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ABSTRACT

Deep learning has achieved astonishing results on many tasks with large amounts of
data and generalization within the proximity of training data. For many important
real-world applications, these requirements are unfeasible and additional prior
knowledge on the task domain is required to overcome the resulting problems.
In particular, learning physics models for model-based control requires robust
extrapolation from fewer samples — often collected online in real-time — and model
errors may lead to drastic damages of the system.

Directly incorporating physical insight has enabled us to obtain a novel deep model
learning approach that extrapolates well while requiring fewer samples. As a first
example, we propose Deep Lagrangian Networks (DeLaN) as a deep network
structure upon which Lagrangian Mechanics have been imposed. DeLaN can
learn the equations of motion of a mechanical system (i.e., system dynamics) with
a deep network efficiently while ensuring physical plausibility.

The resulting DeLaN network performs very well at robot tracking control. The
proposed method did not only outperform previous model learning approaches at
learning speed but exhibits substantially improved and more robust extrapolation
to novel trajectories and learns online in real-time.

1 INTRODUCTION

In the last five years, deep learning has propelled most areas of learning forward at an impressive
pace (Krizhevsky et al., 2012; Mnih et al.| 2015} |Silver et al.,|2017)) — with the exception of physically
embodied systems. This lag in comparison to other application areas is somewhat surprising as
learning physical models is critical for applications that control embodied systems, reason about
prior actions or plan future actions (e.g., service robotics, industrial automation). Instead, most
engineers prefer classical off-the-shelf modeling as it ensures physical plausibility — at a high cost
of precise measurementy’| and engineering effort. These plausible representations are preferred as
these models guarantee to extrapolate to new samples, while learned models only achieve good
performance in the vicinity of the training data.

To learn a model that obtains physically plausible representations, we propose to use the insights from
physics as a model prior for deep learning. In particular, the combination of deep learning and physics
seems natural as the compositional structure of deep networks enables the efficient computation of
the derivatives at machine precision (Raissi & Karniadakis, 2018) and, thus, can encode a differential
equation describing physical processes. Therefore, we suggest to encode the physics prior in the form
of a differential in the network topology. This adapted topology amplifies the information content
of the training samples, regularizes the end-to-end training, and emphasizes robust models capable
of extrapolating to new samples while simultaneously ensuring physical plausibility. Hereby, we
concentrate on learning models of mechanical systems using the Euler-Lagrange-Equation, a second
order ordinary differential equation (ODE) originating from Lagrangian Mechanics, as physics prior.

*Max Planck Institute for Intelligent Systems, Spemannstr. 41, 72076 Tiibingen, Germany
'Highly precise models usually require taking the physical system apart and measuring the separated pieces
(Albu-Schafter, 2002).
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We focus on learning models of mechanical systems as this problem is one of the fundamental
challenges of robotics (de Wit et al.| 2012; |Schaal et al.| 2002).

CONTRIBUTION

The contribution of this work is twofold. First, we derive a network topology called Deep Lagrangian
Networks (DeLaN) encoding the Euler-Lagrange equation originating from Lagrangian Mechanics.
This topology can be trained using standard end-to-end optimization techniques while maintaining
physical plausibility. Therefore, the obtained model must comply with physics. Unlike previous
approaches to learning physics (Atkeson et al.,|1986}|Ledezma & Haddadin,[2017), which engineered
fixed features from physical assumptions requiring knowledge of the specific physical embodiment,
we are ‘only’ enforcing physics upon a generic deep network. For DeLaN only the system state and
the control signal are specific to the physical system but neither the proposed network structure nor
the training procedure. Second, we extensively evaluate the proposed approach by using the model
to control a simulated 2 degrees of freedom (dof) robot and the physical 7-dof robot Barrett WAM in
real time. We demonstrate DeLaN’s control performance where DeLaN learns the dynamics model
online starting from random initialization. In comparison to analytic- and other learned models,
DeLaN yields a better control performance while at the same time extrapolates to new desired
trajectories.

In the following we provide an overview about related work (Section [2)) and briefly summarize
Lagrangian Mechanics (Section[3). Subsequently, we derive our proposed approach DeLaN and the
necessary characteristics for end-to-end training are shown (Section[d). Finally, the experiments in
Section [5] evaluate the model learning performance for both simulated and physical robots. Here,
DeLaN outperforms existing approaches.

2  RELATED WORK

Models describing system dynamics, i.e. the coupling of control input T and system state q, are
essential for model-based control approaches (loannou & Sun, [1996). Depending on the control
approach, the control law relies either on the forward model f, mapping from control input to the
change of system state, or on the inverse model f~!, mapping from system change to control input,
ie.,

flgat)=8 f'qqd=T1 (1)

Examples for application of these models are inverse dynamics control (de Wit et al., [2012), which
uses the inverse model to compensate system dynamics, while model-predictive control (Camacho &
Alba, |2013)) and optimal control (Zhou et al.||{1996) use the forward model to plan the control input.
These models can be either derived from physics or learned from data. The physics models must
be derived for the individual system embodiment and requires precise knowledge of the physical
properties (Albu-Schiffer, 2002). When learning the model?] mostly standard machine learning
techniques are applied to fit either the forward- or inverse-model to the training data. E.g., authors
used Linear Regression (Schaal et al.l [2002; [Haruno et al., [2001), Gaussian Mixture Regression
(Calinon et al.; 2010; Khansari-Zadeh & Billard, 2011), Gaussian Process Regression (Kocijan
et al.| 2004; Nguyen-Tuong et al., 2009; Nguyen-Tuong & Peters, 2010), Support Vector Regression
(Choi et al.l 2007; |[Ferreira et al., [2007)), feedforward- (Jansen, [1994; |[Lenz et al.l 2015} |[Ledezma &
Haddadinl 2017 |Sanchez-Gonzalez et al.,[2018)) or recurrent neural networks (Rueckert et al., [ 2017)
to fit the model to the observed measurements.

Only few approaches incorporate prior knowledge into the learning problem. [Sanchez-Gonzalez
et al.| (2018)) use the graph representation of the kinematic structure as input. While the work
of |Atkeson et al.| (1986), commonly referenced as the standard system identification technique for
robot manipulators (Siciliano & Khatib, [2016)), uses the Newton-Euler formalism to derive physics
features using the kinematic structure and the joint measurements such that the learning of the
dynamics model simplifies to linear regression. Similarly, Ledezma & Haddadin| (2017) hard-code
these physics features within a neural network and learn the dynamics parameters using gradient
descent rather than linear regression. Even though these physics features are derived from physics, the

2Further information can be found in the model learning survey by [Nguyen-Tuong & Peters (2011).



Published as a conference paper at ICLR 2019

learned parameters for mass, center of gravity and inertia must not necessarily comply with physics
as the learned parameters may violate the positive definiteness of the inertia matrix or the parallel
axis theorem (Ting et al., 2006). Furthermore, the linear regression is commonly underdetermined
and only allows to infer linear combinations of the dynamics parameters and cannot be applied to
close-loop kinematics (Siciliano & Khatib||[2016)).

DeLaN follows the line of structured learning problems but in contrast to previous approaches
guarantees physical plausibility and provides a more general formulation. This general formulation
enables DeLaN to learn the dynamics for any kinematic structure, including kinematic trees and
closed-loop kinematics, and in addition does not require any knowledge about the kinematic structure.
Therefore, DeLaN is identical for all mechanical systems, which is in strong contrast to the Newton-
Euler approaches, where the features are specific to the kinematic structure. Only the system state
and input is specific to the system but neither the network topology nor the optimization procedure.

The combination of differential equations and Neural Networks has previously been investigated in
literature. Early on |Lagaris et al.| (1998;|2000) proposed to learn the solution of partial differential
equations (PDE) using neural networks and currently this topic is being rediscovered by [Raissi &
Karniadakis| (2018); |Sirignano & Spiliopoulos| (2017);|Long et al.|(2017). Most research focuses on
using machine learning to overcome the limitations of PDE solvers. E.g.,|Sirignano & Spiliopoulos
(2017) proposed the Deep Galerkin method to solve a high-dimensional PDE from scattered data.
Only the work of[Raissi et al.|(2017) took the opposite standpoint of using the knowledge of the specific
differential equation to structure the learning problem and achieve lower sample complexity. In this
paper, we follow the same motivation as [Raissi et al.|(2017) but take a different approach. Rather
than explicitly solving the differential equation, DeLaN only uses the structure of the differential
equation to guide the learning problem of inferring the equations of motion. Thereby the differential
equation is only implicitly solved. In addition, the proposed approach uses different encoding of
the partial derivatives, which achieves the efficient computation within a single feed-forward pass,
enabling the application within control loops.

3 PrRELIMINARIES: LAGRANGIAN MECHANICS

Describing the equations of motion for mechanical systems has been extensively studied and various
formalisms to derive these equations exist. The most prominent are Newtonian-, Hamiltonian-
and Lagrangian-Mechanics. Within this work Lagrangian Mechanics is used, more specifically the
Euler-Lagrange formulation with non-conservative forces and generalized coordinates[’| Generalized
coordinates are coordinates that uniquely define the system configuration. This formalism defines
the Lagrangian L as a function of generalized coordinates q describing the complete dynamics of
a given system. The Lagrangian is not unique and every L which yields the correct equations of
motion is valid. The Lagrangian is generally chosen to be

L=T-V 2)

where T is the kinetic energy and V is the potential energy. The kinetic energy 7' can be computed
for all choices of generalized coordinates using 7 = %qTH(q)q, whereas H(q) is the symmetric
and positive definite inertia matrix (de Wit et al., 2012)). The positive definiteness ensures that all
non-zero velocities lead to positive kinetic energy. Applying the calculus of variations yields the
Euler-Lagrange equation with non-conservative forces described by

Lot 3)

where 7 are generalized forces. Substituting L and dV /dq = g(q) into Equation [3]yields the second
order ordinary differential equation (ODE) described by

T
H(@)d+ H(@)d - (8% (qTH(q)q)) +e(@ =T )

=c(q,q)

3More information can be found in the textbooks (Greenwood, [2006; [de Wit et al., [2012; [Featherstone,
2007)
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where ¢ describes the forces generated by the Centripetal and Coriolis forces (Featherstone, [2007).
Using this ODE any multi-particle mechanical system with holonomic constraints can be described.
For example various authors used this ODE to manually derived the equations of motion for coupled
pendulums (Greenwood, [2006), robotic manipulators with flexible joints (Book,|1984;|Spong| 1987,
parallel robots (Miller} 1992;|Geng et al.,|1992; |Liu et al.,|1993) or legged robots (Hemami & Wyman),
1979;|Golliday & Hemami, |1977).

4  INCORPORATING LAGRANGIAN MECHANICS INTO DEEP LEARNING

Starting from the Euler-Lagrange equation (Equation ), traditional engineering approaches would
estimate H(q) and g(q) from the approximated or measured masses, lengths and moments of inertia.
On the contrary most traditional model learning approaches would ignore the structure and learn the
inverse dynamics model directly from data. DeLaN bridges this gap by incorporating the structure
introduced by the ODE into the learning problem and learns the parameters in an end-to-end fashion.
More concretely, DeLaN approximates the inverse model by representing the unknown functions g(q)
and H(q) as a feed-forward networks. Rather than representing H(q) directly, the lower-triangular
matrix L(q) is represented as deep network. Therefore, g(q) and H(q) are described by

H(q) =1L(q;0L(q;:0)" &«q) =8q;v)

where ” refers to an approximation and 8 and i are the respective network parameters. The parameters
0 and ¢ can be obtained by minimizing the violation of the physical law described by Lagrangian
Mechanics. Therefore, the optimization problem is described by

@) =argmin ¢(/~'(@.4.4;6.0), 7) 5)
0.y
T d T 1({0 r )
. A1 _$3T. 4 (¢332 . O (T3 sT . ~
with f(¢.¢.4:6.0)=LL 4+ (LL")q 2(aql(q LL q)) 8 ©
st 0<x” LL'x  VxeR! )

where f~! is the inverse model and ¢ can be any differentiable loss function. The computational
graph of ! is shown in Figure

Using this formulation one can conclude further properties of the learned model. Neither L. nor
g are functions of ¢ or { and, hence, the obtained parameters should, within limits, generalize to
arbitrary velocities and accelerations. In addition, the obtained model can be reformulated and used
as a forward model. Solving Equation[6]for ¢ yields the forward model described by

r—%(iﬁh%(% (thth))T—g) )

where L1, is guaranteed to be invertible due to the positive definite constraint (Equation| i . However,
solving the optimization problem of Equation[5|directly is not possible due to the ill-posedness of the
Lagrangian L not being unique. The Euler-Lagrange equation is invariant to linear transformation
and, hence, the Lagrangian L’ = L + 8 solves the Euler-Lagrange equation if @ is non-zero and
L is a valid Lagrangian. This problem can be mitigated by adding an additional penalty term to
Equation [5]described by

faarom=(LL")"

@,y =argmin €(F(@.44; 6.0). 7) +226.) ©

where Q is the Ly-norm of the network weights.

Solving the optimization problem of Equation[9]with a gradient based end-to-end learning approach
is non-trivial due to the positive definite constraint (Equation and the derivatives contained in /.
In particular, d(LL”)/dt and 8 (qTLLTq) /dq; cannot be computed using automatic differentiation
as ¢ is not an input of the network and most implementations of automatic differentiation do not allow
the backpropagation of the gradient through the computed derivatives. Therefore, the derivatives
contained in £~ must be computed analytically to exploit the full gradient information for training
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of the parameters. In the following we introduce a network structure that fulfills the positive-definite
constraint for all parameters (Sectionrove that the derivatives d(LL”)/dt and 8 (4" LL” q) /9q;
can be computed analytically (Section 4.2)) and show an efficient implementation for computing the
derivatives using a single feed-forward pass (Section[4.3)). Using these three properties the resulting
network architecture can be used within a real-time control loop and trained using standard end-to-end
optimization techniques.
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Figure 1: The computational graph of the Deep Lagrangian Network (DeLaN). Shown in blue and
green is the neural network with the three separate heads computing g(q), 14(q), 1,(q). The orange
boxes correspond to the reshaping operations and the derivatives contained in the Euler-Lagrange
equation. For training the gradients are backpropagated through all vertices highlighted in orange.

4.1 SYMMETRY AND PosiTive DEFINITENESS oF H

Ensuring the symmetry and positive definiteness of H is essential as this constraint enforces positive
kinetic energy for all non-zero velocities. In addition, the positive definiteness ensures that H is
invertible and the obtained model can be used as forward model. By representing the matrix H as
the product of a lower-triangular matrix the symmetry and the positive semi-definiteness is ensured
while simultaneously reducing the number of parameters. The positive definiteness is obtained if the
diagonal of L is positive. This positive diagonal also guarantees that L is invertible. Using a deep
network with different heads and altering the activation of the output layer one can obtain a positive
diagonal. The off-diagonal elements L,, use a linear activation while the diagonal elements L; use a
non-negative activation, e.g., ReLu or Softplus. In addition, a positive scalar b is added to diagonal
elements. Thereby, ensuring a positive diagonal of L and the positive eigenvalues of H. In addition,
we chose to share parameters between L and g as both rely on the same physical embodiment. The
network architecture, with three-heads representing the diagonal 1; and off-diagonal 1, entries of L
and g, is shown in Figure[l]

4.2 DERIVING THE DERIVATIVES

The derivatives d (LL”) /dt and 0 (" LL” q) /dq; are required for computing the control signal T
using the inverse model and, hence, must be available within the forward pass. In addition, the
second order derivatives, used within the backpropagation of the gradients, must exist to train the
network using end-to-end training. To enable the computation of the second order derivatives using
automatic differentiation the forward computation must be performed analytically. Both derivatives,
d (LLT) /dt and 0 (4" LL” q) /q;, have closed form solutions and can be derived by first computing
the respective derivative of L and second substituting the reshaped derivative of the vectorized form
1. For the temporal derivative d (LL”) /dt this yields

d d dLT 4L
—H(q)= — (LL") =L— +—L" 1
2@ dt( ) ar (10)

whereas dL./dt can be substituted with the reshaped form of
d,_01dq <+ 91 aW; <~ 0l ab; an
di' dqdr  LOW; 9t L ob; o

where i refers to the i-th network layer consisting of an affine transformation and the non-linearity g,
ie,h;=g; (Wl.ThH + bl-). Equationcan be simplified as the network weights W; and biases b;
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MatMul
diag(a;)

®
Figure 2: (a) Computational graph of the Lagrangian layer. The orange boxes highlight the learnable
parameters. The upper computational sub-graph corresponds to the standard network layer while
the lower sub-graph is the extension of the Lagrangian layer to simultaneously compute dh;/dh;_;.
(b) Computational graph of the chained Lagrangian layer to compute L, dL/df and dL/dq; using a
single feed-forward pass.

are time-invariant, i.e., dW;/dt = 0 and db; /dt = 0. Therefore, dl/dt is described by

d ol
—1=—q. 12
ar - aqY 12)

Due to the compositional structure of the network and the differentiability of the non-linearity, the
derivative with respect to the network input dl/dq can be computed by recursively applying the chain
rule, i.e.,
ol ol ohy_ oh; oh;
dq  ohy-1ohy  dq Jhi-y
where g’ is the derivative of the non-linearity. Similarly to the previous derivation, the partial
derivative of the quadratic term can be computed using the chain rule, which yields

T 9H ) oLT
s 9 T —LT LY . 14
(qq ) 5(11'] q (aqi " 0q; q 14

whereas dL/dq; can be constructed using the columns of previously derived d1/dq. Therefore, all
derivatives included within f can be computed in closed form.

= diag ('(WT i1 +b)) Wi (13)

J . .
70 [a"Hg| =tr

4.3 COMPUTING THE DERIVATIVES

The derivatives of Section [4.2] must be computed within a real-time control loop and only add
minimal computational complexity in order to not break the real-time constraint. 1 and d1/dq,
required within Equation [I0] and Equation [T4] can be simultaneously computed using an extended
standard layer. Extending the affine transformation and non-linearity of the standard layer with an
additional sub-graph for computing dh; /dh;_; yields the Lagrangian layer described by

oh; . ,
a; =W;h;_; +b; h; =g;(a;) oh diag (g/(a;)) W;.
i

The computational graph of the Lagrangian layer is shown in Figure 2. Chaining the Lagrangian
layer yields the compositional structure of d1/9q (Equation[13) and enables the efficient computation
of 91/0q. Additional reshaping operations compute dL./dt and dL/dq;.

5 EXPERIMENTAL EVALUATION: LEARNING AN INVERSE DyNAMICS MODEL FOR
RoBot CoNTROL

To demonstrate the applicability and extrapolation of DeLaN, the proposed network topology is
applied to model-based control for a simulated 2-dof robot (Figure[3p) and the physical 7-dof robot
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Figure 3: (a) Real-time control loop using a PD-Controller with a feed-forward torque 7 r, compen-
sating the system dynamics, to control the joint torques 7. The training process reads the joint states
and applies torques to learn the system dynamics online. Once a new model becomes available the
inverse model £~ in the control loop is updated. (b) The simulated 2-dof robot drawing the cosine
trajectories. (c) The simulated Barrett WAM drawing the 3d cosine O trajectory. (d) The physical
Barrett WAM.

Barrett WAM (Figure [3d). The performance of DeLaN is evaluated using the tracking error on train
and test trajectories and compared to a learned and analytic model. This evaluation scheme follows
existing work (Nguyen-Tuong et al., 2009} [Sanchez-Gonzalez et al.| [2018) as the tracking error is
the relevant performance indicator while the mean squared error (MSE)? obtained using sample
based optimization exaggerates model performance (Hobbs & Hepenstal,[1989). In addition to most
previous work, we strictly limit all model predictions to real-time and perform the learning online,
i.e., the models are randomly initialized and must learn the model during the experiment.

EXPERIMENTAL SETUP

Within the experiment the robot executes multiple desired trajectories with specified joint positions,
velocities and accelerations. The control signal, consisting of motor torques, is generated using
a non-linear feedforward controller, i.e., a low gain PD-Controller augmented with a feed-forward
torque 7y to compensate system dynamics. The control law is described by

1=K, (qu-q) +Ky (@i —-Q) +77r with 77 = ' (qa, G, Ga)

where K, K are the controller gains and qq, qq, Gu the desired joint positions, velocities and
accelerations. The control-loop is shown in Figure [3h. For all experiments the control frequency
is set to 500Hz while the desired joint state and respectively 77 is updated with a frequency of
fa =200Hz. All feed-forward torques are computed online and, hence, the computation time is
strictly limited to 7 < 1/200s. The tracking performance is defined as the sum of the MSE evaluated
at the sampling points of the reference trajectory.

For the desired trajectories two different data sets are used. The first data set contains all single stroke
character{®| while the second data set uses cosine curves in joint space (Figure[3f). The 20 characters
are spatially and temporally re-scaled to comply with the robot kinematics. The joint references
are computed using the inverse kinematics. Due to the different characters, the desired trajectories
contain smooth and sharp turns and cover a wide variety of different shapes but are limited to a small
task space region. In contrast, the cosine trajectories are smooth but cover a large task space region.

BASELINES

The performance of DeLaN is compared to an analytic inverse dynamics model, a standard feed-
forward neural network (FF-NN) and a PD-Controller. For the analytic models the torque is computed
using the Recursive Newton-Euler algorithm (RNE) (Luh et al.| [1980), which computes the feed-
forward torque using estimated physical properties of the system, i.e. the link dimensions, masses
and moments of inertia. For implementations the open-source library PyBullet (Coumans & Bai,
2016-2018)) is used.

Both deep networks use the same dimensionality, ReLu nonlinearities and must learn the system
dynamics online starting from random initialization. The training samples containing joint states
and applied torques (q, q, §, ), 7 are directly read from the control loop as shown in Figure .

4An offline comparisons evaluating the MSE on datasets can be found in the Appendix A.
SThe data set was created by |Williams et al.|(2008) and is available at|Dheeru & Karra Taniskidou| (2017))
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Figure 4: (a) The torque 7 required to generate the characters ’a’, ’d’ and ’e’ in black. Using these
samples DeLaN was trained offline and learns the red trajectory. DeLaN can not only learn the
desired torques but also disambiguate the individual torque components even though DeLLaN was
trained on the super-imposed torques. Using Equation[6|DeLaN can represent the inertial force Hg
(b), the Coriolis and Centrifugal forces ¢(q, q) (c) and the gravitational force g(q) (d). All components
match closely the ground truth data. (e) shows the offline MSE of the feed-forward neural network
and DeLaN for each joint.
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The training runs in a separate process on the same machine and solves the optimization problem
online. Once the training process computed a new model, the inverse model f~! of the control loop
is updated.

5.1 SimMULATED RoBoT EXPERIMENTS

The 2-dof robot shown in Figure Bp is simulated using PyBullet and executes the character and
cosine trajectories. Figure[]shows the ground truth torques of the characters "a’, ’d’, ’e’, the torque
ground truth components and the learned decomposition using DeLaN (Figure Bp-d). Even though
DeLaN is trained on the super-imposed torques, DeLaN learns to disambiguate the inertial force
Hgq , the Coriolis and Centrifugal force ¢(q,q) and the gravitational force g(q) as the respective
curves overlap closely. Hence, DeLaN is capable of learning the underlying physical model using
the proposed network topology trained with standard end-to-end optimization. Figure fid shows
the offline MSE on the test set averaged over multiple seeds for the FF-NN and DeLaN w.r.t. to
different training set sizes. The different training set sizes correspond to the combination of » random
characters, i.e., a training set size of 1 corresponds to training the model on a single character and
evaluating the performance on the remaining 19 characters. DeLaN clearly obtains a lower test MSE
compared to the FF-NN. Especially the difference in performance increases when the training set
is reduced. This increasing difference on the test MSE highlights the reduced sample complexity
and the good extrapolation to unseen samples. This difference in performance is amplified on
the real-time control-task where the models are learned online starting from random initialization.
Figure [5p and b shows the accumulated tracking error per testing character and the testing error
averaged over all test characters while Figure [Sk shows the qualitative comparison of the control
performancd® It is important to point out that all shown results are averaged over multiple seeds and
only incorporate characters not used for training and, hence, focus the evaluation on the extrapolation
to new trajectories. The qualitative comparison shows that DeLaN is able to execute all 20 characters
when trained on 8 random characters. The obtained tracking error is comparable to the analytic
model, which in this case contains the simulation parameters and is optimal. In contrast, the FF-NN
shows significant deviation from the desired trajectories when trained on 8 random characters. The
quantitative comparison of the accumulated tracking error over seeds (Figure[5p) shows that DeLaN
obtains lower tracking error on all training set sizes compared to the FF-NN. This good performance
using only few training characters shows that DeL.aN has a lower sample complexity and better
extrapolation to unseen trajectories compared to the FF-NN.

Figure [6h and b show the performance on the cosine trajectories. For this experiment the models
are only trained online on two trajectories with a velocity scale of 1x. To assess the extrapolation
w.r.t. velocities and accelerations the learned models are tested on the same trajectories with scaled
velocities (gray area of Figure [6). On the training trajectories DeLaN and the FF-NN perform

6The full results containing all characters are provided in the Appendix B.
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Figure 5: (a) The average performance of DeLaN and the feed forward neural network for each
character. The 4 columns of the boxplots correspond to different numbers of training characters,
ie.,n=1,6,8, 10. (b) The median performance of DeLaN, the feed forward neural network and
the analytic baselines averaged over multiple seeds. The shaded areas highlight the 5th and the
95th percentile. (c) The qualitative performance for the analytic baselines, the feed forward neural
network and DeLaN. The desired trajectories are shown in red.

comparable. When the velocities are increased the performance of FF-NN deteriorates because the
new trajectories do not lie within the vicinity of the training distribution as the domain of the FF-NN
is defined as (q,q,q). Therefore, FF-NN cannot extrapolate to the testing data. In contrast, the
domain of the networks L. and § composing DeLaN only consist of q, rather than (q,¢q,§). This
reduced domain enables DeLaN, within limit, to extrapolate to the test trajectories. The increase in
tracking error is caused by the structure of f~!, where model errors to scale quadratic with velocities.
However, the obtained tracking error on the testing trajectories is significantly lower compared to
FF-NN.

5.2 PuysicaL RoBoT EXPERIMENTS

For physical experiments the desired trajectories are executed on the Barrett WAM, a robot with
direct cable drives. The direct cable drives produce high torques generating fast and dexterous
movements but yield complex dynamics, which cannot be modelled using rigid-body dynamics due
to the variable stiffness and lengths of the cable’] Therefore, the Barrett WAM is ideal for testing
the applicability of model learning and analytic model§¥| on complex dynamics. For the physical
experiments we focus on the cosine trajectories as these trajectories produce dynamic movements
while character trajectories are mainly dominated by the gravitational forces. In addition, only the
dynamics of the four lower joints are learned because these joints dominate the dynamics and the
upper joints cannot be sufficiently excited to retrieve the dynamics parameters.

Figure [6k and d show the tracking error on the cosine trajectories using the the simulated Barrett
WAM while Figure [6g and f show the tracking error of the physical Barrett WAM. It is important
to note, that the simulation only simulates the rigid-body dynamics not including the direct cables
drives and the simulation parameters are inconsistent with the parameters of the analytic model.
Therefore, the analytic model is not optimal. On the training trajectories executed on the physical
system the FF-NN performs better compared to DeLaN and the analytic model. DeLaN achieves
slightly better tracking error than the analytic model, which uses the same rigid-body assumptions
as DeLaN. That shows DeLaN can learn a dynamics model of the WAM but is limited by the model
assumptions of Lagrangian Mechanics. These assumptions cannot represent the dynamics of the

"The cable drives and cables could be modelled simplistically using two joints connected by massless spring.
8The analytic model of the Barrett WAM is obtained using a publicly available URDF (JHU LCSR} 2018)
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Figure 6: The tracking error of the cosine trajectories for the simulated 2-dof robot (a & b), the
simulated (¢ & d) and the physical Barrett WAM (e & f). The feed-forward neural network and
DeLaN are trained only on the trajectories at a velocity scale of 1x. Afterwards the models are tested
on the same trajectories with increased velocities to evaluate the extrapolation to new velocities.

cable drives. When comparing to the simulated results, DeL.aN and the FF-NN perform comparable
but significantly better than the analytic model. These simulation results show that DeL.aN can learn
an accurate model of the WAM, when the underlying assumptions of the physics prior hold. The
tracking performance on the physical system and the simulation indicate that DeLaN can learn a
model within the model class of the physics prior but also inherits the limitations of the physics
prior. For this specific experiment the FF-NN can locally learn correlations of the torques w.r.t. q, q
and ¢ while such correlation cannot be represented by the network topology of DeLLaN because such
correlation should, by definition of the physics prior, not exist.

When extrapolating to the identical trajectories with higher velocities (gray area of Figure [0) the
tracking error of the FF-NN deteriorates much faster compared to DeLaN, because the FF-NN overfits
to the training data. The tracking error of the analytic model remains constant and demonstrates
the guaranteed extrapolation of the analytic models. When comparing the simulated results, the
FF-NN cannot extrapolate to the new velocities and the tracking error deteriorates similarly to the
performance on the physical robot. In contrast to the FF-NN, DeLaN can extrapolate to the higher
velocities and maintains a good tracking error. Even further, DeLaN obtains a better tracking error
compared the analytic model on all velocity scales. This low tracking error on all test trajectories
highlights the improved extrapolation of DeLaN compared to other model learning approaches.

6 CONCLUSION

We introduced the concept of incorporating a physics prior within the deep learning framework
to achieve lower sample complexity and better extrapolation. In particular, we proposed Deep
Lagrangian Networks (DeLaN), a deep network on which Lagrangian Mechanics is imposed. This
specific network topology enabled us to learn the system dynamics using end-to-end training while
maintaining physical plausibility. We showed that DeLaN is able to learn the underlying physics
from a super-imposed signal, as DeL.aN can recover the contribution of the inertial-, gravitational
and centripetal forces from sensor data. The quantitative evaluation within a real-time control loop
assessing the tracking error showed that DeLaN can learn the system dynamics online, obtains lower
sample complexity and better generalization compared to a feed-forward neural network. DeL.aN can
extrapolate to new trajectories as well as to increased velocities, where the performance of the feed-
forward network deteriorates due to the overfitting to the training data. When applied to a physical
systems with complex dynamics the bounded representational power of the physics prior can be
limiting. However, this limited representational power enforces the physical plausibility and obtains
the lower sample complexity and substantially better generalization. In future work the physics prior
should be extended to represent a wider system class by introducing additional non-conservative
forces within the Lagrangian.
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APPENDIX A: OFFLINE BENCHMARKS
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Figure 7: The mean squared error averaged of 20 seeds on the training- (a) and test-set (b) of the
character trajectories for the two joint robot. The models are trained offline using n characters and
tested using the remaining 20 — n characters. The training samples are corrupted with white noise,
while the performance is tested on noise-free trajectories.

To evaluate the performance of DeLaN without the control task, DeL.aN was trained offline on previ-
ously collected data and evaluated using the mean squared error (MSE) on the test and training set.
For comparison, DeLaN is compared to the system identification approach (SI) described by |Atkeson
et al.| (1986), a feed-forward neural network (FF-NN) and the Recursive Newton Euler algorithm
(RNE) using an analytic model. For this comparison, one must point out that the system identification
approach relies on the availability of the kinematics, as the Jacobians and transformations w.r.t. to
every link must be known to compute the necessary features. In contrast, neither DeLLaN nor the
FF-NN require this knowledge and must implicitly also learn the kinematics.

Figure 7] shows the MSE averaged over 20 seeds on the character data set executed on the two-joint
robot. For this data set, the models are trained using noisy samples and evaluated on the noise-free
and previously unseen characters. The FF-NN performs the best on the training set, but overfits
to the training data. Therefore, the FF-NN does not generalize to unseen characters. In contrast,
the ST approach does not overfit to the noise and extrapolates to previously unseen characters. In
comparison, the structure of DeLaN regularizes the training and prevents the overfitting to the
corrupted training data. Therefore, DeLaN extrapolates better than the FF-NN but not as good as the
SI approach. Similar results can be observed on the cosine data set using the Barrett WAM simulated
in SL (Figure [§ a, b). The FF-NN performs best on the training trajectory but the performance
deteriorates when this network extrapolates to higher velocities. SI performs worse on the training
trajectory but extrapolates to higher velocities. In comparison, DeLaN performs comparable to the
SI approach on the training trajectory, extrapolates significantly better than the FF-NN but does not
extrapolate as good as the SI approach. For the physical system (Figure[§]c, d), the results differ from
the results in simulation. On the physical system the SI approach only achieves the same performance
as RNE, which is significantly worse compared to the performance of DeLaN and the FF-NN. When
evaluating the extrapolation to higher velocities, the analytic model and the SI approach extrapolate
to higher velocities, while the MSE for the FF-NN significantly increases. In comparison, DeLaN
extrapolates better compared to the FF-NN but not as good as the analytic model or the SI approach.

This performance difference between the simulation and physical system can be explained by the
underlying model assumptions and the robustness to noise. While DeLaN only assumes rigid-
body dynamics, the SI approach also assumes the exact knowledge of the kinematic structure. For
simulation both assumptions are valid. However, for the physical system, the exact kinematics are
unknown due to production imperfections and the direct cable drives applying torques to flexible
joints violate the rigid-body assumption. Therefore, the SI approach performs significantly worse
on the physical system. Furthermore, the noise robustness becomes more important for the physical
system due to the inherent sensor noise. While the linear regression of the SI approach is easily
corrupted by noise or outliers, the gradient based optimization of the networks is more robust to
noise. This robustness can be observed in Figure[9] which shows the correlation between the variance
of Gaussian noise corrupting the training data and the MSE of the simulated and noise-free cosine
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Figure 8: The mean squared error of the cosine trajectories for the simulated (a, b) and the physical
Barrett WAM (c and d). The system identification approach, feed-forward neural network and
DeLaN are trained offline using only the trajectories at a velocity scale of 1x. Afterwards the models
are tested on the same trajectories with increased velocities to evaluate the extrapolation to new
velocities.

trajectories. With increasing noise levels, the MSE of the SI approach increases significantly faster
compared to the models learned using gradient descent.

Concluding, the extrapolation of DeLaN to unseen trajectories and higher velocities is not as good
as the SI approach but significantly better than the generic FF-NN. This increased extrapolation
compared to the generic network is achieved by the Lagrangian Mechanics prior of DeLaN. Even
though this prior promotes extrapolation, the prior also hinders the performance on the physical
robot, because the prior cannot represent the dynamics of the direct cable drives. Therefore, DeLL.aN
performs worse than the FF-NN, which does not assume any model structure. However, DeLaN
outperforms the SI approach on the physical system, which also assumes rigid-body dynamics and
requires the exact knowledge of the kinematics.
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Figure 9: The mean squared error on the simulated and noise-free cosine trajectories with velocity

scale of 1x. For offline training the samples are corrupted using i.i.d. noise sampled from a
multivariate Normal distribution with the variance of o1
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AprPENDIX B: CoMPLETE ONLINE RESULTS
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Figure 10: The qualitative performance for the analytic baselines, the feed forward neural network
and DeLaN for different number of random training characters. The desired trajectories are shown
in red.
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Figure 11: The average performance of DeLaN and the feed forward neural network for each
character. The columns of the boxplots correspond to different numbers of training characters, i.e.,
n=1,2,4,6,8,10,12.
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