DEEP LAGRANGIAN NETWORKS: USING PHYSICS AS MODEL PRIOR FOR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has achieved astonishing results on many tasks with large amounts of data and generalization within the proximity of training data. For many important real-world applications, these requirements are unfeasible and additional prior knowledge on the task domain is required to overcome the resulting problems. In particular, learning physics models for model-based control requires robust extrapolation from fewer samples – often collected online in real-time – and model errors may lead to drastic damages of the system.

Directly incorporating physical insight has enabled us to obtain a novel deep model learning approach that extrapolates well while requiring fewer samples. As a first example, we propose Deep Lagrangian Networks (DeLaN) as a deep network structure upon which Lagrangian Mechanics have been imposed. DeLaN can learn the equations of motion of a mechanical system (i.e., system dynamics) with a deep network efficiently while ensuring physical plausibility.

The resulting DeLaN network performs very well at robot tracking control. The proposed method did not only outperform previous model learning approaches at learning speed but exhibits substantially improved and more robust extrapolation to novel trajectories and learns online in real-time.

1 Introduction

In the last five years, deep learning has propelled most areas of learning forward at an impressive pace (Krizhevsky et al., 2012; Mnih et al., 2015; Silver et al., 2017) – with the exception of physically embodied systems. This lag in comparison to other application areas is somewhat surprising as learning physical models is critical for applications that control embodied systems, reason about prior actions or plan future actions (e.g., service robotics, industrial automation). Instead, most engineers prefer classical off-the-shelf modeling as it ensures physical plausibility – at a high cost of precise measurement and engineering effort. These plausible representations are preferred as these models guarantee to extrapolate to new samples, while learning models achieve good performance only in the vicinity of the training data.

To learn a model that obtains physically plausible representations, we propose to use the insights from physics as a model prior for deep learning. In particular, the combination of deep learning and physics seems natural as the compositional structure of deep networks enables the efficient computation of the derivatives at machine precision (Raissi & Karniadakis, 2018) and, thus, can encode a partial differential equation (PDE) describing physical processes. Therefore, we suggest to encode the physics prior in the form of a PDE in the network topology. This adapted topology amplifies the information content of the training samples, regularizes the end-to-end training, and emphasizes robust models capable of extrapolating to new samples while simultaneously ensuring physical plausibility. Hereby, we concentrate on learning models of mechanical systems using the Lagrange-Euler-Equation, a second order PDE originating from Lagrangian Mechanics, as physics prior. We focus on learning models of mechanical systems as this problem is one of the fundamental challenges of robotics (de Wit et al., 2012; Schaal et al., 2002).

1 Highly precise models usually require taking the physical system apart and measuring the separated pieces (Albu-Schäffer, 2002).
Contribution

The contribution of this work is twofold. First, we derive a network topology called Deep Lagrangian Networks (DeLaN) encoding the Lagrange-Euler PDE originating from Lagrangian Mechanics. This topology can be trained using standard end-to-end optimization techniques while maintaining physical plausibility. Therefore, the obtained model must comply with physics. Unlike previous approaches to learning physics (Atkeson et al., 1986; Ledezma & Haddadin, 2017), which engineered fixed features from physical assumptions requiring knowledge of the specific physical embodiment, we are ‘only’ enforcing physics upon a generic deep network. For DeLaN only the system state and the control signal are specific to the physical system but neither the proposed network structure nor the training procedure. Second, we extensively evaluate the proposed approach by using the model to control a simulated 2 degrees of freedom (dof) robot and the physical 7-dof robot Barrett WAM in real time. We demonstrate DeLaN’s control performance where DeLaN learns the dynamics model online starting from random initialization. In comparison to analytic- and other learned models, DeLaN yields a better control performance while at the same time extrapolates to new desired trajectories.

In the following we provide an overview about related work (Section 2) and briefly summarize Lagrangian Mechanics (Section 3). Subsequently, we derive our proposed approach DeLaN and the necessary characteristics for end-to-end training are shown (Section 4). Finally, the experiments in Section 5 evaluate the model learning performance for both simulated and physical robots. Here, DeLaN outperforms existing approaches.

2 Related Work

Models describing system dynamics, i.e. the coupling of control input \(\tau \) and system state \(q \), are essential for model-based control approaches (Ioannou & Sun, 1996). Depending on the control approach, the control law relies either on the forward model \(f \), mapping from control input to the change of system state, or on the inverse model \(f^{-1} \), mapping from system change to control input, i.e.,

\[
f(q, \dot{q}, \tau) = \ddot{q}, \quad f^{-1}(q, \dot{q}, \ddot{q}) = \tau.
\] (1)

Examples for application of these models are inverse dynamics control (de Wit et al., 2012), which uses the inverse model to compensate system dynamics, while model-predictive control (Camacho & Alba, 2013) and optimal control (Zhou et al., 1996) use the forward model to plan the control input. These models can be either derived from physics or learned from data. The physics models must be derived for the individual system embodiment and requires precise knowledge of the physical properties (Albu-Schäffer, 2002). When learning the model, mostly standard machine learning techniques are applied to fit either the forward- or inverse-model to the training data. E.g., authors used Linear Regression (Schaal et al., 2002; Haruno et al., 2001), Gaussian Mixture Regression (Calinon et al., 2010; Khansari-Zadeh & Billard, 2011), Gaussian Process Regression (Kocijan et al., 2004; Nguyen-Tuong et al., 2009; Nguyen-Tuong & Peters, 2010), Support Vector Regression (Choi et al., 2007; Ferreira et al., 2007), feedforward (Jansen, 1994; Lenz et al., 2015; Ledezma & Haddadin, 2017; Sanchez-Gonzalez et al., 2018) or recurrent neural networks (Rueckert et al., 2017) to fit the model to the observed measurements. Only few approaches incorporate prior knowledge into the learning problem. Atkeson et al. (1986) used the Newton-Euler formalism to derive physics features such that learning of the inverse dynamics model simplifies to linear regression. Similarly, Ledezma & Haddadin (2017) encoded the equations describing the analytic inverse dynamics model derived using the Newton-Euler formalism as network, and trained the network using end-to-end training. Sanchez-Gonzalez et al. (2018) used the graph representation of the embodiment as structured input. With DeLaN we follow the line of structured learning problems but use a more general formulation. Rather than requiring knowledge of the physical embodiment to construct a graph or derive the Newton-Euler approach, DeLaN is identical for all mechanical systems and does require specific knowledge of the embodiment. Only the system state and input is specific to the system but neither the topology nor the optimization procedure.

The combination of PDEs and Neural Networks has previously been investigated in literature. Early on Lagaris et al. (1998; 2000) proposed to learn PDE solution using neural networks and currently

2Further information can be found in the model learning survey by Nguyen-Tuong & Peters (2011).
this topic is being rediscovered by Raissi & Karniadakis (2018), Sirignano & Spiliopoulos (2017); Long et al. (2017). Most research focuses on using machine learning to overcome the limitations of PDE solvers. E.g., Sirignano & Spiliopoulos (2017) proposed the Deep Galerkin method to solve a high-dimensional PDE from scattered data. Only the work of Raissi et al. (2017) took the opposite standpoint of using the knowledge of the specific PDE to structure the learning problem and achieve lower sample complexity. In this paper, we follow the same motivation as Raissi et al. (2017) but take a different approach. Rather than explicitly solving the PDE, DeLaN only uses the structure of the PDE to guide the learning problem of inferring the equations of motion. Thereby the PDE is only implicitly solved. In addition, the proposed approach uses different encoding of the partial derivatives, which achieves the efficient computation within a single feed-forward pass, enabling the application within control loops.

3 Preliminaries: Lagrangian Mechanics

Describing the equations of motion for mechanical systems has been extensively studied and various formalisms to derive these equations exist. The most prominent are Newtonian-, Hamiltonian- and Lagrangian-Mechanics. Within this work Lagrangian Mechanics is used, more specifically the Lagrange-Euler PDE with non-conservative forces and generalized coordinates. Generalized coordinates are coordinates that uniquely define the system configuration. This formalism defines the Lagrangian L as a function of generalized coordinates \mathbf{q} describing the complete dynamics of a given system. The Lagrangian is not unique and every L which yields the correct equations of motion is valid. The Lagrangian is generally chosen to be

$$L = T - V$$

(2)

where T is the kinetic energy and V is the potential energy. The kinetic energy T can be computed for all choices of generalized coordinates using $T = \frac{1}{2} \mathbf{q}^T \mathbf{H} \mathbf{q}$, whereas \mathbf{H} is the symmetric and positive definite inertia matrix (de Wit et al., 2012). The positive definiteness ensures that all non-zero velocities lead to positive kinetic energy. Applying the calculus of variations yields the Euler-Lagrange equation with non-conservative forces described by

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = \mathbf{\tau}$$

(3)

where $\mathbf{\tau}$ are generalized forces. Substituting L and $dV/d\mathbf{q} = \mathbf{g}$ into Equation (3) yields

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{H}(\mathbf{q})\dot{\mathbf{q}} - \frac{1}{2} \left[\frac{\partial}{\partial \mathbf{q}} \left(\mathbf{q}^T \mathbf{H}(\mathbf{q}) \mathbf{q} \right) \right]^T + \mathbf{g}(\mathbf{q}) = \mathbf{\tau}.$$

(4)

Within engineering disciplines, Equation (4) is further abstracted to

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{c}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{\tau} \quad \text{with} \quad \mathbf{c}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{H}(\mathbf{q})\dot{\mathbf{q}} - \frac{1}{2} \left[\frac{\partial}{\partial \mathbf{q}} \left(\mathbf{q}^T \mathbf{H}(\mathbf{q}) \mathbf{q} \right) \right]^T$$

(5)

where \mathbf{c} abstracts the forces generated by the Centripetal and Coriolis forces and \mathbf{g} corresponds to the gravitational force (Featherstone, 2007).

4 Incorporating Lagrangian Mechanics into Deep Learning

Starting from the Lagrange-Euler PDE (Equation (4)), traditional engineering approaches would estimate $\mathbf{H}(\mathbf{q})$ and $\mathbf{g}(\mathbf{q})$ from the approximated or measured masses, lengths and moments of inertia. On the contrary most traditional model learning approaches would ignore the structure and learn the inverse dynamics model directly from data. DeLaN bridges this gap by incorporating the structure introduced by the PDE into the learning problem and learns the parameters in an end-to-end fashion. More concretely, DeLaN approximates the inverse model by representing the unknown functions $\mathbf{g}(\mathbf{q})$ and $\mathbf{H}(\mathbf{q})$ as a feed-forward networks. Rather than representing $\mathbf{H}(\mathbf{q})$ directly, the lower-triangular matrix $\mathbf{L}(\mathbf{q})$ is represented as deep network. Therefore, $\mathbf{g}(\mathbf{q})$ and $\mathbf{H}(\mathbf{q})$ are described by

$$\hat{\mathbf{H}}(\mathbf{q}) = \hat{\mathbf{L}}(\mathbf{q}; \vartheta)\hat{\mathbf{L}}(\mathbf{q}; \vartheta)^T \quad \hat{\mathbf{g}}(\mathbf{q}) = \hat{\mathbf{g}}(\mathbf{q}; \psi)$$

shown in Figure 1.

L positive diagonal. The off-diagonal elements deep network with different heads and altering the activation of the output layer one can obtain a the diagonal of while simultaneously reducing the number of parameters. The positive definiteness is obtained if the product of a lower-triangular matrix the symmetry and the positive semi-definiteness is ensured invertible and the obtained model can be used as forward model. By representing the matrix kinetic energy for all non-zero velocities. In addition, the positive definiteness ensures that Ensuring the symmetry and positive definiteness of \(\hat{L} \) is essential as this constraint enforces positive kinetic energy for all non-zero velocities. In addition, the positive definiteness ensures that \(\hat{L} \) is invertible and the obtained model can be used as forward model. By representing the matrix as a forward model. Solving Equation 7 for arbitrary velocities and accelerations. In addition, the obtained model can be reformulated and used as forward model. Using this formulation one can conclude further properties of the learned model. Neither \(\hat{L} \) nor \(\hat{g} \) are functions of \(\mathbf{q} \) or \(\dot{\mathbf{q}} \) and, hence, the obtained parameters should, within limits, generalize to arbitrary velocities and accelerations. In addition, the obtained model can be reformulated and used as forward model. Solving Equation 7 for \(\mathbf{q} \) yields the forward model described by

\[
\hat{f}(\mathbf{q}, \dot{\mathbf{q}}; \theta, \psi) = (\hat{L} \hat{L}^T)^{-1} \left(\tau - \frac{d}{dt} (\hat{L} \hat{L}^T) \mathbf{q} + \frac{1}{2} \left(\frac{\partial}{\partial \mathbf{q}} \left(\mathbf{q}^T \hat{L} \hat{L}^T \mathbf{q} \right) \right) \right)^T - \hat{g}
\]

where \(\hat{L} \hat{L}^T \) is guaranteed to be invertible due to the positive definite constraint (Equation 8). However, solving the optimization problem of Equation 6 directly is not possible due to the ill-posedness of the Lagrangian \(L \) not being unique. The Langrange-Euler PDE is invariant to linear transformation and, hence, the Lagrangian \(L' = \alpha L + \beta \) solves the Lagrange-Euler PDE if \(\alpha \) is non-zero and \(L \) is a valid Lagrangian. This problem can be mitigated by adding an additional penalty term to Equation 6 described by

\[
(\theta^*, \psi^*) = \arg\min_{\theta, \psi} \ell \left(\hat{f}^{-1}(\mathbf{q}, \dot{\mathbf{q}}; \theta, \psi), \tau \right) + \lambda \Omega(\theta, \psi)
\]

where \(\Omega \) is the \(L_2 \)-norm of the network weights.

Solving the optimization problem of Equation 10 with a gradient based end-to-end learning approach is non-trivial due to the positive definite constraint (Equation 8) and the derivatives contained in \(\hat{f}^{-1} \). In particular, \(\frac{d(\mathbf{L} \mathbf{L}^T)}{dt} \) and \(\frac{\partial (\mathbf{q}^T \mathbf{L} \mathbf{L}^T \mathbf{q})}{\partial \mathbf{q}} \) cannot be computed using automatic differentiation as \(\hat{f} \) is not an input of the network and most implementations of automatic differentiation do not allow the backpropagation of the gradient through the computed derivatives. Therefore, the derivatives contained in \(\hat{f}^{-1} \) must be computed analytically to exploit the full gradient information for training of the parameters. In the following we introduce a network structure that fulfills the positive-definite constraint for all parameters (Section 4.1), prove that the derivatives \(\frac{d(\mathbf{L} \mathbf{L}^T)}{dt} \) and \(\frac{\partial (\mathbf{q}^T \mathbf{L} \mathbf{L}^T \mathbf{q})}{\partial \mathbf{q}} \) can be computed analytically (Section 4.2) and show an efficient implementation for computing the derivatives using a single feed-forward pass (Section 4.3). Using these three properties the resulting network architecture can be used within a real-time control loop and trained using standard end-to-end optimization techniques.

4.1 Symmetry and Positive Definiteness of \(\mathbf{H} \)

Ensuring the symmetry and positive definiteness of \(\mathbf{H} \) is essential as this constraint enforces positive kinetic energy for all non-zero velocities. In addition, the positive definiteness ensures that \(\mathbf{H} \) is invertible and the obtained model can be used as forward model. By representing the matrix \(\mathbf{H} \) as the product of a lower-triangular matrix the symmetry and the positive semi-definiteness is ensured while simultaneously reducing the number of parameters. The positive definiteness is obtained if the diagonal of \(\mathbf{L} \) is positive. This positive diagonal also guarantees that \(\mathbf{L} \) is invertible. Using a deep network with different heads and altering the activation of the output layer one can obtain a positive diagonal. The off-diagonal elements \(\mathbf{L}_o \) use a linear activation while the diagonal elements \(\mathbf{L}_d \) use a non-negative activation, e.g., ReLu or Softplus. In addition, a positive scalar \(b \) is added to diagonal elements. Thereby, lower bounding the eigenvalues of \(\mathbf{H} \) by \(b^2 \). In addition, we chose to share parameters between \(\mathbf{L} \) and \(\mathbf{g} \) as both rely on the same physical embodiment. The network architecture, with three-heads representing the diagonal \(\mathbf{L}_d \) and off-diagonal \(\mathbf{L}_o \) entries of \(\mathbf{L} \) and \(\mathbf{g} \), is shown in Figure 1.

4
4.2 Deriving the derivatives

The derivatives $d(LL^T)/dt$ and $\partial (q^T LL^T q)/\partial q_i$ are required for computing the control signal τ using the inverse model and, hence, must be available within the forward pass. In addition, the second order derivatives, which are computed within the backpropagation of the gradients, must exist to train the network using end-to-end training. To enable the computation of the second order derivatives, automatic differentiation of the forward computation must be performed analytically. Both derivatives, $d(LL^T)/dt$ and $\partial (q^T LL^T q)/\partial q_i$, have closed form solutions and can be derived by first computing the respective derivative of L and second substituting the reshaped derivative of the vectorized form l. For the temporal derivative $d(LL^T)/dt$ this yields

$$\frac{d}{dt}H(q) = \frac{d}{dt} \left(LL^T \right) = L \frac{dL}{dt}^T + \frac{dL}{dt} L^T \quad (11)$$

where dL/dt can be substituted with the reshaped form of

$$\frac{d}{dt}l = \frac{\partial l}{\partial q} \frac{\partial q}{\partial t} + \sum_{i=1}^N \frac{\partial l}{\partial W_i} \frac{\partial W_i}{\partial t} + \sum_{i=1}^N \frac{\partial l}{\partial b_i} \frac{\partial b_i}{\partial t} \quad (12)$$

where i refers to the i-th network layer consisting of an affine transformation and the non-linearity g_i. i.e., $b_i = g_i(W_i b_{i-1} + b_i)$. Equation (12) can be simplified as the network weights W_i and biases b_i are time-invariant, i.e., $dW_i/dt = 0$ and $db_i/dt = 0$. Therefore, dl/dt is described by

$$\frac{d}{dt}l = \frac{\partial l}{\partial q} \frac{\partial q}{\partial t} \quad (13)$$

Due to the compositional structure of the network and the differentiability of the non-linearity, the derivative with respect to the network input dl/dq can be computed by recursively applying the chain rule, i.e.,

$$\frac{\partial l}{\partial q} = \frac{\partial l}{\partial h_{N-1}} \frac{\partial h_{N-1}}{\partial h_{N-2}} \ldots \frac{\partial h_1}{\partial q} \quad \frac{\partial h_i}{\partial h_{i-1}} = \text{diag} \left(g'(W_i^T b_{i-1} + b_i) \right) W_i \quad (14)$$

where g' is the derivative of the non-linearity. Similarly to the previous derivation, the partial derivative of the quadratic term can be computed using the chain rule, which yields

$$\frac{\partial}{\partial q} \left[q^T H q \right] = \text{tr} \left(\left(q q^T \right)^T \frac{\partial H}{\partial q} \right) = q^T \left(\frac{\partial L}{\partial q_i} L^T + L \frac{\partial L}{\partial q_i}^T \right) \frac{\partial H}{\partial q_i} \quad (15)$$

where $\partial L/\partial q_i$ can be constructed using the columns from previously derived $\partial l/\partial q$. Therefore, all derivatives included within \dot{f} can be computed in closed form.

4.3 Computing the Derivatives

The derivatives of Section 4.2 must be computed within a real-time control loop and only add minimal computational complexity in order to not break the real-time constraint. l and $\partial l/\partial q_i$.
Within the experiment the robot executes multiple desired trajectories with specified joint positions, velocities and accelerations. The control signal, consisting of motor torques, is generated using a non-linear feedforward controller, i.e., a low gain PD-Controller augmented with a feed-forward torque τ_{ff} to compensate system dynamics. The control law is described by

$$\tau = K_p(q_d - q) + K_d(q_{\dot{d}} - \dot{q}) + \tau_{ff}$$

with $\tau_{ff} = \hat{f}^{-1}(q_d, \dot{q}_d, \ddot{q}_d)$

where K_p, K_d are the controller gains and $q_d, \dot{q}_d, \ddot{q}_d$ the desired joint positions, velocities and accelerations. The control-loop is shown in Figure 3. For all experiments the control frequency is set to 500Hz while the desired joint state and respectively τ_{ff} is updated with a frequency of $f_d = 200Hz$. All feed-forward torques are computed online and, hence, the computation time is strictly limited to $T \leq 1/200s$. The tracking performance is defined as the sum of the MSE evaluated at the sampling points of the reference trajectory.
DeLaN is trained on the super-imposed torques, DeLaN learns to disambiguate the inertial force ground truth components and the learned decomposition using DeLaN (Figure 4a-d). Even though cosine trajectories. Figure 4 shows the ground truth torques of the characters ‘a’, ‘d’, ‘e’, the torque curves overlap closely. Hence, DeLaN is capable of learning the underlying physical model using the proposed network topology trained with standard end-to-end optimization. Figure 4d shows the improvement in performance compared to the FF-NN. Especially the difference in performance increases when the training set is reduced. This increasing difference on the test MSE highlights the reduced sample complexity and the good extrapolation to unseen samples. This difference in performance is amplified on the real-time control-task where the models are learned online starting from random initialization. Figure 5a and b shows the accumulated tracking error per testing character and the testing error averaged over all test characters while Figure 5c shows the qualitative comparison of the control

5.1 Simulated Robot Experiments

The 2-dof robot shown in Figure 3b is simulated using PyBullet and executes the character and cosine trajectories. Figure 4 shows the ground truth torques of the characters ‘a’, ‘d’, ‘e’, the torque ground truth components and the learned decomposition using DeLaN (Figure 4a-d). Even though DeLaN is trained on the super-imposed torques, DeLaN learns to disambiguate the inertial force \mathbf{H}_q, the Coriolis and Centrifugal force $\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}})$ and the gravitational force $\mathbf{g}(\mathbf{q})$ as the respective curves overlap closely. Hence, DeLaN is capable of learning the underlying physical model using the proposed network topology trained with standard end-to-end optimization. Figure 4b shows the offline MSE on the test set averaged over multiple seeds for the FF-NN and DeLaN w.r.t. to different training set sizes. The different training set sizes correspond to the combination of n random characters, i.e., a training set size of 1 corresponds to training the model on a single character and evaluating the performance on the remaining 19 characters. DeLaN clearly obtains a lower test MSE compared to the FF-NN. Especially the difference in performance increases when the training set is reduced. This increasing difference on the test MSE highlights the reduced sample complexity and the good extrapolation to unseen samples. This difference in performance is amplified on the real-time control-task where the models are learned online starting from random initialization. Figure 5a and b shows the accumulated tracking error per testing character and the testing error averaged over all test characters while Figure 5c shows the qualitative comparison of the control.

For the desired trajectories two different data sets are used. The first data set contains all single stroke characters while the second data set uses cosine curves in joint space (Figure 3c). The 20 characters are spatially and temporally re-scaled to comply with the robot kinematics. The joint references are computed using the inverse kinematics. Due to the different characters, the desired trajectories contain smooth and sharp turns and cover a wide variety of different shapes but are limited to a small task space region. In contrast, the cosine trajectories are smooth but cover a large task space region.

Baselines

The performance of DeLaN is compared to an analytic inverse dynamics model, a standard feed-forward neural network (FF-NN) and a PD-Controller. For the analytic models the torque is computed using the Recursive Newton-Euler algorithm (RNE) (Luh et al., 1980), which computes the feed-forward torque using estimated physical properties of the system, i.e. the link dimensions, masses and moments of inertia. For implementations the open-source library PyBullet (Coumans & Bai, 2016–2018) is used.

Both networks use the same dimensionality and ReLu nonlinearities. The FF-NN and DeLaN must learn the system dynamics online starting from random initialization. The training samples containing joint states and applied torques $(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}, \tau)_{0\ldots T}$ are directly read from the control loop as shown in Figure 3. The training runs in a separate process on the same machine and solves the optimization problem online. Once the training process computed a new model, the inverse model \hat{f}^{-1} of the control loop is updated.

The data set was created by Williams et al. (2008) and is available at Dheeru & Karra Taniskidou (2017).

Under review as a conference paper at ICLR 2019.
The full results containing all characters are provided in the Appendix.

The analytic model of the Barrett WAM is obtained using a publicly available URDF JHU LCSR 2018. We trained the DeLaN using a character set of 26 characters, including the direct cables drives and the simulation parameters.

The models were trained on two trajectories with a velocity scale of 1.0, 0.5, 0.0, and 0.5, respectively. The obtained tracking error is comparable to the analytic model, which in this case contains the simulation parameters and is optimal. In contrast, the FF-NN shows significant deviation from the desired trajectories when trained on 8 random characters. The domain of the FF-NN is defined as \(\mathbb{R}^{20} \) and \(\mathbb{R}^{20} \), where \(\mathbb{R}^{20} \) is the domain of the FF-NN and \(\mathbb{R}^{20} \) is the domain of the analytic model. Therefore, FF-NN cannot extrapolate to the testing data. In contrast, the domain of the networks \(\mathbb{R}^{20} \) and \(\mathbb{R}^{20} \) composing DeLaN only consist of \(\mathbb{R}^{20} \), rather than \(\mathbb{R}^{20} \). This reduced domain enables DeLaN, within limit, to extrapolate to the test trajectories.

The increase in tracking error is caused by the structure of \(f^{-1} \), where model errors to scale quadratic with velocities. However, the obtained tracking error on the testing trajectories is significantly lower compared to FF-NN.

5.2 Physical Robot Experiments

For physical experiments the desired trajectories are executed on the Barrett WAM, a robot with direct cable drives. The direct cable drives produce high torques generating fast and dexterous movements but yield complex dynamics, which cannot be modelled using rigid-body dynamics. Therefore, the Barrett WAM is ideal for testing the applicability of model learning and analytic model on complex dynamics. For the physical experiments we focus on the cosine trajectories as these trajectories produce dynamic movements while character trajectories are mainly dominated by the gravitational forces.

Figure 5a and b show the tracking error on the cosine trajectories using the physical and the simulated Barrett WAM. It is important to note, that the simulation only simulates the rigid-body dynamics not including the direct cables drives and the simulation parameters are inconsistent with the parameters of the analytic model. Therefore, the analytic model is not optimal. On the training trajectories
executed on the physical system the FF-NN performs better compared to DeLaN and the analytic model. DeLaN achieves slightly better tracking error than the analytic model, which uses the same rigid-body assumptions as DeLaN. That shows DeLaN can learn a dynamics model of the WAM but is limited by the model assumptions of Lagrangian Mechanics. These assumptions cannot represent the dynamics of the cable drives. When comparing to the simulated results, DeLaN and the FF-NN perform comparable but significantly better than the analytic model. These simulation results show that DeLaN can learn an accurate model of the WAM, when the underlying assumptions of the physics prior hold. The tracking performance on the physical system and the simulation indicate that DeLaN can learn a model within the model class of the physics prior but also inherits the limitations of the physics prior. For this specific experiment the FF-NN can locally learn correlations of the torques w.r.t. q, \dot{q} and \ddot{q} while such correlation cannot be represented by the network topology of DeLaN because such correlation should, by definition of the physics prior, not exist.

When extrapolating to the identical trajectories with higher velocities (gray area of Figure 6) the tracking error of the FF-NN deteriorates much faster compared to DeLaN, because the FF-NN overfits to the training data. The tracking error of the analytic model remains constant and demonstrates the guaranteed extrapolation of the analytic models. When comparing the simulated results, the FF-NN cannot extrapolate to the new velocities and the tracking error deteriorates similarly to the performance on the physical robot. In contrast to the FF-NN, DeLaN can extrapolate to the higher velocities and maintains a good tracking error. Even further, DeLaN obtains a better tracking error compared the analytic model on all velocity scales. This low tracking error on all test trajectories highlights the improved extrapolation of DeLaN compared to other model learning approaches.

6 Conclusion

We introduced the concept of incorporating a physics prior within the deep learning framework to achieve lower sample complexity and better extrapolation. In particular, we proposed Deep Lagrangian Networks (DeLaN), a deep network on which Lagrangian Mechanics is imposed. This specific network topology enabled us to learn the system dynamics using end-to-end training while maintaining physical plausibility. We showed that DeLaN is able to learn the underlying physics from a super-imposed signal, as DeLaN can recover the contribution of the inertial-, gravitational and centripetal forces from sensor data. The quantitative evaluation within a real-time control loop assessing the tracking error showed that DeLaN can learn the system dynamics online, obtains lower
Figure 6: The tracking error of the cosine trajectories for the simulated 2-dof robot (a and b), the simulated and the physical Barrett WAM (c and d). The feed-forward neural network and DeLaN are trained only on the trajectories at a velocity scale of 1×. Afterwards the models are tested on the same trajectories with increased velocities to evaluate the extrapolation to new velocities.

...sample complexity and better generalization compared to a feed-forward neural network. DeLaN can extrapolate to new trajectories as well as to increased velocities, where the performance of the feed-forward network deteriorates due to the overfitting to the training data. When applied to a physical systems with complex dynamics the bounded representational power of the physics prior can be limiting. However, this limited representational power enforces the physical plausibility and obtains the lower sample complexity and substantially better generalization. In future work the physics prior should be extended to represent a wider system class by introducing additional non-conservative forces within the Lagrangian.

ACKNOWLEDGMENTS

Will be added in the final version.

REFERENCES

Figure 7: The qualitative performance for the analytic baselines, the feed forward neural network and DeLaN for different number of random training characters. The desired trajectories are shown in red.
Figure 8: The average performance of DeLaN and the feed forward neural network for each character. The columns of the boxplots correspond to different numbers of training characters, i.e., $n = 1, 2, 4, 6, 8, 10, 12$.