= ϕbigram.
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4 VERIFIABLE DNN TRAINING FOR STL SPECIFICATIONS

We consider the problem of learning a trace-valued function fθ to verifiably satisfy a specification of
the form ∀x ∈ S. (fθ(x), 0) |= ϕ, where input x ranges over set S, and fθ(x) is the trace generated
by fθ when evaluated on x, θ represents the trainable parameters, and ϕ is an STL specification. We
drop θ for brevity, and simply denote fθ(x) as f(x). Formally, our problem statement is:

Given a set of inputs S, train the parameters θ of fθ so that ∀x ∈ S. (fθ(x), 0) |= ϕ, where ϕ is a
bounded-time STL specification.

4.1 OPTIMIZATION FORMULATION OF STL VERIFICATION

For an STL specification ϕ, its quantitative semantics can be used to construct a function ρ(ϕ, f(x), t)
whose scalar valued output is such that ρ(ϕ, f(x), t) ≥ 0 ⇐⇒ (f(x), t) |= ϕ (Donzé & Maler,
2010). In terms of the quantitative semantics, the verification problem is equivalent to showing
that ∀x ∈ S. ρ(ϕ, f(x), 0) ≥ 0. This verification task can be written as the optimization problem
of finding the sequence of inputs x such that the sequence of outputs f(x) result in the strongest
violation of the specification with regard to the quantitative semantics:

min
x
ρ(ϕ, f(x), 0) subject to x ∈ S. (4)

If the solution to equation 4 is negative, then there exists an input leading to the violation of ϕ.

4.2 BOUND PROPAGATION

The optimization problem in equation 4 itself is often intractable; even in the case when the specifica-
tion is limited to robustness against perturbations in a classification task, it is NP-hard (Katz et al.,
2017). There are tractable approaches to bounding the problem in equation 4 (Raghunathan et al.,
2018a; Dvijotham et al., 2018), but the bounds are often too loose to provide meaningful guarantees.
To obtain a tighter bound tractably, interval bound propagation – which by itself provides loose
bounds, but is efficient to compute (2x computational cost) – can be leveraged for verified training to
give meaningful bounds on robustness under l∞ perturbations (Mirman et al., 2018; Gowal et al.,
2018). Our general approach for doing bound propagation on the function f is to use standard interval
arithmetic. While this is straightforward when f is a feedforward DNN (Gowal et al., 2018), here
we extend bound propagation to a richer set of (temporal) specifications and architectures. First, we
highlight the novel aspects of bound propagation required for (a) auto-regressive RNNs/GRUs, (b)
STL specifications.

Bound Propagation through GRUs Computing bounds across GRU cells involves propagating
bounds through a multiplication operation (as a part of gating mechanisms), which can be handled by
a straightforward application of interval arithmetic (Hickey et al., 2001) (see Appendix H).

Bound Propagation through auto-regressive RNNs For language modeling and image caption-
ing, we use GRU decoders with greedy decoding. Greedy-decoding involves a composition of the
one-hot and the argmax operations. Both of these operations are non-differentiable. To overcome
this and compute differentiable bounds (during training), we approximate this composition with
a softmax operator (with a low temperature T ). In the limit, as T → 0, the softmax operator
converges to the composition one-hot(argmax(·)) For propagating bounds through the softmax
operator, we leverage that the bounds are monotonic in each of the individual inputs. Formally, given
a lower (p) and upper (p) bound on the input p to a softmax layer (i.e., p ≤ p ≤ p), the lower w and
upper bound(w) on the output can be computed as:

s =

N∑
i=1

exp pi, s =

N∑
i=1

exp p
i
, ∆i = exp pi − exp p

i
, wi =

exp pi
s+ ∆i

wi =
exp p

i

s−∆i
,

where pi is the ith coordinate of p and p ∈ RN . During evaluation, the one-hot(argmax(.))
function is used as is. Given bounds on each coordinate of p (i.e., p ≤ p ≤ p) and s =
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one-hot(argmax(p)), bounds on coordinate si can be computed as:

si(x) =

{
1 pi ≥ pj .∀j
0 otherwise.

si(x) =

{
0 ∃j 6= i such that, p

j
> pi

1 otherwise.

We discuss bound propagation for discrete inputs in Appendix C

Bound Propagation through the specification First, we extend the quantiative semantics for STL
specifications (Donzé & Maler, 2010) to allow us to reason over sets of inputs. For a STL specification
ϕ in negation normal form (NNF) (See Appendix A for details on the quantitative semantics and
conversion to NNF), we first define a lower bound for the quantitative semantics of ϕ over the set
S, which we denote by ωS,f (ϕ, 0). We define this bound assuming we have lower bounds on all the
atoms occurring in ϕ. Specifically, let ΩS,f (q, t) be a lower bound on q(f(x)t) over all inputs x ∈ S;
in other words, at each time t we have ∀x ∈ S.ΩS,f (q, t) ≤ q(f(x)t). Now, we define the lower
bound on a specification ϕ inductively as:

• ωS,f (true, t) = +∞, ωS,f (¬true, t) = −∞, ωS,f (q(s) ≥ 0, t) = ΩS,f (q, t)

• ωS,f (ϕ1 ∧ ϕ2, t) = min(ωS,f (ϕ1, t), ωS,f (ϕ2, t))

• ωS,f (ϕ1 ∨ ϕ2, t) = max(ωS,f (ϕ1, t), ωS,f (ϕ2, t))

• ωS,f (ϕ1Uϕ2, t) = max
t′∈t+I

min
(
ωS,f (ϕ2, t

′), min
t′′∈[t,t′]

ωS,f (ϕ1, t
′′)
)

.

Lemma 1. For any time t, given lower bounds ΩS,f (q, t) on all the atoms q(s) ≥ 0 in ϕ, we have:
∀x ∈ S. ωS,f (ϕ, t) ≤ ρ(ϕ, f(x), t)

Corollary 1. If ωS,f (ϕ, t) ≥ 0, then ∀x ∈ S.(f(x), 0) |= ϕ.

See Appendix B for proof of Lemma 1. In order to compute the lower bounds ΩS,f (q, t) required for
Lemma 1, given bounds on the input x, we can first compute bounds on the outputs f(x)t at each
time t. For the atoms q(s) ≥ 0 appearing in ϕ, given bounds on the input s we can compute bounds
on q(s). These bounds can then be propagated through the specification inductively.

4.3 VERIFIED TRAINING FOR STL SPECIFICATIONS

In this section, we describe how to train a network to satisfy an STL specification ϕ. The quantitative
semantics ρ(ϕ, σ, 0) gives a degree to which σ satisfies ϕ. First, we compute lower bounds on the
values of the atoms in ϕ at each instance of time. Then, by application of Lemma 1, we can compute
the lower bound ωS,f (ϕ, 0) satisfying ∀x ∈ S. ωS,f (ϕ, 0) ≤ ρ (ϕ, f(x), 0). Subsequently we
optimize the lower bound ωS,f (ϕ, 0) to be non-negative, thereby guaranteeing that the specification
of interest holds: ∀x ∈ S. ρ (ϕ, f(x), 0) ≥ 0.

Let Lobj be the loss objective corresponding to the base task, for example, the cross-entropy loss for
classification tasks. Training thus requires balancing two objectives: minimizing loss on the base task
by optimizing Lobj(fθ), and ensuring the positivity of ωS,fθ . We can use gradient descent to directly
optimize the joint loss: Lobj(fθ)− λmin{ωS,fθ (ϕ, 0), τ , where λ is a scalar hyper-parameter, τ is a
positive scalar threshold (τ ∈ R+). The clipping avoids having to carefully balance the two losses.
The quantitative semantics of an STL specification ϕ is a non-smooth function of the weights of the
neural network, and is difficult to optimize directly with gradient descent. We find in practice that
curriculum training, similar to Gowal et al. (2018), works best for optimizing the specification loss,
starting with enforcing the specification over a subset S′ ⊂ S, and gradually covering the entire S.
Empirically, the curriculum approach means that the task performance (Lobj) does not degrade much.

5 EXPERIMENTAL RESULTS

5.1 SEQUENTIAL CAPTIONING OF MULTI-MNIST IMAGES

For this task, we perform verified training to enforce the termination specification ϕx (equation 4) on
the training data as discussed in Section 4.3. Post training, for unseen test-set images, we evaluate the
quantitative specification loss ωSx,ε,f (ϕx, 0). For an image x from the test-set, if ωSx,ε,f (ϕx, 0) is
positive, it is guaranteed that there is no input within an l∞ radius of ε around the current image that
can cause the RNN to generate a longer sequence than the number of true digits in the image.
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Table 2: Comparison of GRU training methods on the MMNIST task. We evaluate against the
termination specification on different metrics, and also report nominal accuracy. ‘–’ indicates a trivial
verified accuracy of 0% obtained with bound propagation. The entries with Verified Termination
Accuracies corresponding to 0.0 are those where we were able to generate adversarial examples
(counter-examples) to the specification for every point in the test-set. We found that adversarial
training is difficult because of the presence of the sigmoid & tanh activation functions commonly used
in GRUs. To have a meaningful baseline, we performed adversarial training on an RNN (feedforward
cells with ReLU activation). For ε = 0.1, attacking the loss from Wang et al. (2019) to produce longer
sequences performs better, while for the other ε values adversarial training with the STL quantitative
loss performs better. Adversarial training performs well but is difficult to verify. At larger ε, verified
training results in both better guarantees (specification conformance), and better nominal accuracies.

Perturbation ε Training Nominal Accuracy Verified Termination Accuracy Adversarial Termination Accuracy
Verifiable 94.9 98.3 100.0

0.1 Adversarial 94.1 – 100.0
Nominal 95.9 – 33.5

Verifiable 94.5 98.7 100.0
0.2 Adversarial 93.3 – 100.0

Nominal 95.9 – 20.94

Verifiable 94.4 98.7 100.0
0.3 Adversarial 90.0 – 99.7

Nominal 95.9 0.0 0.0

Verifiable 94.1 99.0 100.0
0.5 Adversarial 75.6 – 100.0

Nominal 95.9 0.0 0.0

Table 3: We train the RNN with ReLU activations from (Wang et al.,
2019) to be verifiable with ε = 0.3, and compare its verifiability with
MILP based verification reported in Wang et al. (2019) at different
perturbation radii. The nominal accuracy for the model trained to be
verifiable is 93.9% and model trained in a standard manner is 96.4%.
For larger perturbations, the MILP solver times out. ‘–’ indicates that
we were unable to certify robustness for any of the points in the test-set,
for the given perturbation within the time-out window of 30 minutes.

Perturbation Radius ε Training Verification Method Verified Termination Accuracy

0.002 Nominal MILP 83.00
Verifiable Bound Prop. 99.01

0.02 Nominal MILP –
Verifiable Bound Prop. 98.95

0.3 Nominal MILP –
Verifiable Bound Prop. 94.3

In Tables 2 and 3, veri-
fied termination accuracy
refers to the fraction of un-
seen data for which we
can verify the absence
of counter-examples to
the termination property
(equation 4). Nominal ac-
curacy refers to the per-
centage of correctly pre-
dicted tokens – including
the end of sequence token.
Table 2 compares verified
training with nominal and
adversarial training. Veri-
fied training outperforms
both adversarial and nominal training on both adversarial and verified termination accuracy metrics.
The pixel values are scaled to be in the range [0, 1]. At perturbations of size ε = 0.5, the images can
be turned gray; however, the DNN remains robust to such large perturbations by predicting that the
image has no more than a single digit at large perturbations, while maintaining nominal accuracy
on clean data. This in contrast with robustness against misclassification, where it is not possible to
be robust at large perturbations because the specifications for images from different classes conflict.
Adversarial accuracy is evaluated with the iterative attack from Wang et al. (2019) (10000 steps).

Run-time Considerations As another baseline, we compare with verified termination accuracies
from Wang et al. (2019)(Table 3). In Wang et al. (2019), the greedy-decoding and the specification
are turned into a MILP-query solved with the SCIP solver (Gleixner et al., 2018). Further, we use
ReLU RNNs here because GRUs are not amenable to MILP solvers. Verified training allows us to
certify specification conformance for much larger perturbations (≈ 2 orders of magnitude larger).

5.2 AN RL MOBILE-ROBOT AGENT

We consider the recharging specification ϕrecharge over a time-horizon of T = 10, for an agent
starting within a l∞ distance of ε from the center of the any of the cells (See Appendix F.1 for
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details on feasible initial states). To regularize the DNN to be verifiable with regard to ϕrecharge, the
specification loss is obtained by rolling out the current policy through time, and propagating bounds
through the rolled out policy and the dynamics. This assumes a deterministic dynamics model.

We compare our verifiably trained agent to both a vanilla RL agent, and an agent trained with reward
shaping as in Li et al. (2017b). All agents achieve a similar reward, and we do not find specification
violations for roll-outs from 106 random (feasible) initial states. To compare verifiability, we
discretize a region within a distance of ε to each cell-center into 102 l∞ balls, and verify with
bound-propagation that the agent satisfies ϕrecharge for each sub-region. Agents trained with verified
training are significantly more verifiable than agents trained otherwise, with little degradation in
performance (Table 4), which is consistent with prior work in classification (Wong & Kolter, 2018)

Table 4: Mean/Variance performance (across 5 agents of each type) across different metrics. For each
agent, reward is computed as mean across 100 episodes. ε is distance from the center of the grid cells,
and for each ε we report the fraction of the cells for which we are able to certify that ϕrecharge holds.

Training % of cells verified % of cells verified % of cells verified % of cells verified % of cells verified Reward
(ε = 1.0) (ε = 0.1) (ε = 0.01) (ε = 0.001) (ε = 0.0001)

Verifiable 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 12.71/0.19
Standard 15.8/9.0 64.9/6.8 77.6/5.3 90.3/1.8 99.2/0.0 12.85/0.06
Reward Shaping 39.1/21.9 74.3/8.6 83.2/5.9 92.0/1.9 100.0/0.0 12.76/0.22

5.3 LANGUAGE GENERATION
Table 5: Language model perplexity, number of
failures during an exhaustive enumerative search
over the 25M perturbations, and computational
cost of verification (number of forward passes).

Training Perplexity # Failures # Verification Cost

Verifiable 228.91 0 ≈2
Sampled 174.89 0 2.57× 107

Nominal 153.63 1.79× 107 2.57× 107

Our language model consists of a 2-layer GRU
with 64 hidden nodes per layer, trained on the
tiny Shakespeare corpus using a word embed-
ding dimension of 32, and vocabulary truncated
to the 2500 most frequent training words. We
evaluate the model’s ability to satisfy ϕbigram.
We compare both a nominal model trained using
log-likelihood, a model that randomly samples
prefixes from the input space and penalizes vio-
lations to the specification, and verified training that covers the full input space (Details in Appendix
G). We report test set perplexity and count of violations observed over the 25M prefixes (Table 5).

We find that while standard training achieves the best perplexity results, it also produces numerous
specification failures. Sampling prefixes and regularizing them to avoid bigram repetition using
ρ(ϕbigram, f(x), 0) eliminates failures, but the overall evaluation cost of the exhaustive search is
large. Verifiable training with bound propagation, by contrast, comes with a constant computational
cost of ≈ 2 forward passes. This is because matrix multiplications form a significant majority of
the computational cost during a forward pass, and propagating bounds through a layer of the form
y = σ(Wx + b), where σ is a monotonic activation function (e.g. ReLU, sigmoid, tanh), can be
performed such that it only costs twice as much as a normal forward pass (Gowal et al., 2018).

Run-time Considerations Verification with propagating bounds can be performed in under 0.4
seconds (including propagating bounds through the spec), while exhaustive search over 25M prefixes
for specification violations takes over 50 minutes. Further, as possible word substitutions increase,
the cost for exhaustive search grows exponentially while that for bound propagation stays constant.

6 CONCLUSION

Temporal properties are commonly desired from DNNs in settings where the outputs have a sequential
nature. We extend verified training to tasks that require temporal properties to be satisfied, and to
architectures such as auto-regressive RNNs whose outputs have a sequential nature. Our experiments
suggest that verified training leads to DNNs that are more verifiable, and often with fewer failures.

Future work includes extending verification/verified training to unbounded temporal properties.
Another important direction is to develop better bound propagation techniques that can be leveraged
for verified training. In the RL setting, an important direction is data-driven verification in the absence
of a known model of the environment.
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Appendices
A STL QUANTITATIVE SEMANTICS

In addition to the qualitative semantics discussed in the main text, STL formulae have quantitative
semantics (Donzé et al., 2013; Donzé & Maler, 2010) defined inductively by the function ρ below.
For a given trace σ, with σt indicating the value of the signal at time t, the quantitative semantics is
given by:

• ρ(true, σ, t) = +∞

• ρ(q(s) ≥ 0, σ, t) = q(σt)

• ρ(¬ϕ, σ, t) = −ρ(ϕ, σ, t)

• ρ(ϕ1 ∧ ϕ2, σ, t) = min (ρ(ϕ1, σ, t), ρ(ϕ2, σ, t))

• ρ(ϕ1 UI ϕ2, σ, t) = max
t′∈t+I

min

(
ρ(ϕ2, σ, t

′), min
t′′∈[t,t′]

ρ(ϕ1, σ, t
′′)

)
One can obtain the qualitative semantics from the sign of the quantitative semantics. Specifically,
(σ, t) |= ϕ ⇐⇒ ρ(ϕ, σ, t) ≥ 0.

We can convert the formulae to their equivalent negation normal form by following the standard
procedure until negations are only associated with atoms and Boolean constants. In particular, we
interpret ρ(¬true, σ, t) = −∞ and use the disjunction operator defined as ρ(ϕ1 ∨ ϕ2, σ, t) =
max(ρ(ϕ1, σ, t), ρ(ϕ2, σ, t)). The normal form for ¬(ϕ1UIϕ2) is obtained by pushing the negation
into the subformulae, and swapping min with max. Finally, we turn ¬(q(s) ≥ 0) into −q(s) > 0
which we approximate by −q(s)− δ ≥ 0 for some small δ > 0.

B PROOF OF LEMMA 1

Proof. We proceed by induction on ϕ. The base cases and the conjunction case are straightforward,
and the atom case follows by assumption. The disjunction case requires us to show: ωS,f (ϕ1 ∨
ϕ2, t) ≤ min

x∈S
(max(ρ(ϕ1, f(x), t), ρ(ϕ2, f(x), t))). Applying the max-min inequality, the right hand

side is at least max(min
x∈S

(ρ(ϕ1, f(x), t)),min
x∈S

(ρ(ϕ2, f(x), t)). Then using the inductive hypotheses,

we know this is at least max(ωS,f (ϕ1, t), ωS,f (ϕ2, t)), and the case follows. The case for the U
operator has a similar proof based on the max-min inequality.

C BOUNDS FOR DISCRETE INPUTS

Tasks with discrete inputs, such as language generation tasks, encode a prefix sentence as conditioning
before decoding a follow-up sequence of words. Consider prefixes of the form x = x0, x1, . . . such
that xi ∈ Si, where Si is a finite set of tokens that can appear at position i in the input sequence. We
can propagate perturbations in the prefix by first projecting the tokens Si through the embedding layer
E , and then considering the maximum and the minimum value along each embedding dimension to
bound the output from E. Formally,

Ej(xi) = min
xi∈Si

Ej(xi) ≤ Ej(xi) ≤ max
xi∈Si

Ej(xi) ≤ Ej(xi). (5)

Jia et al. (2019); Huang et al. (2019) also consider bound propagation for word substitutions.
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,

Beyond
ReLU

Training
for Spec.
Satisfac-
tion

Continuous
Input
Features

Components
with
Gating

Auto-
regressive
compo-
nents

Temporal
Specifica-
tions

Dvijotham et al. (2018) 3 7 3 7 7 7
Zhang et al. (2018)

Raghunathan et al. (2018a); Wong et al. (2018) 7 3 3 7 7 7
Wang et al. (2018b)

Gowal et al. (2018); Mirman et al. (2018) 3 3 3 7 7 7
Dutta et al. (2017); Tjeng et al. (2017) 7 7 3 7 7 7
Ghosh et al. (2018); Xiao et al. (2018) 3 3 7 3 3 3

Li et al. (2017a)
Weng et al. (2018b) 7 7 3 7 7 7

Ko et al. (2019) 3 7 3 3 7 7
Ours 3 3 3 3 3 3

Table 6: Comparison of methods developed for enforcing/checking consistency with specifications.

D DETAILED COMPARISON WITH RELATED WORK ON
VERIFICATION/VERIFIED TRAINING

E MMNIST

Figure 1 depicts a sample image from the MMNIST dataset. For this task, for the GRU decoder, we
train a 2 layer-convolution network with 32 filters in each layer, and the GRU decoder has 2 cells,
each with a latent space of 64 dimensions. Further, to help training with the specification stabilize,
we normalize the weights in the linear-layers of the GRU with the l1 norm (similar to the Salimans
& Kingma (2016), where the weights are normalized with the l2-norm. For the curriculum training,
we first train on the original task for 5000 steps to get the full clean accuracy, and then train with
the specification loss for another 300000 steps to regularize the model to satisfy the specification.
During this phase, we gradually ramp up the perturbation radius ε to the desired value, and also
simultaneously increase the coefficient λ. The normalizing prevents the bounds from getting large
during the wamring-up phase of training.

For adversarial training, we use a 7-step PGD attack from Madry et al. (2017), and we found that a
similar curriculum helps stabilize adversarial training. Adversarial training with the largest pertur-
bation radius as in Madry et al. (2017) degraded the performance on the nominal task signficiantly,
while curriculum based adversarial training degrades performance to a much lesser extent

For the test-train data split on this task, we use the same as in Wang et al. (2019).

F RL AGENT

F.1 INITIAL STATES OF THE RL AGENT

0 25

0

25

Figure 2: Domain for the
robot. Recharge cells in
green.

Sε corresponds to the states (x, y) within a l∞ distance of ε from the
centre of each of the cells. We formally define this set below.

For a cell i (for Figure 3, i ∈ {1, 2 . . . 25}) with center xci , yci , the ε-ball
Si,ε corresponds to the set of positions (xa, ya) for the agent such that
‖(xa − xci , ya − yci)‖∞ ≤ ε. Formally,

Si,ε := {(xa, ya) : ‖(xa − xci , ya − yci)‖∞ ≤ ε}.
We can then define S = ∪

i
Si,ε as the set of feasible initial states of

the agent for which we wish to verify the property. Table 4 reports the
fraction of cells i for which we are able to verify that the agent recharges
on starting from Si,ε.

F.2 TASK AND TRAINING DETAILS

The agent’s observation at each time-step t contains i) its own coordinates
(xt, yt), ii) for each cell, the time remaining until that cell is dirty, and iii)

14



Under review as a conference paper at ICLR 2020

the (fixed) locations of the recharge cells. The agent learns a policy from these observations to a
continuous control action (ax,t, ay,t) ∈ R2. The continuous part of the agent’s state is updated as:

xt+1 = xt + ax,t, yt+1 = yt + ay,t. (6)

The policy is represented in the parameters θ, and the result of applying the policy then the environ-
ment update is our function fθ.

Here, we consider verifying an agents trained with Deep-Q learning in an environment with
Trecharge = 3 and Tdirt = 4, i.e, every cell accumulates dust four time-steps after it was cleaned, and
the robot needs to recharge itself every 4 time-steps. Additionally, the initial cell where the robot
starts can have between 0− 0.1% uncertainty in the amount of dirt, the charge that can be acquired
from the recharge station, and the initial battery (as another element of uncertainty in the initial
position).

If the agent leaves the domain, it is clipped back into the problem domain. The agent’s each have 4
discrete actions and are trained with a combination of vanilla Deep-Q learning, Deep-Q learning +
reward-shaping, and Deep-Q learning + verifiable training. The actions corresponds to velocities in
the 4 cardinal directions, i.e., {(0, 5), (5, 0), (−5, 0), (0,−5)}. For the agent trained to be verifiable,
in addition to loss from Deep-Q learning, the agent is also trained to be verifiable with respect to
the temporal specification presented in Section 3.2.2. The verification losses are optimized using
the Adam optimizer Kingma & Ba (2015) with learning rate 10−3. The weight of the verification
loss anneals linearly between 0 and 1.5 during the first 70K steps. The model is trained to be
verifiable starting at the center of the grids, and eventually covering the region around the centers,
with ε = 0.015 during the same 70k steps. We find that this regularizes the model to be verifiable in
regions outside the region in which the model was trained to be verifiable.

G SHAKESPEARE

For the text generation task, we train a “seq2seq” model of Wu et al. (2016) with a GRU core. We
use the standard test-train split for this task. The reconstruction and verification losses are optimized
using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 10−1. The learning
is decayed every 1K steps by a factor 10, till it reaches 0.001. The weight of the verification loss
which is computed from the specification in Section 3.2.3 varies linearly between 20 and 1 during
100000 steps. Finally, the verification loss is clipped between below 10. The gradients during
optimization are clipped at 0.1 to prevent exploding gradients from the differentiable approximations
of one-hot(softmax(.))

G.1 PREFIX TEMPLATE

The Language Model prefixes are generated using the following syntax:
<pronoun>, <person>, <action-verb>, <connector>, <person>, <pronoun>,
<action-verb> , where:

<pronoun> = {’my’, ’your’, ’his’, ’her’, ’our’, ’their’}

<person> = {’sister’, ’brother’, ’father’, ’mother’, ’son’, ’daughter’, ’king’, ’queen’, ’knight’,
’noble’,’lord’,’duke’, ’duchess’, ’cousin’, ’palace’, ’widow’,’nurse’, ’marshal’, ’archbishop’, ’mayor’,
’maid’}

<action-verb> = {[’changed’,’despised’, ’loved’, ’married’, ’accused’, ’anointed’, ’danced’,
’rejoiced’, ’killed’, ’came’, ’left’, ’prayed’, ’stood’, ’read’, ’consorted’, ’denied’, ’condemned’,
’ruled’, ’proved’, ’parted’ ’resolved’, ’committed’, ’raised’, ’urged’, ’painted’, ’provoked’, ’lived’,
’charged’, ’yielded’, ’accursed’, ’assured’], }

<connector> = {’but’, ’while’, ’yet’, ’and’, ’because’]}

The space of combinations holds 25779600 possibilities to condition the language model generation
upon. An example prefix is :‘Our lord yielded and their king left’.
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H BOUND PROPAGATION THROUGH f

We describe how to perform bound propagation for a general recurrent neural network. The neural
network takes as input x and produces a sequence of outputs yτ for τ = 0, ...,K so the overall output
is (y0, y1, . . . , yK). We assume that we are given bounds on the input x

l0 ≤ x ≤ u0.

Our goal is to obtain bounds on yτ given bounds on x for each τ . Each output is produced conditioned
on the preceding outputs: yτ depends on y0, . . . , yτ−1.

We proceed recursively, assuming that we have already computed bounds on y0, . . . , yτ−1. We stack
the set of inputs to the computation as (x, y0, . . . , yτ−1) ∈ [lτ ;0, uτ ;0]. We study the computation
graph mapping these inputs to the output yτ . At each node in this computation graph, we perform a
computation of the form

zτ,i = wTi h (zτ ;−i) + w̃Ti h̃ (zτ ;−i)
T
zτ ;−i + bi

where h, h̃ are element-wise nonlinear operations (sigmoid, tanh, relu etc.) and zτ ;−i denotes the
elements of computational graph that are ancestors of the node i. The second term represents
multiplicative interactions (gating interactions) common in recurrent networks like LSTMs and GRUs.
Suppose we have already computed lower and upper bounds lτ ;−i, uτ ;−i on the preceding elements.
Then, we have

zτ,i ≥ max (wi, 0)
T
h (lτ ;−i) + min (wi, 0)

T
h (uτ ;−i)

+ 1T min

(
w̃i � h̃ (lτ ;i)� (lτ ;i) , w̃i � h̃ (uτ ;i)� (lτ ;i) ,

w̃i � h̃ (lτ ;i)� (uτ ;i) , w̃i � h̃ (uτ ;i)� (uτ ;i)

)
zτ,i ≤ max (wi, 0)

T
h (uτ ;−i) + min (wi, 0)

T
h (lτ ;−i)

+ 1T max

(
w̃i � h̃ (lτ ;i)� (lτ ;i) , w̃i � h̃ (uτ ;i)� (lτ ;i) ,

w̃i � h̃ (lτ ;i)� (uτ ;i) , w̃i � h̃ (uτ ;i)� (uτ ;i)

)
Setting lτ,i to the lower bound above and uτ,i to the upper bound, we have computed bounds on zτ,i.
Thus, we can recursively compute bounds until we obtain bounds lτ ≤ yτ ≤ uτ , which can then
be used to compute bounds on yτ+1. Proceeding recursively, we obtain lower and upper bounds on
(y0, y1, . . . , yK).

I SHAKESPEARE TEXT GENERATIVE MODEL SAMPLES

Method Prefix Generated Sequence

Verified Training Very well; and <eol> if we are like the king; and so the <eol> which of some other part
Would you <eol> could would be such other of the whole but is <eol> the a piece of

If I must not, <eol> as to be told general of the people, till he <eol> be the king to
Soft! who comes <eol> with the city but the whole prince and he <eol> are not them to the

Nominal Training Very well; and let <eol> 3 man <eol> will will not the new <eol> which the man of his
Would you <eol> shalt not the first to his face that you were not <eol> to the prince

If I must not, <eol> thing the matter but the man that he have <eol> not a piece of the
Soft! who comes <eol> these thing for the man that is the king <eol> <eol> is no matter of

Table 7: Samples of generated text for nominal and verifiably training GRUs on the Shakespeare
corpus under greedy decoding. <eol> refers to the end of line.
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