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Abstract

We study the problem of finding low-cost fair clusterings in data where each data
point may belong to many protected groups. Our work significantly generalizes the
seminal work of Chierichetti et al. (NIPS 2017) as follows.

• We allow the user to specify the parameters that define fair representation.
More precisely, these parameters define the maximum over- and minimum
under-representation of any group in any cluster.

• Our clustering algorithm works on any `p-norm objective (e.g. k-means, k-
median, and k-center). Indeed, our algorithm transforms any vanilla clustering
solution into a fair one incurring only a slight loss in quality.

• Our algorithm also allows individuals to lie in multiple protected groups. In
other words, we do not need the protected groups to partition the data and we
can maintain fairness across different groups simultaneously.

Our experiments show that on established data sets, our algorithm performs much
better in practice than what our theoretical results suggest.

1 Introduction

Many important decisions today are made by machine learning algorithms. These range from showing
advertisements to customers [49, 23], to awarding home loans [38, 46], to predicting recidivism [6,
24, 21]. It is important to ensure that such algorithms are fair and are not biased towards or against
some specific groups in the population. A considerable amount of work [37, 57, 19, 36, 15, 56, 55]
addressing this issue has emerged in the recent years.

Our paper considers fair algorithms for clustering. Clustering is a fundamental unsupervised learning
problem where one wants to partition a given data-set. In machine learning, clustering is often
used for feature generation and enhancement as well. It is thus important to consider the bias and
unfairness issues when inspecting the quality of clusters. The question of fairness in clustering was
first asked in the beautiful paper of Chierichetti et al. [19] with subsequent generalizations by Rösner
and Schmidt [50].

In this paper, we give a much more generalized and tunable notion of fairness in clustering than
that in [19, 50]. Our main result is that any solution for a wide suite of vanilla clustering objectives
can be transformed into fair solutions in our notion with only a slight loss in quality by a simple
algorithm.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Many works in fairness [15, 19, 50, 14] work within the disparate impact (DI) doctrine [28]. Broadly
speaking, the doctrine posits that any “protected class” must have approximately equal representation
in the decisions taken (by an algorithm). Although the DI doctrine is a law [1, 27] in the United
States, violating the DI doctrine is by itself not illegal [3]; it is illegal only if the violation cannot be
justified by the decision maker. In the clustering setting, this translates to the following algorithmic
question : what is the loss in quality of the clustering when all protected classes are required to have
approximately equal representation in the clusters returned?

Motivated thus, Chierichetti et al. [19], and later Rösner and Schmidt [50], model the set of points
as partitioned into ` colors, and the color proportion of each returned cluster should be similar to
that in the original data. There are three shortcomings of these papers: (a) the fairness constraint
was too stringent and brittle, (b) good algorithms were given only for the k-center objective, and (c)
the color classes weren’t allowed to overlap. We remark that the last restriction is limiting since an
individual can lie in multiple protected classes (consider an African-American senior woman). In our
work we address all these concerns: we allow the user to specify the fairness constraints, we give
simple algorithms with provable theoretical guarantees for a large suite of objective functions, and
we allow overlapping protected classes.

Our fairness notion. We propose a model which extends the model of [19] to have ` ≥ 2 groups
of people which are allowed to overlap. For each group i, we have two parameters βi, αi ∈ [0, 1].
Motivated by the DI doctrine, we deem a clustering solution fair if each cluster satisfies two properties:
(a) restricted dominance (RD), which asserts that the fraction of people from group i in any cluster is
at most αi, and (b) minority protection (MP), which asserts that the fraction of people from group i
in any cluster is at least βi. Note that we allow βi, αi’s to be arbitrary parameters, and furthermore,
they can differ across different groups. This allows our model to provide a lot of flexibility to users.
For instance, our model easily captures the notions defined by [19] and [50].

We allow our protected groups to overlap. Nevertheless, the quality of our solutions depend on the
amount of overlap. We define ∆ (similar to [15]) to be the maximum number of groups a single
individual can be a part of. This parameter, as we argued above, is usually not 1, but can be assumed
to be a small constant depending on the application.

Our results. Despite the generality of our model, we show that in a black-box fashion, we can get
fair algorithms for any `p-norm objective (this includes, k-center, k-median, and the widely used
k-means objective) if we allow for very small additive violations to the fairness constraint. We show
that given any ρ-approximation algorithm A for a given objective which could be returning widely
unfair clusters, we can return a solution which is a (ρ + 2)-approximation to the best clustering
which satisfies the fairness constraints (Theorem 1). Our solution, however, can violate both the RD
and MP property additively by 4∆ + 3. This is negligible if the clusters are large, and our empirical
results show this almost never exceeds 3. Further in our experiments, our cost is at most 15%more
than optimum, which is a much better factor compared to (ρ+ 2).

The black-box feature of our result is useful also in comparing the performance of any particular
algorithm A. This helps if one wishes to justify the property of an algorithm one might be already
using. Our results can be interpreted to give a way to convert any clustering algorithm to its fair
version. Indeed, our method is very simple – we use the solution returned by A to define a fair
assignment problem and show that this problem has a good optimal solution. The fair assignment
problem is then solved via iterative rounding which leads to the small additive violations. In the case
of ∆ = 1 (disjoint groups), we can get a simpler, one-iteration rounding algorithm.

Comparison with recent works. In a very recent independent and concurrent work, Schmidt et
al. [51] consider the fair k-means problem in the streaming model with a notion of fairness similar to
ours. However, their results crucially assume that the underlying metric space is Euclidean. Their
main contributions are defining “fair coresets” and showing how to compute them in a streaming
setting, resulting in significant reduction in the input size. Although their coreset construction
algorithm works with arbitrary number of groups, their fair k-means algorithms assume there are only
two disjoint groups of equal size. Even for this, Schmidt et al. [51] give an (5.5ρ+ 1)-approximation,
given any ρ-approximation for the vanilla k-means problem; the reader should compare with our
(ρ+ 2)-approximation. Backurs et al. [9] consider the problem of designing scalable algorithm for
the fair k-median problem in the Euclidean space. The notion of fairness is balance, as defined by
Chierichetti et al. [19], and hence works only for two disjoint groups. Their approximation ratio is
Or,b(d log n) where r and b are fairness parameters, and d is the dimension of the Euclidean space. In
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contrast, our fair k-means and k-median algorithms works in any metric space, with arbitrary number
of overlapping groups. Independently and concurrently, Ahmadian et al. [4] study the fair k-center
problem with only therestricted dominance constraints, and Bercea et al. [10] consider a variety of
clustering objectives in a fairness model that is similar to ours. Both of these works give similar, but
arguably more complicated algorithms with similar theoretical guarantees as ours. In comparison,
we emphasize on a simple, yet powerful unifying framework that can handle any `p-norm objective.
None of these above works handle overlapping groups.

1.1 Other related works

Fairness in algorithm design has received a lot of attention lately [12, 45, 26, 28, 37, 57, 19, 36,
15, 56, 55, 15, 14, 22, 40, 29]. Our work falls in the category of designing fair algorithms, and as
mentioned, we concentrate on the notion of disparate impact. Feldman et al. [28] and Zafar et al. [56]
study the fair classification problem under this notion. Celis et al. in [15], Celis et al. in [14], and
Chierichetti et al. in [20] study respectively the fair ranking problem, the multiwinner voting problem,
and the matroid optimization problem; All of these works model fairness through disparate impact.
Chierichetti et al. in [19] first addresses disparate impact for clustering problems in the presence of
two groups, Rösner and Schmidt [50] generalizes it to more than two groups.

Chen et al. [18] define a notion of proportionally fair clustering where all possible groups of reasonably
large size are entitled to choose a center for themselves. This work builds on the assumption that
sometimes the task of identifying protected group itself is untenable. Kleindessner et al. in [41] study
the problem of enforcing fair representation in the data points chosen as cluster center. This problem
can also be posed as a matroid center problem. Kleindessner et al. in [42] extends the fairness
notion to graph spectral clustering problems. Celis et al. in [13] proposes a meta algorithm for the
classification problem under a large class of fairness constraints with respect to multiple non-disjoint
protected groups.

Clustering is a ubiquitous problem and has been extensively studied in diverse communities (see [2]
for a recent survey). We focus on the work done in the algorithms and optimization community
for clustering problems under `p norms. The p = {1, 2,∞} norms, that is the k-median, k-means,
and k-center problems respectively, have been extensively studied. The k-center problem has a
2-approximation [31, 30] and it is NP-hard to do better [32]. A suite of algorithms [17, 35, 16, 8, 44]
for the k-median problem has culminated in a 2.676-approximation [11], and is still an active area of
research. For k-means, the best algorithm is a 9 + ε-approximation due to Ahmadian et al. [5]. For
the general p-norm, most of the k-median algorithms imply a constant approximation.

2 Preliminaries

Let C be a set of points (whom we also call “clients”) we want to cluster. Let these points be
embedded in a metric space (X , d). We let F ⊆ X be the set of possible cluster center locations
(whom we also call “facilities”). Note F and C needn’t be disjoint, and indeed F could be equal to
C. For a set S ⊆ X and a point x ∈ X , we use d(x, S) to denote miny∈S d(x, y). For an integer n,
we use [n] to denote the set {1, 2, . . . , n}.
Given the metric space (X , d) and an integer parameter k, in the VANILLA (k, p)-CLUSTERING
problem the objective is to (a) “open” a subset S ⊆ F of at most k facilities, and (b) find an assign-

ment φ : C → S of clients to open facilities so as to minimize Lp(S;φ) :=
(∑

v∈C d(v, φ(v))p
) 1

p

.

Indeed, in this vanilla version with no fairness considerations, every point v ∈ C would be assigned
to the closest center in S. The case of p = {1, 2,∞}, the k-median, k-means, and k-center problems
respectively, have been extensively studied in the literature [31, 30, 17, 35, 16, 8, 44, 11, 5]. Given an
instance I of the VANILLA (k, p)-CLUSTERING problem, we use OPTvnll(I) to denote its optimal
value.

The next definition formalizes the fair clustering problem which is the main focus of this paper.

Definition 1 (FAIR (k, p)-CLUSTERING Problem). In the fair version of the clustering problem, one
is additionally given ` many (not necessarily disjoint) groups of C, namely C1, C2, . . . , C`. We use
∆ to denote the maximum number of groups a single client v ∈ C can belong to; so if the Cj’s were
disjoint we would have ∆ = 1. One is also given two fairness vectors ~α, ~β ∈ [0, 1]`.
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The objective is to (a) open a subset of facilities S ⊆ F of at most k facilities, and (b) find an
assignment φ : C → S of clients to the open facilities so as to minimize Lp(S;φ), where φ satisfies
the following fairness constraints.∣∣∣{v ∈ Ci : φ(v) = f}

∣∣∣ ≤ αi ·
∣∣∣{v ∈ C : φ(v) = f}

∣∣∣, ∀f ∈ S , ∀i ∈ [`] , (RD)∣∣∣{v ∈ Ci : φ(v) = f}
∣∣∣ ≥ βi ·

∣∣∣{v ∈ C : φ(v) = f}
∣∣∣, ∀f ∈ S , ∀i ∈ [`] , (MP)

The assignment φ defines a cluster {v : φ(v) = f} around every open facility f ∈ S. As explained
in the Introduction, eq. (RD) is the restricted dominance property which upper bounds the ratio of
any group’s participation in a cluster, and eq. (MP) is the minority protection property which lower
bounds this ratio to protect against under-representation. Due to these fairness constraints, we can no
longer assume φ(v) is the nearest open facility in S to v. Indeed, we use the tuple (S, φ) to denote a
fair-clustering solution.

We use OPTfair(I) to denote the optimal value of any instance I of the FAIR (k, p)-CLUSTERING
problem. Since I is also an instance of the vanilla problem, and since every fair solution is also a
vanilla solution (but not necessarily vice versa) we get OPTvnll(I) ≤ OPTfair(I) for any I.

A fair clustering solution (S, φ) has λ-additive violation, if the eq. (RD) and eq. (MP) constraints are
satisfied upto ±λ-violation. More precisely, for any f ∈ S and for any group i ∈ [`], we have

βi ·
∣∣∣{v ∈ C : φ(v) = f}

∣∣∣− λ ≤ ∣∣∣{v ∈ Ci : φ(v) = f}
∣∣∣ ≤ αi ·

∣∣∣{v ∈ C : φ(v) = f}
∣∣∣+ λ (V)

Our main result is the following.

Theorem 1. Given a ρ-approximate algorithm A for the VANILLA (k, p)-CLUSTERING problem,
we can return a (ρ+2)-approximate solution (S, φ) with (4∆ + 3)-additive violation for the FAIR
(k, p)-CLUSTERING problem.

In particular, we get O(1)-factor approximations to the FAIR (k, p)-CLUSTERING problem with
O(∆) additive violation, for any `p norm. Furthermore, for the important special case of ∆ = 1, our
additive violation is at most +3.

3 Algorithm for the FAIR (k, p)-CLUSTERING problem

Our algorithm is a simple two step procedure. First, we solve the VANILLA (k, p)-CLUSTERING
problem using some algorithm A, and fix the centers S opened by A. Then, we solve a fair
reassignment problem, called FAIR p-ASSIGNMENT problem, on the same set of facilities to get
assignment φ. We return (S, φ) as our fair solution.

Definition 2 (FAIR p-ASSIGNMENT Problem). In this problem, we are given the original set of
clients C and a set S ⊆ F with |S| = k. The objective is to find the assignment φ : C → S such that
(a) the constraints eq. (RD) and eq. (MP) are satisfied, and (b) Lp(S;φ) is minimized among all such
satisfying assignments.

Given an instance J of the FAIR p-ASSIGNMENT problem, we let OPTasgn(J ) denote its optimum
value. Clearly, given any instance I of the FAIR (k, p)-CLUSTERING problem, if S∗ is the optimal
subset for I and J is the instance of FAIR p-ASSIGNMENT defined by S∗, then OPTfair(I) =
OPTasgn(J ). A λ-violating algorithm for the FAIR p-ASSIGNMENT problem is allowed to incur
λ-additive violation to the fairness constraints.

3.1 Reducing FAIR (k, p)-CLUSTERING to FAIR p-ASSIGNMENT

In this section we present a simple reduction from the FAIR (k, p)-CLUSTERING problem to the FAIR
p-ASSIGNMENT problem that uses a VANILLA (k, p)-CLUSTERING solver as a black-box.

Theorem 2. Given a ρ-approximate algorithmA for the VANILLA (k, p)-CLUSTERING problem and
a λ-violating algorithm B for the FAIR p-ASSIGNMENT problem, there is a (ρ+2)- approximation
algorithm for the FAIR (k, p)-CLUSTERING problem with λ-additive violation.
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Proof. Given instance I of the FAIR (k, p)-CLUSTERING problem, we run A on I to get a (not-
necessarily fair) solution (S, φ). We are guaranteed Lp(S;φ) ≤ ρ · OPTvnll(I) ≤ ρ · OPTfair(I).
Let J be the instance of FAIR p-ASSIGNMENT obtained by taking S as the set of facilities. We run
algorithm B on J to get a λ-violating solution φ̂. We return (S, φ̂).

By definition of λ-violating solutions, we get that (S, φ̂) satisfies eq. (V) and that Lp(S, φ̂) ≤
OPTasgn(J ). The proof of the theorem follows from the lemma below.

Lemma 3. OPTasgn(J ) ≤ (ρ+ 2) ·OPTfair(I).

Proof. Suppose the optimal solution of I is (S∗, φ∗) with Lp(S∗;φ∗) = OPTfair(I). Recall
(S, φ) is the solution returned by the ρ-approximate algorithm A. We describe the existence of an
assignment φ′ : C → S such that φ′ satisfies eq. (RD) and eq. (MP), and Lp(S;φ′) ≤ (ρ + 2) ·
OPTfair(I). Since φ′ is a feasible solution of J , the lemma follows. For every f∗ ∈ S∗, define
nrst(f∗) := arg minf∈S d(f, f∗) be the closest facility in S to f∗. For every client v ∈ C, define
φ′(v) := nrst(φ∗(v)). See Figure 6 in the supplementary material for an illustrative example. The
following two claims prove the lemma.

Claim 4. φ′ satisfies eq. (RD) and eq. (MP)

Proof. See Appendix B.

Claim 5. Lp(S;φ′) ≤ (ρ+ 2) OPTfair(I).

Proof. Fix a client v ∈ C. For the sake of brevity, let: f = φ(v), f ′ = φ′(v), and f∗ = φ∗(v). We
have

d(v, f ′) = d(v, nrst(f∗)) ≤ d(v, f∗)+d(f∗, nrst(f∗)) ≤ d(v, f∗)+d(f∗, f) ≤ 2d(v, f∗)+d(v, f)

The first and third follows from triangle inequality while the second follows from the definition
of nrst. Therefore, if we define the assignment cost vectors corresponding to φ, φ′, and φ∗ as
~d = {d(v, φ) : v ∈ C}, ~d′ = {d(v, φ′) : v ∈ C}, and ~d∗ = {d(v, φ∗) : v ∈ C} respectively, the
above equation implies ~d′ ≤ 2~d+ ~d∗. Now note that the Lp is a monotone norm on these vectors,
and therefore,

Lp(S;φ′) = Lp(~d′) ≤ 2Lp(~d) + Lp( ~d∗) = 2Lp(S∗;φ∗) + Lp(S;φ)

The proof is complete by noting Lp(S∗;φ∗) = OPTfair(I) and Lp(S;φ) ≤ ρ ·OPTfair(I).

3.2 Algorithm for the FAIR p-ASSIGNMENT problem

To complete the proof of Theorem 1, we need to give an algorithm for the FAIR p-ASSIGNMENT
problem. We present this in Algorithm 1. The following theorem then establishes our main result.

Theorem 6. There exists a (4∆ + 3)-violating algorithm for the FAIR p-ASSIGNMENT problem.

Proof. Fix an instance J of the problem. We start by writing a natural LP-relaxation1.

LP := min
∑

v∈C,f∈S

d(v, f)pxv,f xv,f ∈ [0, 1], ∀v ∈ C, f ∈ S (LP)

βi
∑
v∈C

xv,f ≤
∑
v∈Ci

xv,f ≤ αi

∑
v∈C

xv,f ∀f ∈ S, ∀i ∈ [`] (1a)

∑
f∈S

xv,f = 1 ∀v ∈ C (1b)

Claim 7. LP ≤ OPTasgn(J )p.

1This makes sense only for finite p. See Remark 1
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Let x? be an optimum solution to the above LP. Note that x? could have many coordinates fractional.
In Algorithm 1, we iteratively round x? to an integral solution with the same or better value, but
which violates the fairness constraints by at most 4∆ + 3. Our algorithm effectively simulates an
algorithm for minimum degree-bounded matroid basis problem (MBDMB henceforth) due to Király
et al. [39]. In this problem one is given a matroid M = (X, I), costs on elements in X , a hypergraph
H = (X, E), and functions f : E → R and g : E → R such that f(e) ≤ g(e) for all e ∈ E . The
objective is to find the minimum cost basis B ⊆ X such that for all e ∈ E , f(e) ≤ |B ∩ e| ≤ g(e).
Now we state the main result in Király et al [39].

Theorem 8 (Paraphrasing of Theorem 1 in [39]). There exists a polynomial time algorithm that
outputs a basis B of cost at most OPT, such that f(e)− 2∆H + 1 ≤ |B ∩ e| ≤ g(e) + 2∆H − 1
for each edge e ∈ E of the hypergraph, where ∆H = maxv∈X |{e ∈ EH : v ∈ e}| is the maximum
degree of a vertex in the hypergraph H , and OPT is the cost of the natural LP relaxation.

Algorithm 1 Algorithm for the FAIR p-ASSIGNMENT problem

1: procedure FAIRASSIGNMENT((X , d), S, C = ∪`i=1Ci, ~α, ~β ∈ [0, 1]`)
2: φ̂(v) = ∅ for all v ∈ C
3: solve the LP given in eq. (1), let x? be an optimal solution
4: for each x?v,f = 1, set φ̂(v) = f and remove v from C (and relevant Cis).
5: let Tf :=

∑
v∈C x

?
v,f for all f ∈ S

6: let Tf,i :=
∑

v∈Ci
x?v,f for all i ∈ [`] and f ∈ S

7: construct LP2 as given in eq. (2), only with variables xv,f such that x?v,f > 0

8: while there exists a v ∈ C such that φ̂(v) = ∅ do
9: solve LP2, let x? be an optimal solution

10: for each x?v,f = 0, delete the variable x?v,f from LP2

11: for each x?v,f = 1, set φ̂(v) = f and remove v from C (and relevant Cis). Reduce Tf
and relevant Tf,i’s by 1.

12: for every i ∈ [`] and f ∈ S, if |x?v,f : 0 < x?v,f < 1, v ∈ Ci| ≤ 2(∆ + 1) remove the
respective constraint in eq. (2c)

13: for every f ∈ S, if |x?v,f : 0 < x?v,f < 1, v ∈ C| ≤ 2(∆ + 1) remove the respective
constraint in eq. (2b)

LP2 := min
∑

v∈C,f∈S

d(v, f)pxv,f xv,f ∈ [0, 1], ∀v ∈ C, f ∈ S (2a)

bTfc ≤
∑
v∈C

xv,f ≤ dTfe ∀f ∈ S,∀i ∈ [`] (2b)

bTf,ic ≤
∑
v∈Ci

xv,f ≤ dTf,ie ∀f ∈ S,∀i ∈ [`] (2c)

∑
f∈S

xv,f = 1 ∀v ∈ C (2d)

However, rather than posing our problem as an MBDMB instance, we write a natural LP-relaxation
more suitable to the task — this is given in eq. (2). Proof of Theorem 6 is completed by drawing
parallel to the Király et al [39] analysis for the MBDMB problem; the details are in Appendix B.

Remark 1. For the case of p =∞, the objective function of eq. (LP) doesn’t make sense. Instead,
one proceeds as follows. We begin with a guess G of OPTasgn(J ); we set xv,f = 0 for all pairs with
d(v, f) > G. We then check if eqs. (1a) and (1b) have a feasible solution. If they do not, then our
guess G is infeasible (too small). If they do, then the proof given above returns an assignment which
violates eqs. (RD) and (MP) by additive 4∆ + 3, and satisfies d(v, φ(v)) ≤ G for all v ∈ C.
Remark 2. When ∆ = 1, that is, the Ci’s are disjoint, we can get an improved +3 additive violation
(instead of +7). Instead of using Theorem 8, we use the generalized assignment problem (GAP)
rounding technique by Shmoys and Tardos [52] to achieve this.
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Remark 3. Is having a bicriteria approximation necessary? We do not know. The nub is the FAIR
p-ASSIGNMENT problem. It is not hard to show that deciding whether a λ-violating solution exists
with λ = 0 under the given definition is NP-hard. 2 However, an algorithm with λ = 0 and cost
within a constant factor of OPTasgn(J ) is not ruled out. This is an interesting open question.

4 Experiments

In this section, we perform empirical evaluation of our algorithm. We implement our algorithm in
Python 3.6 and run all our experiments on a Macbook Air with a 1.8 GHz Intel Core i5 Processor and
8 GB 1600 MHz DDR3 memory. We use CPLEX[34] for solving LP’s. Based on our experiments,
we report four key findings: (1) Vanilla clustering algorithms are quite unfair even when measured
against relaxed settings of α and β. In contrast, our algorithm’s additive violation is almost always
less than 3, even with ∆ = 2, across a wide range of parameters (see fig. 1 and fig. 2). (2) The cost
of our fair clustering is close to the (unfair) vanilla cost for k ≤ 10 as in fig. 3. In fact, we see (in
fig. 7 in Appendix C.3) that our algorithm’s cost is very close to the absolute best fair clustering
that allows additive violations! Furthermore, our results for k-median significantly improve over the
costs reported in Chierichetti et al. [19] and Backurs et al. [9] (see Table 1 ). (3) For the case of
overlapping protected groups (∆ > 1), enforcing fairness with respect to one sensitive attribute (say
gender) can lead to unfairness with respect to another (say race). This empirical evidence stresses the
importance of considering ∆ > 1 (see fig. 2 in Appendix C.4). (4) Finally, we study how the cost of
our fair clustering algorithm changes with the strictness of the fairness conditions. This enables the
user to figure out the trade-offs between fairness and utility and make an informed decision about
which threshold to choose (see Appendix C.5).

Datasets. We use five datasets from the UCI repository [25]: 3 (1) bank [54] with 4,521 points,
corresponding to phone calls from a marketing campaign by a Portuguese banking institution.
(2) census [43] with 32,561 points, representing information about individuals extracted from the
1994 US census. (3) diabetes [53] with 101,766 points, extracted from diabetes patient records.
(4) creditcard [33] with 30,000 points, related to information on credit card holders from a certain
credit card in Taiwan. (5) census1990 [47] with 2,458,285 points, taken from the 1990 US census,
which we use for run time analysis. For each of the datasets, we select a set of numerical attributes to
represent the records in the Euclidean space. We also choose two sensitive attributes for each dataset
(e.g. sex and race for census ) and create protected groups based on their values. Appendix C.1
contains a more detailed description of the datasets and our features.

Measurements. For any clustering, we mainly focus on two metrics. One is the cost of fairness,
that is, the ratio of the objective values of the fair clustering over the vanilla clustering. The other is
balance, the measure of unfairness. To define balance, we generalize the notion found by Chierichetti
et al. [19], We define two intermediate values ri, the representation of group i in the dataset and ri(f),
the representation of group i in cluster f as ri := |Ci|/|C| and ri(f) := |Ci(f)|/|C(f)|. Using
these two values, balance is defined as balance(f) := min{ri/ri(f), ri(f)/ri} ∀i ∈ [`]. Although
in theory the values of α, β for a given group i can be set arbitrarily, in practice they are best set with
respect to ri, the ratio of the group in the dataset. Furthermore, to reduce the degrees of freedom, we
parameterize β and α by a single variable δ such that βi = ri(1 − δ) and αi = ri/(1 − δ). Thus,
we can interpret δ as how loose our fairness condition is. This is because δ = 0 corresponds to each
group in each cluster having exactly the same ratio as that group in the dataset, and δ = 1 corresponds
to no fairness constraints at all. For all of the experiments, we set δ = 0.2 (corresponding to the
common interpretation of the 80%-rule of DI doctrine), and use ∆ = 2, unless otherwise specified.

Algorithms. For vanilla k-center, we use a 2-approximation algorithm due to Gonzalez [30]. For
vanilla k-median, we use the single-swap 5-approximation algorithm by Arya et al. [8], augment it
with the D-sampling procedure by [7] for initial center section, and take the best out of 5 trials. For
k-means, we use the k-means++ implementation of [48].

Fairness comparison with vanilla clustering. In fig. 1 we motivate our discussion of fairness by
demonstrating the unfairness of vanilla clustering and fairness of our algorithm. On the x-axis, we
compare three solutions: (1) our algorithm (labelled “ALG”), (2) fractional solution to the FAIR
p-ASSIGNMENT LP in Equation (1) (labelled “Partial”), and (3) vanilla k-means (labelled “VC”).

2A simple reduction from the 3D-matching problem.
3https://archive.ics.uci.edu/ml/datasets/
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Below these labels, we record the cost of fairness. We set δ = 0.2 and k = 4. Along the y axis, we
plot the balance metric defined above for the three largest clusters for each of these clustering. The
dotted line at 0.8 is the goal balance for δ = 0.2. The lowest balance for any cluster for our algorithm
is 0.75 (for census ), whereas vanilla can be as bad as 0 (for bank ); “partial” is, of course, always
fair (at least 0.8). We observe that the maximum additive violation of our algorithm is only 3 (much

Figure 1: Comparison of our algorithm (ALG) versus vanilla clustering (VC) in terms of balance for
the k-means objective.

better than our theoretical bound of 4∆ + 3)), for a large range of values of δ and k, whereas vanilla
k-means can be unfair by quite a large margin. (see fig. 2 below and Table 3 in Appendix C.2).

Figure 2: Comparison of the maximum additive violation (for δ = 0.2 and ∆ = 2) over all clusters
and all groups between our algorithm (ALG) and vanilla (VC), using the k-means objective.

Cost analysis. We evaluate the cost of our algorithm for k-means objective with respect to the vanilla
clustering cost. Figure 3 shows that the cost of our algorithm for k ≤ 10 is at most 15% more than
the vanilla cost on bank , census , and creditcard . Interestingly, for creditcard , even though
the vanilla solution is extremely unfair as demonstrated earlier, cost of fairness is at most 6% which
indicates that the vanilla centers are in the “right place”.

8



Figure 3: Our algorithm’s cost (ALG) versus the vanilla clustering cost (VC) for k-means objective.

Our results in Table 1 confirm that we outperform [19] and [9] in terms of cost. To match [19] and [9],
we sub-sample bank , census , and diabetes to 1000, 600, and 1000 respectively, declared only
one sensitive attribute for each (i.e. marital for bank , sex for census , and gender for diabetes ),
and tune the fairness parameters to enforce a balance of 0.5. The data in table 1 for [9] is the output
of their code, and the numbers for [19] are drawn from their plots.

Table 1: Comparison of our clustering cost with [9] and [19] for k-median with varying k.

k 3 4 5 6 7 8 9 10

census
cost ×10−6

Ours 19.55 16.63 14.35 11.75 9.86 8.87 7.75 7.32
[9] 28.29 28.57 26.31 22.21 24.81 26.94 20.80 23.60

[19] 40 39 38.5 38 37.8 37.75 37.6 37.5

bank
cost ×10−5

Ours 6.81 5.64 4.95 4.49 4.05 3.79 3.53 3.44
[9] 8.05 7.78 7.65 6.63 6.33 6.68 5.42 6.70

[19] 5.9 5.8 5.77 5.75 5.7 5.65 5.62 5.6

diabetes
cost

Ours 6675 5491 3890 3371 3194 2939 2700 2380
[9] 7756 6412 5526 4746 4850 4765 4203 4337

[19] 11500 10300 10250 10200 10175 10150 10125 10100

Run time analysis. In this paper, we focus on providing a framework and do not emphasize on run time
optimization. Nevertheless, we note that our algorithm for the k-means objective finds a fair solution for the
census1990 dataset with 500K points and 13 features in less than 30 minutes (see Table 2). Even though our
approach is based on iterative rounding method, in practice CPLEX solution to LP (eq. (1)) is more than 99%
integral for each of our experiments. Hence, we never have to solve more than two or three LP. Also the number
of variables in subsequent LPs are significantly small. In contrast, if we attempt to frame LP (eq. (1)) as an
integer program instead, the CPLEX solver fails to find a solution in under an hour even with 40K points.

Table 2: Runtime of our algorithm on subsampled data from census1990 for k-means (k = 3).

Number of sampled points 10K 50K 100K 200K 300K 400K 500K
Time (sec) 4.04 33.35 91.15 248.11 714.73 1202.89 1776.51
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