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Introduction

DVA is a commercially available retinal vessel analyzer capable of continuous measurement of
retinal vessel diameters and thus, indirectly approximating the ocular blood flow [9]. The retinal
vessel diameters have been shown to be correlated with various biomarkers and pathologies (e.g.
age, gender, diabetes, glaucoma, etc).

While modeling the ocular blood flow has an extensive literature [8], modeling the retinal flicker
response, as recorded by the DVA, is missing. This paper is an attempt to fill this gap by proposing
first and second order difference equation models. The models are compared along their modeling
power, easiness of interpretation, speed and noise sensitivity.

The rationale is the following: modeling serves as a feature extraction procedure which maps high
dimentional measurements to low dimensional model parameters (2D, or 4D in our case). These,
in turn can subsequently be leveraged in visualisation, clustering and / or classification methods.
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Prior work

Studies related to our work has been done along two distinct dimensions: (1) mathematical mod-
eling of ocular blood flow and (2) description of DVA, studies on reproducibility and examining
the linkage between the different pathologies and DVA.

Mathematicalmodels for the ocular blood flowhave been proposed ondifferent levels: (a)modeling
vascular geometries [8] and mechanical properties of arteries [17], (b) modeling the dynamics of
the retinal blood flow [3, 1, 2], (c) modeling the retinal blood flow auto-regulation [7, 12, 4], and
(d) modeling the molecular interactions [29, 23, 28].

DVA has been shown to be a reliable way of measuring retinal vessel diameters [9]. Several studies
using DVA found correlation between the retinal flicker response and lifestyle [15, 16], age and
blood pressure [24], diabetes [10, 21], glaucoma [11], obesity [19] and gender differences [27].

Data source

The DVA measurement reflects the evolution of the diameters of one or more retinal vessel
segments during a 350 seconds examination using a common protocol: a 50 s baseline diameter
measurement under still illumination, followed by three successive flicker cycles. Each flicker
cycle consists of a 20 s stimulation using a 12.5 Hz flicker and an 80 s recovery period [14]. The
DVA assumes the Gullstrand eye model [13], and as the result of the examination outputs a pair
of 350-element real-valued vectors corresponding to 1 Hz artery and vein diameter readings (in
µm). For a comprehensive description of the recording procedure the reader is referred to [9].

Preprocessing

The DVA measurement is prone to errors from several error sources, resulting in missing or noisy
diameter values [9]. In order to avoid interference with the modeling algorithm ref! we limit
ourselves to only three preprocessing steps: (a) approximating missing diameter readings using
linear interpolation, (b) discarding vessels responses with proportion of missing values larger than
an arbitrarily fixed threshold, 20%, and (c) normalizing the individual diameter readings to zero
mean and unit variance. The preprocessing leaves 4627 measurements out of 5620, belonging to
2177 individual patients.

When multiple measurements per examination are available1 the best artery-vein pair (ai , v j)
which is the most representative for the given measurement is selected (Figure 1). The selection is
performed so that Euclidean norms ∣ai −A∣ and ∣v j −V∣ are minimal, where (A,V) is the ideal
artery and vein response pair defined as the golden average. The golden average was calculated by
averaging all vessel responses from all recorded patients that are marked as low-noise and healthy

1A relatively new feature of the DVA software.
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Figure 1: Sample DVA measurement of a 50-year-old male showing the evolution of diameter of
five artery and five vein segments (shown in red and blue) during a 350s examination.
The vessel diameter is determined from the logarithmized ratio of the intensities of the
vessel-free environment of the blood vessel and of the blood vessel [14]. Vessels dilate
during flicker stimulation (light blue stripes) and constrict afterwards.

by an independent medical expert. These will also serve as reference points during visualization
in the absence of a ground-truth (Figure 2).

Modeling the vessel flicker response

The flicker response is correlated with the patient’s age, gender, lifestyle, ethnicity and medical
history [21, 27, 19, 16]. Considering all these parameters is out of the scope of this paper (even if
they are available2) and the vessel flicker response model we build is based exclusively on the DVA
measurement data.

In this context we assume that the retinal flicker response can be described by a dynamical system,
where the current vessel diameter xt depends on (a) the previous diameter values xt−1, xt−2, . . .
and (b) the current and previous values of the flicker signal ut , ut−1, . . . . We further assume that
the true diameter values xt are contaminated by some additive and unknown measurement noise

2Age and gender data is available for all patients. Lifestyle, ethnicity and medical history, however, is scarce.
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Figure 2: Normalized average of a set of good quality, hand picked arteries and veins, called golden
averages.

ηt , therefore cannot be observed directly. What is observed are the diameter readings denoted by
yt , that is

yt = xt + ηt . (1)

We define the flicker signal’s value at time step t, as

ut =
⎧⎪⎪
⎨
⎪⎪⎩

1, if 50 + n < t ≤ 70 + n, n ∈ {0, 100, 200}
0, otherwise.

(2)

Consequently, themodeling problem can be formulated as the identification of a functionΘ(x⃗t , u⃗t)
so that

xt = Θ(x⃗t , u⃗t), (3)

where x⃗t ≡ (xt−1, xt−2, . . . xt−m) and u⃗t ≡ (ut , ut−1, . . . ut−n−1) are vectors in the delay embedding
space. After choosing a suitable form for Θ, Equation 3 is usually solved [20] using least squares
by minimizing the one-step-ahead prediction error

∑
t
(xt+1 −Θ(x⃗t , u⃗t))2 → min . (4)

As we do not have access to the true vessel diameter values xt , but to diameter readings yt , we will
approximate the system dynamics by minimizing

∑
t
(yt+1 −Θ( y⃗t , u⃗t))2 → min, (5)
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To tackle the error-in-variables problem [18] we will consider an alternative approach as well:
performing a full simulation of the response curve starting from some predefined initial values
z1, z2, . . . zm and minimizing the Euclidean distance between the simulated vessel response and
the diameter readings, that is

∑
t
(yt − zt)2 → min, (6)

where

zt =
⎧⎪⎪
⎨
⎪⎪⎩

ct ∈ R, if t ≤ m
Θ(z⃗t , u⃗t) otherwise.

(7)

In the following we will refer to the one-step-ahead prediction minimization as method P and the
full simulation minimization as method S.

Physical and biological systems usually exhibit dynamics with relatively few terms [6, 26] therefore
we will consider dynamical systems which can be described by first or second order difference
equations.

First order dynamics

The simplest difference equation that includes both the vessel response and the flicker signal is

Θ( y⃗t , u⃗t) ≡ αyt−1 + βut , where α, β ∈ R. (8)

Using method P (as per Equation 5) to find the corresponding α, β and γ values is equivalent to
solving the following overdetermined linear system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2
y3
⋮

yN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1 u2
y2 u3
⋮ ⋮

yN−1 uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
α
β] . (9)

Calculating α, β and z1 using method S (as per Equation 6) requires numerical optimization. We
used an interior-point algorithm [5] as implemented in Matlab’s fmincon function with random
restarts.

The optimal shift

The normalization during the preprocessing phase scales each measurement signal to unit variance
and shifts it vertically to zero mean. The vertical shift influences the modeling error and the
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zero meanness almost always results in suboptimal modeling error. A simple modification to
Equation 8 allows the inclusion of the optimal shift (denoted as γ):

yt − γ = α(yt−1 − γ) + βut⇔ (10)
yt = αyt−1 + βut + (1 − α)γ. (11)

The numerical optimization for method S can be readily adjusted to include γ as per Equation 11,
while method P changes into solving the following linear system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2
y3
⋮

yN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1 u2 1

y2 u3 1

⋮ ⋮ ⋮

yN−1 uN 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
β

(1 − α)γ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

Comparison of method S and method P

The two methods result in different set of parameters and different error values (see Figure 3). To
no surprise in over 99.98% of the cases method P was found better in minimizing the prediction
error and method S was better in minimizing the simulation error (see Table 1 for a summary).

Table 1: Comparison of simulation and prediction errors for method S and method P. Values
reflect the average difference one method is better than the other.

arteries veins

simulation error, method S≫method P 8.25% 13.11%
prediction error, method P≫method S 6.94% 5.92%

Response to trend

Certain measurements have a partial trend component. While this might have physiological
causes, empirical evidence shows that this is a specific measurement error3.

One of the differences in method S and method P is their response to trends present in the data:
while method S captures the trend, method P totally ignores it (see Figure 4d). In the absence of
the cause of the trend it is not possible to assess which approach is more desirable and whether a
de-trending preprocessing step (e.g. by subtracting a low-order regression polynomial) would be
adequate.

3Usually occurs when, during the measurement, the patient gradually moves their forehead backwards from the
fixating band or moves their chin from the support (both parts of the DVA machine) in a more comfortable position.
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(a) One-step-ahead prediction.

0 50 100 150 200 250 300 350

time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

no
rm

al
iz

ed
 v

es
se

l d
ia

m
et

er

First order dynamics, full simulation

artery
y(t) = 0.864·y(t-1)+0.394·u(t)-0.075, error: 9.334
y(t) = 0.875·y(t-1)+0.299·u(t)-0.060, error: 9.960

(b) Full simulation.

Figure 3: Comparison of method S (red curve) and method P (blue curve) for first order dynamics
for an arbitrary artery (gray curve). The two methods result in different set of parameters
but similar dynamics and comparable error values.

Notes on first order dynamics

Equation 8 is a linear time-invariant (LTI) system. Its transfer function is given by

H(z) = Y(z)
U(z)

=
β

1 − αz−1
, z ∈ C. (13)

Using the inverse z-transform this translates into the following impulse function:

h(n) = βαn
, ∀n ∈ N+. (14)

The impulse response completely characterizes the LTI system [25]. Taking the convolution of the
impulse response h with an arbitrary input signal q results in the model output4. There are few
noteworthy observations regarding coefficients α and β:

• α must be in the (0, 1) interval: if α is negative, then the impulse response oscillates with
the parity of n; if α is zero, or one the impulse response is constant; if α is larger than 1, then
the impulse response diverges; none of these are anatomically plausible.

• Negative β values equate with ‘upside down’ responses, i.e. theymodel vasonstriction instead
of vessel dialtion. These happen as abnormal vessel reactions5 or as an artefact of a noisy
measurement.

• Zero or close to zero β values result in small amplitude responses.
• Apart from a few cases, all (α, β) are within the unit circle with center (1, 0), more precisely

within the circle’s sector defined by ∣
β

α − 1
∣ < 1. While the former is due to the normalization,

we are unsure about the latter.
4This makes measurements recorded with different protocols comparable.
5Although in vitro some vessels react with vasoconstriction, see [22].
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• Measurements close to the golden average are characterized by β ≈ 1 − α. no idea why

Themajor limitation of the first order dynamics is that it cannot capture the negative overshoot and
recovery phase (i.e. the ≈50s interval immediately after the flicker) irrespective of the coefficient
values (see Figure 3b).

Visualization

Despite its limitations, the first order model has an important application in visualizing the model
parameter space. Considering only parameters α and β, modeling can be thought as a mapping
of the measurement space (⊂ R350) onto the parameter space (⊂ R2). The plot can be enhanced
if the points are colored based on the golden average: the smaller the distance of the arterial
measurement to the golden average, the cooler the corresponding point’s color. Figure 4 shows
the colored mapping of all arterial measurements using the two methods; method P provides a
smoother transition between the measurements which are close to the golden average and those
far from it(see Figure 4a).

Figure 4b also reveals that for a number of S models α is larger than one, despite the theory. Upon
inspection it turned out that this also due to trending (see Figure 5).

Second order dynamics

To capture the negative overshoot and recovery phases we propose the following second order
difference equation:

Θ( y⃗t , u⃗t) ≡ α1yt−1 + α2yt−2 + β1ut + β2ut−1 where α1, α2, β1, β2 ∈ R. (15)

Similarly to the first order case, if the vessel data is not optimally shifted, the equivalent non-
homogeneous equation can be used:

Θ( y⃗t , u⃗t) ≡ α1yt−1 + α2yt−2 + β1ut + β2ut−1 + γ(1 − α1 − α2) where γ ∈ R. (16)

Without the loss of generality in the following we will assume that all vessel data has been shifted
optimally prior modeling and will work only with Equation 15.

Comparison of method S and method P

Calculating the coefficients with method P requires solving the following overdetermined linear
system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y3
y4
⋮

yN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y2 y1 u3 u2
y3 y2 u4 u3
⋮ ⋮ ⋮ ⋮

yN−1 yN−2 uN uN−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1
α2
β1
β2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)
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Figure 4: Parameter space of methods P and method S based on 4627 arterial measurements (first
row, Figure 4a and Figure 4b). A dot with coordinates (α, β) represents a model of form
αyt−1 + βut + γ. Dots are colored according to the Euclidean distance of the arterial
response to the golden average. Three measurements of increasing goodness have been
highlighted in the second row: the first (Figure 4c) belongs to a 49-year-old male, the
second (Figure 4d) to a 19-year-old female and the third (Figure 4e) to a 76-year-old
female.

9



0 50 100 150 200 250 300 350

time(s)

-6

-5

-4

-3

-2

-1

0

1

2

no
rm

al
iz

ed
 v

es
se

l d
ia

m
et

er

artery
y(t) = 1.038·y(t-1)+0.000·u(t)-0.011

Figure 5: Strong downwards trend at the end of the measurement, possibly caused by patient
movement, resulting in above unit α value in method S.

As for method S, similar to the first order dynamics, the numerical optimization needs to find
coefficients α1, α2, β1, β2 and the initial values z1 and z2.

The outcome of the two methods for an arbitrary artery is shown in Figure 6. Please note that
method P has a serious shortcoming: it still fails to capture the overshoot and recovery phases
Figure 6b. The problem lies in the noise contaminating the arterial recordings; method P is
capable of recovering the model coefficients from artificially generated arterial responses (using
Equation 15) if the additive Gaussian ‘measurement’ noise is kept on very low levels, σ ≤ 10−2.

The comparison of the two methods considering the whole set of measurements further reveals
that the addition of extra coefficients (i.e. α2 and β2) makes the twomethods evenmore specialized
compared to the first order case (see Table 2).

Table 2: Comparison of simulation and prediction errors for method S and method P. Values
reflect the average difference one method is better than the other.

arteries veins

simulation error, method S≫method P 21% 22.1%
prediction error, method P≫method S 41.9% 40.6%

Simplification

The parameter space of method S (for the pairwise plots see Figure 7) does not provide a straight-
forward interpretation. What is striking, however, is the strong negative correlation between α1
and α2, and β1 and β2 (-0.9867 and 0.9723, respectively). This suggests that Equation 15 may be
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Figure 6: Comparison of method S (red curve) and method P (blue curve) for second order
dynamics for an arbitrary artery (gray curve). Method P cannot capture the negative
overshoot and recovery phases.

overly complicated and a simpler expression may suffice. While β1 = β2 can be included verbatim
in the new recursion, setting α2 = 1 − α1 would degenerate Equation 15 to a first order difference
equation. The simplified formula we propose therefore is

Θ( y⃗t , u⃗t , c1, c2) ≡ αyt−1 + (c1α + c2)yt−2 + βut − βut−1, (18)

where real constants c1 and c2 are characteristics of the method, rather than the individual models.
The optimal values for c1 and c2 in least squares terms can be calculated solving

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1
2

α2
2

⋮

αM
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1
1

1

α2
1

1

⋮ ⋮

αM
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
c1
c2
] , (19)

where the values for αk
1
and αk

2
are provided bymethod S for the differentmeasurements k = 1 . . .M.

Up to 4 degrees precision c1 and c2 were found to be -0.9913 and 0.9801 for arteries, and -0.9954
and 0.9899 for veins. An example of how the simplified method (we shall refer to it as S2 in the
following) models an arbitrary artery and vein is shown in Figure 8.

Replacing β2 with −β1 comes with a small increase (2.17% for arteries and 2.3% for veins) in the
average modeling error, considering the modeling error of method S as the reference value. The
two simplifications together increase the average modeling error by 10.1% for arteries and by 8.8%
for veins.

Running on a subset of the patients, e.g. on those marked as healthy would probably yield different
values. To discuss.
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Figure 7: Parameter space of method S for arteries. Color temperature correlates with the distance
from the golden average.
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Figure 8: Comparison of methods S and S2 on an arbitrary artery and vein.
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Notes on second order dynamics

The transfer function for Equation 15 is given by

H(z) = Y(z)
U(z)

=
β1 + β2z−1

1 − α1z−1 − α2z−2
=

β1z2 + β2z
z2 − α1z − α2

=
A1z
z − d1

+
A2z
z − d2

, z ∈ C, (20)

with poles

d1,2 =
α1 ±
√
α2
1
+ 4α2

2
. (21)

A1 and A2 can be calculated using partial fraction expansion resulting in

A1 =
β1d1 + β2
d1 − d2

and A2 =
β1d2 + β2
d2 − d1

. (22)

Therefore the impulse response of the system is

h(n) = A1dn
1
+ A2dn

2
, ∀n ∈ N+. (23)

Simplifications α2 = c1α1 + c2 and β2 = −β1 turn the poles and the impulse response into

d1,2 =
α ±
√
α2 + 4(αc1 + c2)

2
=
α ±
√
∆

2
, and (24)

h(n) = βd1 − 1√
∆

dn
1
+ β 1 − d2√

∆

dn
2
. (25)

Despite the simplifications, S2 exhibits a rich dynamics. Similarly to the first order case, β influences
the vertical orientation and the magnitude of the model response. Negative, or close to zero
βs result in upside-down responses or small amplitude responses, both matching pathological
measurements (e.g. Figure 4e).

For the impulse response to converge ∣∣d1∣∣ and ∣∣d2∣∣must be bound by one (see Figure 9). ∣∣d1∣∣ is
monotonically decreasing until the smaller root of ∆, ∆0 = −2c1 − 2

√
c2
1
− c2 after which point d1

becomes complex. Starting from ∆0, ∣∣d1∣∣ is monotonically increasing and it reaches 1 at α = c2 + 1
−c1

.

∣∣d2∣∣ first reaches 1 at α = 1 − c2
c1 − 1

, while monotonically decreasing until the inflection point at

α = − c2
c1

. Afterwards it monotonically increases until the larger root of ∆1 = −2c1 + 2
√
c2
1
− c2.

∣∣d2∣∣ reaches 1 second time at α = c2 + 1
−c1

. The impulse response h(n) therefore converges if

α ∈ ( 1 − c2
c1 − 1

,
c2 + 1
−c1
).
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Figure 9: Convergence of the impulse response for arteries. The shaded area marked by
α ∈ (−0.009, 2.084) is the region where both ∣∣d1∣∣ and ∣∣d2∣∣ are bound by 1.

Visualization

The parameter space of method S2 shown in Figure 10. The plot resembles more the first order
parameter space from Figure 4 than any of the pairwise plots in Figure 7. Although method S2 α
overflows the convergence boundaries to a greater extent, the reason is the same, i.e. capturing the
trend present in the vessel measurement.

Discussion

Table 3 summarizes the main characteristics of the methods we have presented in the previous
sections. Out of the five, two methods deserve to be mentioned again: the first order P and the
second order S2.

First order method P is intriguing because of the even spread of its parameters’ map, and the
smooth transition of the measurements’ distances to the golden average (shown by the dots’ colors)
compared to the rest ofmethods. At themoment we do not knowwhether this linkage is genuine or
some artifact. If it were genuine then the overshoot and recovery periods would loose considerably
from their perceived significance, something which is difficult to accept form physiological point
of view.

Method S2 is interesting because of the context it emerged from: the strong and unexpected
correlations among coefficients of method S. Though it is a full-blown second order method, S2
depends only on two parameters, a compromise which brings better visualization of its parameters’
map at the expense of increased modeling error. Loosely speaking, method S2 is barely a second
order model, as one of its poles, d1 has a very flat, close-to-one norm in the range that interests us
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Figure 10: Parameter space of method S2. Color temperature correlates with the distance from
the golden average.

(see Figure 9).

Conclusions

In this paper we introduced first and second order models for the retinal flicker response, as
recorded by DVA. We shown that second order difference equations are a good candidates, captur-
ing all major aspects of the response. We have also shown that S2, a two parameters, second order
method is an attractive alternative for mapping the measurements into two dimensions.
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