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Abstract

A core principle in statistical learning is that smoothness of target functions allows
to break the curse of dimensionality. However, learning a smooth function seems
to require enough samples close to one another to get meaningful estimate of
high-order derivatives, which would be hard in machine learning problems where
the ratio between number of data and input dimension is relatively small. By
deriving new lower bounds on the generalization error, this paper formalizes such
an intuition, before investigating the role of constants and transitory regimes which
are usually not depicted beyond classical learning theory statements while they
play a dominant role in practice.

1 Introduction

The current practice of machine learning consists in feeding a machine with many samples for it to
infer a useful rule. In supervised learning, the samples are input/output (I/O) pairs, and the rule is a
relationship to predict outputs from inputs. Once learned, the I/O mapping can be deployed in the wild
to infer useful information from new inputs. Because it was not engineered by hand, one can question
the existence of unwanted behaviors. Classical guarantees regarding the mapping’s correctness are
offered by statistics: assuming that the training samples are independent and identically distributed
according to the future use cases, it is possible to derive theorems akin to the central limit theorem.

While many statistical learning principles offer practical insights, theoretical results often appear
somewhat obscure, and forming intuition about them is often challenging, which limits their impact.
In this paper, we focus on one simple principle: “smoothness allows us to break the curse of
dimensionality”. The curse of dimensionality is a generic term referring to a set of high-dimensional
phenomena with significant practical consequences. In supervised learning, it manifests as follows:
without a good prior on the I/O mapping to be learned, one can only get good estimates of the
mapping close to the observed examples; as a consequence, to obtain a good global estimate, one
needs to collect enough data points to finely cover the input space, which implies that the number of
data points should scale exponentially with the dimension of the input space. Yet, when provided
with the information that the mapping has some structure, one might need significantly less examples
to learn from. This is notably the case when the mapping is assumed to be smooth. The goal of this
paper is to better understand how and when we can expect to get much better convergence guarantees
when the target function is known to be smooth.

Related work. Nonparametric local estimators were introduced as soon as the field of learning
began to form in the 50’s [11], and their consistency was studied extensively in the second half of the
twentieth century (see Stone [29], Devroye et al. [8] and references therein). Introduced for scatter
plots [7], local polynomials were the first estimators to leverage smoothness to improve regression
[12]. They were later replaced by kernel methods, which are a powerful way to adapt to smoothness
without much fine-tuning, and were widely regarded as state-of-the-art before the deep learning era
[25]. Convergence results for kernel methods can be understood through the size of their associated
functional spaces [13, 32], how those sizes relate to generalization guarantees [31], and how those
spaces adhere to L2 [22, 26]. For least-squares regression, relations between the size of those spaces
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Figure 1: Log-log-log-log plots of excess risk (in color) with respect to the number of samples (z-axis),
the regularizer λ (x-axis) and the bandwidth σ (y-axis) when f∗(x) = sign(⟨x, e1⟩) and ρX is uniform on
[−1, 1]2. Asymptotically, there exists some (λn, σn) to ensure that the excess risk decreases in O(n−γ)
for a γ predicted by theory. However, for finite values of n, the excess risk can present different power
law decays. The dark blue line on each plot indicates the transition between low- and high-sample regime:
it corresponds to the graph {(σ, λ, n) |n = N1(σ, λ)} (see (10) for the definition of N1). The figure
illustrates a double descent phenomenon where excess risk peaks are reached when n = N1 before a
second descent takes place. Those peaks can be avoided in practice by computing the effective dimension
N and tuning hyperparameters to ensure it to be smaller than n.

and generalization guarantees are usually derived through operator concentration [27, 6]. More
recently, transitory regime behaviors were described in Mei et al. [16], Mei and Montanari [15], and
high-dimensional phenomena that lift the need to have more data than dimensions were studied in
[23, 14], with Bach [3] relating the latter analyses with the former ones.

Contributions. This work focuses on the role of smoothness in breaking the curse of dimensionality
for typical supervised learning problems. At a high-level, our main contribution is to showcase the
importance of transitory regimes where one does not have enough samples to leverage high-order
smoothness. In such transitory regimes, the behavior of the excess risk can be quite different than its
asymptotic “stationary” behavior. Usually not well described by theory, they might be the dominating
regimes in applied machine learning, where the number of samples is often relatively small compared
to the input dimension (see Figure 1 for an illustration). This arguably explains the poor performance
of kernel methods without strong kernel engineering in the deep learning era: they try to leverage
smoothness, but usually do not access enough samples to meaningfully estimate high-order derivatives.
More precisely, our contributions are twofold:

• We provide two generic “minimax” lower bounds that illustrate how the curse of dimension-
ality can not be fully beaten under smoothness assumptions alone.

• We delve more specifically into guarantees offered by algorithms that are built to leverage
smoothness assumptions, and get a fine-grained picture of some of the transitory regimes
where learning takes place in practice.

All results are illustrated by numerical experiments, some of them to be found in Appendix C.

2 The Significance of Constants

This section reviews classical results in learning theory, before providing generic lower bounds when
relying solely on smoothness assumptions.

2.1 Established Upper Bounds

Supervised learning is concerned with learning a function from an input space X to an output space Y
from a dataset Dn = (Xi, Yi)i∈[n] of n ∈ N examples.1 For simplicity, we will assume Y = R
and X = Rd, or X = Td being the torus. A learning rule, or learning algorithm, is a mapping
A : Dn 7→ fn that builds a function fn : X → Y based on the dataset Dn, with the goal of capturing

1We use [n] = {1, . . . , n} to denote the set of integer from one to n.
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the underlying I/O relation. To discuss generalization to unseen examples, it is standard to model both
the already collected and the future examples as independent realizations of a random pair (X,Y ).
Assumption 1. There exists a distribution ρ ∈ ∆X×Y that has generated n independent training
samples Dn = (Xi, Yi)i∈[n] ∼ ρ⊗n, and will generate future test samples independently.

Under Assumption 1, the quality of a mapping f : X → Y is measured through the excess risk

E(f) = R(f)−R(f∗) = ∥f − f∗∥2L2(ρX ) , (1)

where ρX is the marginal distribution of ρ on X and, assuming that (Y |X = x) has a second order
moment for every x ∈ X ,

f∗(x) = E [Y |X = x] , which minimizes R(f) = E[|f(X)− Y |2]. (2)

The risk R(f) represents the average error of guessing f(X) in place of Y when the error is measured
through the least-squares loss. From a statistical viewpoint, it is useful to model fn = A(Dn) as
a random function (inheriting its randomness from the samples), so to study the expectation or the
upper tail of the excess risk E(fn). Provided that f∗ is measurable, it is possible to find methods such
that E(fn) converges to zero in probability. Without additional assumptions on f∗, it is not possible
to give any guarantee on the speed of this convergence [12, Theorem 3.1]. However, when f∗ is
assumed to be smooth, the picture improves consequently.
Theorem 1 (Breaking the curse of dimensionality [12, 4]). Under Assumption 1, when f∗ is α-smooth
for α > 0 in the sense that it admits ⌊α⌋ derivatives that are regular, more precisely if f∗ ∈ Cα (i.e.
f is α-Hölder regular), or f∗ ∈ Hα = Wα,2 (i.e. f is α-Sobolev regular), there exists a learning
rule fn = A(Dn) that guarantees

EDn
[E(fn)] ≤ cn−2α/(2α+d), (3)

where c is a constant independent of n. Moreover, the bound (3) is minimax optimal, in the sense
that for any rule fn = A(Dn) there exists a distribution ρ such that f∗ ∈ Cα, or f∗ ∈ Hα, and the
upper bound (3) holds as a lower bound with a different constant c.

Why do constants matter? At first glance, when two algorithms A1 and A2 guarantee two different
upper bounds O(n−γ1) and O(n−γ2) on the expected excess risk, A1 will be deemed superior to A2

if γ1 ≥ γ2, since after a certain number of samples, we will have that EDn
[A1(Dn)] ≤ EDn

[A2(Dn)].
However, the constants hidden in the front of the big Os might lead to a different picture when given
a small number of samples: A1 might actually be a so-called “galactic algorithm”, similarly to
Strassen’s algorithm for matrix multiplication, that might not be worth using without an indecently
large number of samples.

2.2 Minimax Lower Bounds

The following lower bounds show how classical algorithms that reach the minimax optimal conver-
gence rates based on smoothness assumptions (3) necessarily present constants that are growing fast
with respect to the input dimension. Our analysis holds in noisy settings.2

Assumption 2 (Homoscedasticity). The noise in the label (Y |X = x) is assumed to be independent
of x ∈ X with var (Y |X = x) = ε2.

Theorem 2. Under Assumptions 2, for any algorithm A, there exists a target function f∗ such that
f∗(α+1) = 0, and

EDn
[E(A(Dn))] ≥

ε2

n

(
d+ α

d

)
. (4)

Theorem 3. Under Assumption 2, for any algorithm A, there exists a target function f∗ such that
its Fourier transform is compactly supported on the ℓ∞-disk of radius ω, i.e., f̂∗(ω′) = 0 for all
∥ω′∥∞ > ω, and

EDn
[E(A(Dn))] ≥

ε2(2ω + 1)d

n
. (5)

2This contrasts with interpolation regimes where other phenomena might appear, requiring different analysis
tools.
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Figure 2: (Left) Convergence rates as a function of the input dimension d and the number of samples n
when the target function is f∗(x) = x5

1 and k(x, y) ∝ (1 + x⊤y)5. We observe that convergence rates
depend heavily on the dimension, which is mainly due to “changing constants”. (Middle) Theoretical
lower bound. As the number of samples increases and we enter the high-sample regime, the lower bound
resembles the real convergence rates. (Right) Illustration of α 7→ N (α) =

(
d+α
α

)
for d = 100, which

corresponds to the dimension of the space of polynomials with d variables of degree at most α. Given
a number of samples, Taylor expansion can only be estimated meaningfully up to the order α such that
N (α) ≃ n. In particular, it shows that in dimension one-hundred, one millions samples (n = 106) only
allow to leverage no more than fourth-order smoothness (α = 4). See Appendix C.2 for details.

Proof Sketch (detailed in Appendix). The proofs of those two new theorems consist in retaking the
standard lower bound in ε2D/n when performing linear regression with D orthogonal features. In
Theorem 2, D corresponds to the number of polynomials of degree less than α with d variables; in
Theorem 3, D is the number of integer vector m ∈ Zd whose norm is smaller than ω.

Theorems 2 and 3 illustrate how the usage of strong smoothness assumptions on f∗ can not guarantee
an excess risk lower than ε2 without accessing an indecently large number of samples with respect to
the input dimension (e.g., n ≥

(
d+α
d

)
≥ (1+α/d)d or n ≥ 2dωd respectively). Empirical validations

are offered by Figure 2. In their inner-workings, those theorems capture how the rates derived
through Theorem 1 are deceptive when one does not have enough samples compared to the size of the
hypothesis space that f∗ is assumed to belong to; and that the size of smooth functions spaces grows
quite fast with respect to the dimension of the input space. Similar lower bound theorems can be
proven with rates in n−2α/(2α+d) under more detailed assumptions, as illustrated with Theorem 7 in
Appendix. Efficient learning beyond the limits imposed by those theorems can only take place when
leveraging other priors: for example, sparsity priors would reduce the minimax rates from ε2D/n to
ε2s log(D)/n where s is the sparsity index of f∗ [9].

3 Crisp Picture in RKHS Settings

To provide a fine-grained analysis of the phenomena at stake, this section presents stylized settings
where constants and transitory regimes can be studied precisely, allowing to get a better picture of
convergence rates in practical machine learning setups.

3.1 Backbone Analysis

In the following, we shall consider a feature map φ : X → H, with H a Hilbert space and
φ ∈ L2(ρX ). The map φ linearly parameterizes the space of functions

F = {fθ : x 7→ ⟨φ(x), θ⟩H | θ ∈ H} ⊂ L2(ρX ). (6)

For example, H could be Rk, φ seen as defining k features φi(x) on inputs x ∈ X . This model can
be used to estimate f∗ through the empirical risk minimizer

fn,0 ∈ argmin
f∈F

∑
i∈[n]

|f(Xi)− Yi|2 . (7)

In order to ensure that F can learn any function f∗, the features can be enriched by concatenating
an infinite countable number of features together. In this setting, it is more convenient to describe
the geometry induced by F through the (reproducing) kernel k : X × X → R defined as k(x, x′) =

4



⟨φ(x), φ(x′)⟩. When F can fit too many functions, the estimate (7) needs to be refined to avoid
overfitting. This paper will focus on Tikhonov (also known as ridge) regularization3

fn ∈ argmin
f∈F

∑
i∈[n]

|f(Xi)− Yi|2 + n ∥f∥2F , (8)

where the norm is defined from (6) as ∥f∥F = inf {∥θ∥ | f = fθ}, but can also be expressed with
the sole usage of k through the integral operator K : L2(ρX ) → L2(ρX ),

Kf(x) =

∫
X
k(x, x′)f(x′)ρX (dx′) = EX [k(x,X)f(X)], (9)

as ∥f∥F =
∥∥K−1/2f

∥∥
L2(ρX )

, with the convention K−1(kerK) = {+∞}.

The statistical quality of fn (8) depends on two central quantities, defined as

Na(K) = Tr
(
Ka(K + 1)−a

)
and S(K) =

∥∥(K + 1)−1f∗∥∥2
L2(ρX )

, (10)

where a = 2. The first term, known as the effective dimension, quantifies the size of the space F in
which f∗ is searched for. It relates to the variance of the estimator as a function of the dataset Dn. It
will capture the estimation error, the error due to the finite number of accessed samples, related to the
risk of overfitting. The second term quantifies the adherence of f∗ to F . It can be understood as the
proximal distance between f∗ on F since (K + 1)−1 = I −K(K + 1)−1 is a proximal projector. It
will capture the approximation error, the error due to the fact that our model does not exactly fit the
target function, related to the risk of underfitting.
Theorem 4 (High-sample regime learning behavior). Under Assumptions 1 and 2, as well as two
mild technical Assumptions 3 and 4, when f∗ is in the closure of F in L2(ρX ), there exists a constant
c such that the estimate (8) verifies∣∣∣∣EDn [E(fn)]−

ε2N2(K)

n
− S(K)

∣∣∣∣ ≤ cN1(K)

(
an · ε

2N1(K)

n
+ a1/2n S(K)

)
(11)

where an = N+(K)/n, and N+(K) = ess supx∼ρX Tr(Kx(K + 1)−1) with Kx the rank-one
operator on L2(ρX ) that maps f to the constant function equal to E[f ]k(x, x). The different notions of
search space size are always related by N2 ≤ N1 ≤ N+.4 Moreover, under the interpolation property
Kp(L2(ρX )) ↪→ L∞(ρX ), i.e. ∥Kpf∥∞ ≤ ∥f∥L2(ρX ), it holds that N+(λ

−1K) = O(λ−2p); while
under the source condition f∗ ∈ Kr(L2(ρX )), it holds that S(λ−1K) = O(λ2r).

While the excess risk upper bound deriving from Theorem 4 is somewhat standard, the lower
bound is new. This theorem states that the generalization error EDn

[E(fn)] behaves as A(n,K) :=
ε2N2(K)/n+ S(K) up to higher order terms specified in the right-hand side. Theorem 4 also holds
for ridge-less regression (7) with N1(K, 0) = N2(K, 0) = dimF , N+(K, 0) = ∥K−1∥−1∥φ∥∞,
and S(K, 0) = ∥f∗ − πFf∗∥2, where πF is the L2(ρX )-orthogonal projection onto F . In this
setting, EDn [E(fn,0)] = A(n,K, 0)(1 + O(n−1)). More in general, we conjecture the right-hand
side of Theorem 4 to be improvable with the removal of N1(K) in front of the rates (which is due to
our usage of concentration inequalities on operators rather than on scalar values), the change of the
second N1 into N2, and the substitution of a1/2n by an. This would show that EDn

[E(fn)] behaves
as A(n,K)(1 +O(an)). In the following, we will call very high-sample regimes situations where
an ≤ 1, and high-sample regimes situations where N2(K) ≤ n.

3.2 Approach Generality

Despite their apparent simplicity, reproducing kernels k describe rich spaces of functions F , known
as reproducing kernel Hilbert space (RKHS), namely any Hilbert space of functions with continuous
pointwise evaluations [2]. Classical examples are provided by subspaces of analytical functions Cω

3In practice, it is usual to add a regularization parameter λ in front of ∥f∥2F in (8). This parameter λ can be
incorporated as a specific hyperparameter of the kernel by replacing k by λ−1k. This is useful to unify the study
of the different hyperparameters that might define a kernel.

4When ρX does not present heavy tails behaviors, those three quantities actually behaves similarly.
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Figure 3: Illustration of transitory regimes. In essence, Theorem 4 states that En := EDn [E(fn)] =
A(n,K)(1 + h(n,K)) for h = O(N+(K)/n). We illustrate our upper-lower bound when A(n,K) =

n−1/2 and nh(n,K) is known to be in [−102, 102]. The upper-lower bound forces En to behave in n−1/2

when n goes to infinity, yet when n is small, it can showcase quite different “transitory” behaviors.

through the Gaussian kernels k(x, x′) = exp(−∥x− x′∥2 /σ2), and by the Sobolev space H(d+1)/2

through the exponential kernel k(x, x′) = exp(−∥x− x′∥ /σ). Reproducing kernels encompass
several approaches and algorithms that have been suggested to leverage smoothness of the target
function f∗.

The first approach consists in estimating local Taylor expansion through local polynomials, defined
through

φ(x) = λ−1/2(1x∈Ax
i)i≤β,A∈P , (12)

for P a partition on X , β ∈ N a degree, λ > 0 a regularization parameter. Intuitively in high-
dimension problems, where d = dim(X ) is big, leveraging local properties may not be very reason-
able, since the covering of X with local neighborhoods grows exponentially with the dimension d
(when X has unit volume, and neighborhoods have a fixed radius), meaning that if one wants to have
enough samples per neighborhood, n should scale exponentially with d.

Rather than local properties, the second approach consists in leveraging global smoothness properties,
through the estimation of Fourier coefficients. Such estimators can be built implicitly from translation-
invariant kernels, defined as

k(x, x′) = λ−1q((x− x′)/σ), (13)

for q : Rd → R a basic function, σ a bandwidth parameter, and λ a regularization parameter.
However, the number of frequencies smaller than a cut-off frequency, i.e., the number of trigonometric
monomials x 7→ eim

⊤x with m ∈ Zd such that ∥m∥ ≤ ω, grows exponentially with the dimension,
and this approach will not escape from the curse of dimensionality.

Other approaches, such as windowed Fourier estimation, or wavelets expansion estimation (aiming to
reconstruct both fine local details together with coarse large-scale behaviors), could be thought of
and described through the lens of RKHS. Yet, whatsoever the definition of smoothness considered
(i.e., Hölder, Sobolev, Besov), all those methods will hit an inherent limit: the number of “smooth”
functions increases really fast as the dimension increases. Indeed, since their proofs simply consist in
finding D linearly independent function, lower bound theorems akin to Theorems 2 and 3 could be
derived without difficulties for other notions of smoothness.

All the previously described methods are usually endowed with a few hyperparameters that modify
the integral operator K and the norm ∥·∥F defining the estimator (8). Geometrically, a change
of the front regularization parameter λ leads to an isotropic rescaling of the ball ∥·∥−1

F {1} inside
L2(ρX ), while a change of other hyperparameters could favor certain directions, or even remove some
functions in F . In practice, fitting hyperparameters through cross-validation can be understood as
implicitly searching to balance and minimize N (K) and S(K). This fitting allows all those methods
to reach the performance of Theorem 1 in O(n−2α/(2α+d)) as we explain in Appendix.
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Kernel F N (σ, λ) S(σ, λ;Hα)

Gaussian F ⊂ Cω σ−d log(λ−1σd)d/2 σ2α log(λ−1σd)−α

Matérn Hβ σ−d(2β−d)/2βλ−d/2β σ(2β−d)α/βλα/β

Exponential H(d+1)/2 (σλ)−d/(d+1) (σλ)2α/(d+1)

Table 1: Example of translation-invariant kernels, their associated function classes, upper bounds (up to
multiplicative constants) on their sizes as a function of the bandwidth σ and regularization parameter λ, as
well as on the bias when approximating a function in the Sobolev space Hα. Here Cω stands for the set of
analytical functions. Proofs and details are to be found in Appendix B.

3.3 Exploration of Transitory Regimes

Given n samples, Theorem 4 suggests to tune K so as to minimize ε2N (K)/n+S(K). Interestingly,
while theory tends to focus on deriving convergence rates in O(n−2α/(2α+d)) that maximize the
coefficient α,5 Theorem 4 can also be leveraged to characterize tightly the expected decay of the
generalization error when accessing a small number of samples. To ground the discussion, we will
focus on a stylized setting where N and S can be studied in detail as a function of hyperparameters.
Proposition 1 (Capacity and bias bounds). When ρX is uniform on the torus Td = Rd/Zd, and k is
a translation-invariant kernel k(x, y) = λ−1q((x− y)/σ), the capacity of the space defined through
k with regularization λ and bandwidth σ verifies, for a ∈ {1, 2},

Na(σ, λ) =

∫
Rd

(
q̂(σω)

q̂(σω) + λσ−d

)a

#(dω), (14)

where # is the counting measure on Zd ⊂ Rd, and q̂ is the (discrete) Fourier transform of q. Similarly,
the biases quantifying the adherence of f∗ in F verify

S(σ, λ) =
∫
Rd

|f̂∗(ω)|2
(σdq̂(σω) + λ)2

#(dω). (15)

Moreover on X = Rd, if ρX has a density bounded above by ρ∞ < +∞, then (14) and (15) become
upper bounds for µ the Lebesgue measure and f̂ the continuous Fourier transform, at the cost of
extra constants in front of their right-hand sides (respectively ρ∞ and max(ρ∞, 1) for Na and S).

Proof Sketch. This relatively standard fact follows from the assumption on ρX which implies that K
is diagonal in the Fourier domain.

Proposition 1 unlocks a precise sense of the effective dimension for the Gaussian kernel, defined with
q(x) = exp(−∥x∥2), the exponential kernel, with q(x) = exp(−∥x∥), and the Sobolev kernel, with
q̂(ω) = (1+ ∥ω∥2)−β , as well as the bias term S when approximating a function f ∈ Hα with those
kernels. This is reported in Table 1 and proved in Appendix B.

High-sample regimes in harmonics settings. Proposition 1 is useful to describe formally different
convergence rates profiles that one may expect in practice. In particular, the linearity of the bias
characterization (15) is theoretically useful to decorrelate the estimation of different power laws
appearing in the Fourier transform of f . More precisely, if∣∣∣f̂∗(ω)

∣∣∣2 =

∫ ∞

α

cγ(1 + ∥ω∥2)−γµ(dγ),

with cγ being the inverse of the constant in front of the characterization of S(σ, λ;Hγ) in Table 1,
and µ some measure with a profile that ensures the good definition of f∗ ∈ Hα, we have, taking for
example k as the Gaussian kernel,

S(σ, λ; f∗, k) ≃
∫ ∞

α

(σ2 log(λ−1σd)−1)γµ(dγ).

5For example, when F = imK1/2 = Hβ and f∗ ∈ Hα, it typically holds that N+(λ
−1K) = O(λ−2p)

with p = d/4β, and S(λ−1K) = O(λ2r) with r = α/2β, which can be used to prove Theorem 1 by tuning
λ = n−2β/(2α+d).
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Figure 4: Composite convergence rates profile. The x-axis corresponds to the number of samples, while the
y-axis corresponds to the excess risk. From the analysis in Section 3.3, one can build different convergence
rates profiles. For example, regular functions with relatively high-frequencies are going to be hard to
learn with few samples but really easy after a certain number of samples, roughly equals to the number of
harmonics with lower-frequencies); while regular low-frequency functions with singularity are going to
show convergence rates where the coarse details of the functions are learned with few samples, but the
reconstructions of fine-grained details will required much more samples. The former profile is illustrated
with the left figure, and the latter on the right figure. For any sample sizes, excess risk is reported for the
best hyperparameters, found with cross-validation. More details are provided in Appendix C.3.

In particular, with σ2 log(λ−1σd)−1 = n−r, we get the following convergence rate profile, with cN
the constant in front of the characterization of N (σ, λ) in Table 1,

EDn
[E(fn)] ≃ inf

r∈R

(
ε2cNn−1+rd/2 +

∫ ∞

α

n−γrµ(dγ)

)
(1 +O(an)). (16)

This characterization enables us to easily create target functions exhibiting different convergence
profiles, as long as we stay in the high-sample regimes where our bounds are meaningful (i.e. when
the factor in 1 +O(an) is relatively constant).

• Fast then slow profile. The first type of profile is built from µ that charges most of its
mass on fast decays, but also puts some small mass on slow decays. It corresponds to
target functions that are roughly well approximated by highly smooth functions, but whose
exact reconstruction needs to incorporate less regular functions. The smooth part of the
function will be learned quickly, yet the non-smooth part will be learned slowly. Typical
examples of such a profile are provided by non-smooth functions that can be turned into
infinitely differentiable ones after introducing infinitesimal perturbations, such as f∗(x) =
exp(−min(|x|2 ,M)), which is only C0, but where one can expect to learn fast before
stalling to estimate the C1-singularity. Another example is given by a function made of
a sum of one low-frequency cosine with large amplitude easy to learn together with one
high-frequency cosine with small amplitude much harder to learn. We illustrate these profiles
on Figure 4.

• Slow then fast profile. The second type of profile that can be created is for functions that
are supported on a few eigenfunctions of K associated with small eigenvalues. A typical
example of this profile in one dimension would be f∗(x) = cos(ωx) for a high frequency ω.
For this target function, no meaningful learning can be done when the search space is too
small, because small search spaces do not contain high-frequency functions. On the other
hand, when the search space is big enough, the bias quickly goes to zero, allowing for fast
learning as long as one controls the estimation error. When provided with few samples, one
would prefer a small search space to avoid blowing up of the estimation error, and learning
will stall until enough samples are collected to explore bigger search spaces, where f∗ could
be learned quickly. We illustrate this profile on Figure 4.

Those examples illustrate how, given a target function and a range on the number of available samples,
convergence behaviors might fall in regimes that do not correspond to the steady convergence rate
in O(n−2α/2α+d) predicted by Theorem 1. The intuition beyond those examples is not specific to
translation-invariant kernels in harmonics settings, but holds more generically for abstract RKHS.

Empirical study of low-sample regimes. In this work, we have focused on “under-parameterized”
situations where the parameters were set to have more samples than the effective dimension of the

8



Figure 5: Level lines of the weights x → αx(x0) (17) for a given x0 ∈ X , when X is the torus R2/Z2

and the kernel is taken as the Gaussian kernel with the Riemannian metric on the torus (think of an unrolled
donut). Parameters are taken as σ = 1 together with λ = 106 (left), λ = 102 (middle) or λ = 1 (right).
From this picture, one can build examples of non-smooth functions where the kernel inductive bias will
have adversarial effects.

resulting functional space Ft(n). In a deep learning world, where many phenomena are understood
as taking place in the “over-parameterized” regime, it is of interest to compare our perspective
with the double descent phenomenon. Figure 1 shows the excess risk as a function of two of the
three parameters (n, σ, λ), as well as the graph defined by {(n, σ, λ) | N1(λ, σ) = n}. It illustrates a
double descent phenomena with “phase” transition governed by the passage from the low-sample to
the high-sample regime. To delve into this, we investigate into regression weight learned by kernel
ridge regression. When given access to the knowledge of the full distribution ρ, the estimator in (8)
can be rewritten as

f∞,λ = E[Y αX ], αX : x → (K + λI)−1k(X,x). (17)

As such, kernel ridge regression can be seen as learning in an unsupervised fashion the weights
α : X → L2(ρ), which then indicate how to fold the input space to use information provided
by the labels. At a high level, one can think of a scheme, given some input points, to perform
finite differences and leverage the result to build an estimate of the target function from Taylor
expansions, whatsoever would be the label observations. Figure 5 shows how, when λ is not too big,
the reconstruction f∞,λ(x0) (x0 being the same point at the bluest center on the different pictures
on this Figure) depends on observations made far away from x0 according to some periodic pattern,
implicitly assuming that the target function should be regular when looked at in the Fourier domain.
Similarly, one can look at the weights α̂X satisfying EDn

[fn(x)] = E(X,Y )[α̂X(x)Y ], and whose
closed form is given in Appendix C.4. Those weights are shown on Figures 6. They present weird
behaviors when the number of data n is closed to the search space size N2(K). Note that this double
descent phenomenon actually takes place in the regularized setup, and not in the interpolation regime,
contrarily to prior works on the matter [e.g. 28, 21].

4 Conclusion

In this paper, we have shown how subtle is the saying that smoothness allows to break the curse of
dimensionality. In essence, without implicit bias and in presence of noise, one needs to be in the
high-sample regime where the size of the search space F is smaller than the number of samples to
avoid overfitting. As the input dimension grows, many more smooth functions can be defined. This
constrains the diversity of functions within F , which will typically be devoid of fine-grained details
(linked with high-order, eventually trigonometric, polynomials), hence unable to harness high-order
smoothness without accessing a large number of samples n.

Future work. Since we have shown that smoothness alone is not a strong enough prior to build
efficient learning algorithms in high-dimensions, other priors could be investigated. As such, sparsity
assumptions, multi-index models, feature learning or multi-scale behaviors might offer more realistic
models to break the curse of dimensionality. How deep learning models exploit such priors has been
an active line of research, although linking theoretical results with “interpretable” observations in
neural networks remains challenging, and theory has not yet provided that many meaningful insights
for practitioners.

9
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Figure 6: Weights x 7→ α̂x(x0) such that EDn [fn(x)] = E(X,Y )[α̂X(x)Y ], for x0 = −1/2 (blue),
x0 = 0 (orange) and x0 = 1/2 (green), when X = [−1, 1] and ρX is uniform. The weight αx(x0)
quantifies how much the prediction at x0 is inferred from the output observed at the point x. The weights
are computed with the Gaussian kernel with bandwidth σ = .1 and λ = 10−5, which yields an effective
dimension N2(K) = 45, and for n ∈ {27, 45, 90, 180, 360, 720}, which explains the high-sample ratio
n/N2(K) seen on the title of the different plots. When this ratio is close to one, the weights present weird
behaviors, which could explain the bad performance when transitioning from low-sample to high-sample
regimes.

Furthermore, going beyond the sole selection of a few hyperparameters, it would be interesting to
understand more aggressive model selection. In particular, given some observations (Xi, Yi) and
some hypothesis classes (Ft)t, it seems natural to trade a term that fits the data as per (7), together
with a regularization term mint ∥f∥Ft

that selects Ft so that fn has a small Ft norm. We understand
this as a lex parsimoniae, where each Ft encodes different notions of simplicity (e.g. different priors)
while fn only needs to satisfy one of them.

Finally, while this work heavily relies on the least-square loss, practitioners tend to favor other losses
such as the cross-entropy. How losses deform and modify the size of the search space F and its
adherence properties to some target functions f∗ is an open-question –not to mention its adherence
properties when the final predictor is built as a decoding y(x) = argmaxy f(y |x) in order to learn
a discrete y from a score f(y |x) that relates to P(X,Y )∼ρ(Y = x |X = x).

Experiments reproduction. All the code to run figures is available at https://github.com/
facebookresearch/rates.
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Figure 7: Two other cuts of Figure 1.

A Generic Proofs and Discussions

A.1 What do we mean by Transitory Regimes?

In essence, by transitory regimes we mean any finite-time behavior that does not match an expected
long-time horizon “stationary” behavior. More precisely, let Γ = {(n,EDn

[E(fn)]) |n ∈ N} be
the graph of the expected excess risk. Theorem 4 provides a lower-upper bound of the form
Γ ⊂ {(n, cn−γ(1 + ah(n))) |n ∈ N, a ∈ [−1, 1]} with c, γ two constants and h a function that goes
to zero when its argument goes to infinity. This shows that, as n grows large, EDn

[E(fn)] will behave
as cn−γ . However, this stationary behavior in cn−γ might take time to kick in, and when only
accessing a small number of samples n, our bound does not lead to strong constraints on EDn

[E(fn)],
which might arguably exhibit a very different profile. We illustrate this idea on Figure 3.

A.2 Generic Lower Bounds

Let us recall a relatively standard lower bound for linear regression.

Theorem 5 (Linear regression minimax rates, [17]). Let ρθ ∈ ∆X×Y with X = Rd and Y = R be
defined with its marginal over X being ρX , and its conditionals being (Y |X) = θ⊤X+ε2 ∼ N (0, 1)
with N the Gaussian distribution. Let Dn ∼ ρ⊗n

θ be a dataset of n samples (Xi, Yi), and A be an
algorithm that map Dn to a guess for θ. Under the assumption that n > d and that

∑
XiX

⊤
i is

almost always invertible, we have

sup
θ

EDn∼ρ⊗n
θ

[
∥θ −A(Dn)∥2

]
≥ ε2d

n− d+ 1
.

Replacing X by φ(X), we get the following corollary.

Corollary 6. For any learning algorithm A targeting a function f∗(X) = φ(X)⊤θ with φ : X →
RD and θ ∈ RD, there exists a θ and a distribution ρX on X such that under Assumption 2,

EDn∼ρ

[
∥θ −A(Dn)∥2

]
≥ ε2 dimSpanφ(X )

n
.

The proof of Theorem 2 (resp. Theorem 3) follows by considering φ to be the concatenation of all
the
(
d+α
α

)
polynomials of degree at most α with d variables (resp. all the trigonometric polynomials

x 7→ exp(−im⊤x) with ∥m∥∞ ≤ ω). To be totally rigorous, one should incorporate the assumptions
of Theorem 5, yet if we remove the extra assumption, one can actually show that the worse excess
risk could be infinite [17, Proposition 1], so this does not cast shadow on our results, but would only
make them stronger. We choose to present weaker results that are easier to understand and parse for
the reader.
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Those theorems could be proven from scratch by considering a well-thought Bayesian prior on θ that
has generated the dataset Dn, before lower bounding

inf
A

sup
θ

EDn

[
∥A(Dn)− θ∥2

∣∣∣ θ] ≥ inf
A

EθEDn

[
∥A(Dn)− θ∥2

∣∣∣ θ]
= inf

A
E(θ,Dn)

[
∥A(Dn)− θ∥2

]
= E(θ,Dn)

[
∥E [θ | Dn]− θ∥2

]
,

and computing the last term explicitly. We conjecture that it should be equally possible to compute
with this technique a precise “exponentially bad” lower bound on the optimal minimax constants
appearing in front of n−2α/(2α+d)) in Theorem 1.

It is equally possible to retake the proof techniques of Theorems 2 and 3 to prove lower bound that
are targeted to match the upper bound in O(n−2α/(2α+d)).

Theorem 7. For any RKHS F and distribution ρX such that the spectrum of the integral operator
verifies specK =

{
n−2α/d

∣∣n ∈ N
}

, for any algorithm A and value D > 0, there exists a function
satisfying ∥f∗∥F ≤ D such that under Assumption 2,

EDn
[E(A(Dn))] ≥

1

6

ε4α/(2α+d)D2d/(2α+d)

n2α/(2α+d)
.

Proof. The proof consists in finding a subproblem that reduces to linear regression. Under the
assumptions of Theorem 5 and the additional assumption that ∥θ∗∥2 ≤ D, it is possible to show the
minimax lower bound

EθEDn∼ρ⊗n
θ

[
∥θ −A(Dn)∥2

]
≥ 1

6
min

{
ε2d

n
,D2

}
,

for some Bayesian prior on θ [see 4, Chapter on “lower bound”, section on Bayesian analysis].

Let us now consider the case where ∥θ∥ ≤ D, and θ is supported on the top-k eigenvectors of K,
we got ∥f∗∥ =

∥∥Σ−1/2θ
∥∥ ≤ Dλ

−1/2
k where λk is the k-th eigenvalue of T . Hence, considering an

RKHS F , under Assumption 2, for any algorithm A, there exists a function such that ∥f∗∥F ≤ D,
and

EDn [E(A(Dn))] ≥
1

6
max
k∈N

min

{
ε2k

n
,D2λk

}
,

Considering λk = k−2α/d and k = (nD2/ε2)2α/(2α+d) leads to the result.

In terms of implications of Theorem 7, in harmonics settings, it is possible to build an integral operator
such that the eigenfunctions of K are known to be regular smooth functions, e.g., the trigonometric
polynomials fm : x → exp(−im⊤x) for m ∈ Zd ordered according to ∥m∥ = ω. As such, for
m ∈ Zd with ∥m∥ = ω, fm is expected to be ordered around the ωd-th eigenfunctions of K, typically
associated with the eigenvalue λωd ≈ (ωd)−2α/d = ω−2α if F corresponds to Hα. Using that
when f∗ is the k-th eigenfunctions of K, we have ∥f∗∥ = λ−1

k , Theorem 3 would become that for
any algorithm A, under Assumption 2, there exists a function f∗ such that ∥f∗∥F ≤ ∥fm∥F with
∥m∥ = ω and,

EDn
[E(A(Dn))] ≳

ε4α/(2α+d)ω2dα/(2α+d)

n2α/(2α+d)
.

When α scales linearly with d (so to beat the curse of dimensionality), this lower bound presents a
constant that is exponential with d.

A.3 Precise Excess Risk Bound

This subsection is devoted to the proof of the bound in Theorem 4.

For ease of notation, we will use the finite-dimensional notation u⊤w to denote the inner product
⟨u, v⟩ in (infinite-dimensional) Hilbert spaces. Moreover, we will simply write ∥·∥ for both ∥·∥H
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and the operator norm on H (depending on context), L2 for L2(ρX ), and ∥·∥2 for both ∥·∥L2 and the
operator norm on L2.

For the sake of clarity, we have expressed all our statements in terms of operators on L2. For the
proofs, it is more convenient to work in H. Let us introduce the embedding

S : H → L2, θ 7→ (x 7→ θ⊤φ(x)).

From S, one can take its adjoint S∗ and check that K = SS∗. K is isometric to the (non-centered)
covariance operator

Σ = S∗S = E[φ(X)⊗ φ(X)].

Note that
∥Sθ∥22 = E[(φ(X)⊤θ)2] ≤ E[∥φ(X)∥2 ∥θ∥2] = ∥φ∥22 ∥θ∥

2
,

which implies that K is a continuous operator as soon as φ ∈ L2. The kernel ridge regression
estimator (8) is characterized as

fn = S(Σn + 1)−1S∗
nY,

where

Sn : H → Rn, θ 7→ (θ⊤φ(Xi))i∈[n], Σn = S∗
nSn, Y = (Yi)i∈[n] ∈ Rn.

Endowing Rn with the scalar product ⟨a, b⟩ = 1
n

∑
i∈[n] aibi, we have

S∗
nY =

1

n

∑
i∈[n]

Yiφ(Xi), Σn =
1

n

n∑
i=1

φ(Xi)⊗ φ(Xi).

It is useful to define εi as the difference between Yi and f∗(Xi) = E[Yi |X = Xi], which can be
seen as the labeling noise and average to zero. For simplicity, we will first assume that our model is
well-specified, i.e. f∗ = Sθ∗ for some θ∗. We have, with E = (εi)i∈[n] ∈ Rn,

Yi = f∗(Xi) + εi = φ(Xi)
⊤θ∗ + εi, Y = Snθ∗ + E.

As a consequence,
fn = S(Σn + 1)−1Σnθ∗ + S(Σn + 1)−1S∗

nE.

Let X = (Xi)i∈[n]. we have

EDn
[E(fn) |X] = EDn

[
∥fn − f∗∥22 | X

]
=
∥∥S(Σn + 1)−1Σnθ∗ − Sθ∗

∥∥2
2

+ EDn

[∥∥S(Σn + 1)−1S∗
nE
∥∥2
2
| X
]

+ 2EDn

[(
S(Σn + 1)−1Σnθ∗ − Sθ∗

)⊤
S(Σn + 1)−1S∗

nE | X
]

=
∥∥S(Σn + 1)−1θ∗

∥∥2
2

+ EDn

[∥∥S(Σn + 1)−1S∗
nE
∥∥2
2
| X
]

+ 2
(
Sn(Σn + 1)−1Σ(Σn + 1)−1θ∗

)⊤ EDn [E | X]
=
∥∥S(Σn + 1)−1θ∗

∥∥2
2
+ EDn

[∥∥S(Σn + 1)−1S∗
nE
∥∥2
2
| X
]
,

where in the third equality we used I − (Σn + 1)−1Σn = (Σn + 1)−1, and in the last one that
EDn

[E |X] = 0. Assuming for simplicity that the noise is homoscedastic so that E[EE⊤] = ε2I for
ε > 0, we obtain

EDn

[∥∥S(Σn + 1)−1S∗
nE
∥∥2
2
| X
]
=

1

n
Tr
(
Sn(Σn + 1)−1Σ(Σn + 1)−1S∗

nEDn

[
EE⊤ | X

])
=

ε2

n
Tr
(
Σ(Σn + 1)−2Σn

)
,

where the 1/n factor arises from the fact that E∗ = E⊤/n in the geometry we have considered on
Rn. Finally we have retrieved the following standard bias-variance decomposition result.
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Lemma 2 (Bias-Variance decomposition). When our model is well-specified so that f∗ = Sθ∗ with
θ∗ ∈ H, and when the noise in the label is homoscedastic with variance ε2, the estimator (8) verifies

EDn [E(fn) |X] =
∥∥S(Σn + 1)−1θ∗

∥∥2
2︸ ︷︷ ︸

Bn

+
ε2

n
Tr
(
Σ(Σn + 1)−2Σn

)︸ ︷︷ ︸
Vn

. (18)

We would like to get the limit when n goes to infinity in equation (18). We expect the first term to
concentrate towards

∥∥S(Σ + 1)−1θ∗
∥∥2
2
, and the second term to Tr(Σ2(Σ + 1)−2).

A.3.1 Bounding the bias term

Let us begin by working out the term Bn =
∥∥S(Σn + 1)−1θ∗

∥∥2
2
. We first introduce some notation to

make derivations shorter. Let En = Σn − Σ, Σ1 = Σ+ 1 and Fn = −Σ
−1/2
1 EnΣ

−1/2
1 . As long as

∥Fn∥ < 1, we have

Bn = θ⊤∗ (Σn + 1)−1Σ(Σn + 1)−1θ∗

= θ⊤∗ (Σ1 + En)
−1Σ(Σ1 + En)

−1θ∗

= θ⊤∗ Σ
−1/2
1 (I − Fn)

−1Σ−1
1 Σ(I − Fn)

−1Σ
−1/2
1 θ∗

=
∑
i,j∈N

θ⊤∗ Σ
−1/2
1 F i

nΣ
−1
1 ΣF j

nΣ
−1/2
1 θ∗.

Let us assume for a moment that∥∥∥(ΣΣ−1
1 )−1/2Fn(ΣΣ

−1
1 )1/2

∥∥∥ ≤ ∥Fn∥ . (19)

If equation (19) holds, then

∣∣Bn − θ⊤∗ Σ
−2
1 Σθ∗

∣∣ =
∣∣∣∣∣∣

∑
i,j∈N;i+j ̸=0

θ⊤∗ Σ
−1/2
1 F i

nΣ
−1
1 ΣF j

nΣ
−1/2
1 θ∗

∣∣∣∣∣∣
≤
∑

i+j ̸=0

∣∣∣θ⊤∗ Σ−1/2
1 F i

nΣ
−1
1 ΣF j

nΣ
−1/2
1 θ∗

∣∣∣
=
∑

i+j ̸=0

∣∣∣〈Σ−1/2
1 (Σ−1

1 Σ)1/2θ∗,
(
(Σ−1

1 Σ)−1/2F i
nΣ

−1
1 ΣF j

n(Σ
−1
1 Σ)−1/2

)
(Σ−1

1 Σ)1/2Σ
−1/2
1 θ∗

〉∣∣∣
≤
∑

i+j ̸=0

∥∥∥Σ−1/2
1 (Σ−1

1 Σ)1/2θ∗
∥∥∥2 ∥∥∥(Σ−1

1 Σ)−1/2F i
nΣ

−1
1 ΣF j

n(Σ
−1
1 Σ)−1/2

∥∥∥
= θ⊤∗ Σ

−2
1 Σθ∗

∑
i+j ̸=0

∥∥∥((ΣΣ−1
1 )−1/2Fn(ΣΣ

−1
1 )1/2)i+j

∥∥∥
≤ θ⊤∗ Σ

−2
1 Σθ∗

∑
i,j∈N;i+j ̸=0

∥∥∥(ΣΣ−1
1 )−1/2Fn(ΣΣ

−1
1 )1/2

∥∥∥i+j

= θ⊤∗ Σ
−2
1 Σθ∗

∑
i∈N

(i+ 2)
∥∥∥(ΣΣ−1

1 )−1/2Fn(ΣΣ
−1
1 )1/2

∥∥∥i+1

≤ θ⊤∗ Σ
−2
1 Σθ∗

∑
i∈N

(i+ 2) ∥Fn∥i+1
= θ⊤∗ Σ

−2
1 Σθ∗

∫ ∞

0

(⌊x⌋+ 2) ∥Fn∥⌈x⌉ dx

≤ θ⊤∗ Σ
−2
1 Σθ∗

∫ ∞

0

(x+ 2) ∥Fn∥x dx = θ⊤∗ Σ
−2
1 Σθ∗

1− 2 log(∥Fn∥)
log2(∥Fn∥)

.

This inequality is useful as long as ∥Fn∥ is small enough, which is not always true. When ∥Fn∥ is
large, we can instead proceed with the simpler bound∣∣Bn − θ⊤∗ Σ

−2
1 Σθ∗

∣∣ ≤ Bn + θ⊤∗ Σ
−2
1 Σθ∗ ≤ 2θ⊤∗ Σθ∗ = 2 ∥f∗∥22 .
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Therefore, rewriting the limit as

θ⊤∗ (Σ + 1)−2Σθ∗ = (Σ1/2θ∗)
⊤(Σ + 1)−2Σ1/2θ∗ = (Sθ∗)

⊤(K + 1)−2Sθ∗

= (f∗)⊤(K + 1)−2f∗ =
∥∥(K + 1)−1f∗∥∥2

2
= S(K),

we split the bias error as∣∣Bn − θ⊤∗ Σ
−2
1 Σθ∗

∣∣ ≤ 2 ∥f∗∥22 1∥Fn∥>1/2 + S(K)
1− 2 log(∥Fn∥)
log2(∥Fn∥)

1∥Fn∥≤1/2

≤ 2 ∥f∗∥22 1∥Fn∥>1/2 −
3S(K)

log(∥Fn∥)
1∥Fn∥≤1/2.

Taking the expectation and using the convexity of the absolute value, we obtain∣∣EDn
[Bn]− θ⊤∗ Σ

−2
1 Σθ∗

∣∣ ≤ 2 ∥f∗∥22 P(∥Fn∥ > 1/2)− S(K)

∫ 1/2

0

3P (∥Fn∥ > x)

log(x)
dx.

We now proceed with an exponential concentration inequality on ∥Fn∥. We will use the one of
Cabannes et al. [5], Eq. (25). As long as 1 ≤ ∥K∥, we have

P(∥Fn∥ > t) ≤ 28N1(K) exp

(
− nt2

N+(K)(1 + t)

)
.

This inequality shows the restrictive notion of effective dimension, which is useful to ensure the good
conditioning of the linear system implicitly encoded in (8), and, in essence, bound all moments of
φ(X). As long as N+(K) ≤ 3n/2, we can compute the integral as

−
∫ 1/2

0

P (∥Fn∥ > x)

log(x)
dx ≤ −28N1(K)

∫ 1/2

0

exp(−3nx2/2N+(K))

log(x)
dx

= −28N1(K)
N 1/2

+ (K)

1.51/2n1/2

∫ 1/2

0

exp(−u2)

log(u) + log(3n/2N 2∞(K))
du

≤ −28
N1(K)N 1/2

+ (K)

1.51/2n1/2

∫ 1/2

0

exp(−u2)

log(u)
du ≤ 8N1(K)N 1/2

+ (K)

n1/2
.

We recall that the bounds above were derived under condition (19), which is rather strong. However,
the attentive reader would remark that a much laxer assumption is sufficient, which we introduce
thereafter.
Assumption 3. There exists a constant c such that, for all i, j ∈ N,

E
[∥∥(ΣΣ−1

1 )−.5F i
nΣΣ

−1
1 F j

n(ΣΣ
−1
1 )−.5

∥∥ ∣∣ ∥Fn∥ ≤ 1/2
]
≤ c2E

[
∥Fn∥i+j

∣∣∣ ∥Fn∥ ≤ 1/2
]
. (20)

Assumption 3 notably holds when F is finite dimensional with c2 =
∥∥K−1

∥∥−1

2
(∥K∥2 +1). As such

all our lower-bound results can be cast with finite-dimensional approximation of infinite-dimensional
RKHS. Under Assumption 3, we get

E
[∣∣Bn − θ⊤∗ Σ

−2
1 Σθ∗

∣∣ ∣∣ ∥Fn∥ ≤ 1/2
]

≤
∑

i+j ̸=0

∥∥∥Σ−1/2
1 (Σ−1

1 Σ)1/2θ∗
∥∥∥2 E [∥∥∥(Σ−1

1 Σ)−1/2F i
nΣ

−1
1 ΣF j

n(Σ
−1
1 Σ)−1/2

∥∥∥ ∣∣∣ ∥Fn∥ ≤ 1/2
]

≤ c2
∑

i,j∈N;i+j ̸=0

∥∥∥Σ−1/2
1 (Σ−1

1 Σ)1/2θ∗
∥∥∥2 E [∥Fn∥i+j

∣∣∣ ∥Fn∥ ≤ 1/2
]
,

which allows us to proceed with the precedent derivations without assuming that (19) holds.

While the previous results were achieved for f∗ ∈ F , they can be extended by density to any f∗ in
the closure of F in L2(ρX ), i.e. f ∈ (kerK)⊥, leading to the following result.
Proposition 3. When f∗ ∈ (kerK)⊥ and 1 ≤ ∥Σ∥, under the technical Assumption 3, the bias term
can be bounded from above and below by

|EDn
[Bn]− S(K)| ≤ c2N1(K)

(
56 ∥f∗∥22 exp

(
− n

6N+(K)

)
+

8S(K)N 1/2
+ (K)

n1/2

)
. (21)
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A.3.2 Discussion on the bias bound

More direct upper bound. The precedent derivations can be made more direct with the following
series of implications, with A ⪯ B meaning that x⊤Ax ≤ x⊤Bx for every x:

∥Fn∥ ≤ 1/2 ⇒ −1/2I ⪯ Fn ⪯ 1/2I

⇒ 1/2I ⪯ I − Fn ⪯ 3/2I

⇒ 4/9I ⪯ (I − Fn)
−2 ⪯ 4I

⇒ 4/9S(K) ⪯ θ⊤∗ Σ
1/2Σ−1

1 (I − Fn)
−2Σ−1

1 Σ1/2θ∗ ⪯ 4S(K).

Let us assume that

E
[
(I − Fn)

−1ΣΣ−1
1 (I − Fn)

−1
∣∣ ∥Fn∥ ≤ 1/2

]
⪯ c2E

[
Σ1/2Σ

−1/2
1 (I − Fn)

−2Σ1/2Σ
−1/2
1

∣∣∣ ∥Fn∥ ≤ 1/2
]
,

(22)

This leads to the simple upper bound

Bn = θ⊤∗ Σ
−1/2
1 (I − Fn)

−1Σ−1
1 Σ(I − Fn)

−1Σ
−1/2
1 θ∗

≤ c2θ⊤∗ Σ
−1/2
1 (Σ−1

1 )1/2(I − Fn)
−2(Σ−1

1 )1/2Σ
−1/2
1 θ∗ + ∥f∗∥2L2 P(∥Fn∥ > 1/2)

≤ 4c2S(K) + ∥f∗∥22 N1(K) exp

(
− n

6N+(K)

)
.

Improvement directions. In essence, we expect the bias upper-lower bound to behave as

S(K)(I − Fn)
−2 − I ≃ S(K)Fn.

Getting this linear dependency in Fn explicitly would allow to improve the bound since

EDn [∥Fn∥ | ∥Fn∥ ≤ 1/2] ≲ N (K)N+(K)n−1.

Moreover, going back to the definition of Fn,

EDnθ
⊤
∗ ΣΣ

−1
1 FnΣΣ

−1
1 θ∗ = EDn

[( 1
n

n∑
i=1

θ⊤∗ ΣΣ
−3/2
1 φ(Xi)

)2]
− EX

[
θ⊤∗ ΣΣ

−3/2
1 φ(X)

]2
= EDn

[( 1
n

n∑
i=1

θ⊤∗ ΣΣ
−3/2
1 φ(Xi)− EX

[
θ⊤∗ ΣΣ

−3/2
1 φ(X)

] )2]
,

which suggests possible improvements of the bound in S(K)n−1.

A.3.3 Bounding the variance term

Let us now work on the term Vn = TrΣ(Σn + 1)−2Σn. It works similarly to the bias term,
concentrating towards N2(K). With Σn,1 = Σn + 1, we have

Tr
(
ΣΣnΣ

−2
n,1 − Σ2Σ−2

1

)
= Tr

(
ΣΣ−1

1 ΣnΣ
−1
n,1(Σ

−1
n,1Σ1 − I) + ΣΣ−1

1 (ΣnΣ
−1
n,1 − ΣΣ−1

1 )
)
.

Using that, for any A positive semi-definite and any B, Tr(AB) ≤ ∥B∥Tr(A), it follows that

|Vn −N2(K)| ≤ N1(K)
∥∥ΣnΣ

−1
n,1

∥∥∥∥Σ−1
n,1Σ1 − I

∥∥+N1(K)
∥∥ΣnΣ

−1
n,1 − ΣΣ−1

1

∥∥
≤ N1(K)

∥∥Σ−1
n,1Σ1 − I

∥∥+N1(K)
∥∥ΣnΣ

−1
n,1 − ΣΣ−1

1

∥∥ .
Let us focus on the first term. Using a−1 − b−1 = a−1(b− a)b−1, we get∥∥Σ1Σ

−1
n,1 − I

∥∥ =
∥∥Σ1Σ

−1
n,1(Σ− Σn)Σ

−1
1

∥∥
≤
∥∥Σ1Σ

−1
n,1

∥∥ ∥∥∥Σ1/2
1 FnΣ

−1/2
1

∥∥∥
≤
(
∥I∥+

∥∥Σ1Σ
−1
n,1 − I

∥∥) ∥∥∥Σ1/2
1 FnΣ

−1/2
1

∥∥∥
≤
∑
i>0

∥∥∥Σ1/2
1 FnΣ

−1/2
1

∥∥∥i .
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For the second term,∥∥ΣnΣ
−1
n,1 − ΣΣ−1

1

∥∥ ≤
∥∥Σn(Σ

−1
n,1 − Σ−1

1

∥∥+ ∥∥(Σn − Σ)Σ−1
1

∥∥
≤
∥∥ΣnΣ

−1
n,1(Σ− Σn)Σ

−1
1

∥∥+ ∥∥(Σn − Σ)Σ−1
1

∥∥
≤ 2

∥∥(Σn − Σ)Σ−1
1

∥∥
= 2

∥∥∥Σ1/2
1 FnΣ

−1/2
1

∥∥∥ .
Similarly as for (19), if we assume that∥∥∥Σ1/2

1 FnΣ
−1/2
1

∥∥∥ ≤ c ∥Fn∥ , (23)

then we have, as long as ∥Fn∥ ≤ 1/2c,

|Vn −N2(K)| ≤
∑
i>0

∥∥∥Σ1/2
1 FnΣ

−1/2
1

∥∥∥i + 2
∥∥∥Σ1/2

1 FnΣ
−1/2
1

∥∥∥
≤ c ∥Fn∥

1− c ∥Fn∥
+ 2c ∥Fn∥ ≤ 4c ∥Fn∥ .

For the case when ∥Fn∥ is large, we can again proceed with a simple bound:

|Vn −N2(K)| ≤
∣∣Tr (ΣΣn(Σn + 1)−2

)∣∣+Tr
(
Σ2Σ−2

1

)
≤ 2Tr(Σ).

Splitting the full expectation as we did for the bias we thus obtain

|EDn
[Vn]−N2(K)| ≤ EDn

[|Vn −N2(K)|]
≤ 2Tr(Σ)P(∥Fn∥ > 1/2c) + 4cE [∥Fn∥ | ∥Fn∥ ≤ 1/2c]P(∥Fn∥ ≤ 1/2c).

We are left with the computation of two integrals. As long as 1 ≤ ∥Σ∥, with a the coefficient
appearing in the exponential

P(∥Fn∥ ≤ 1/2c)E [∥Fn∥ | ∥Fn∥ ≤ 1/2c] ≤ 28N1(K)

∫ 1/2c

0

x exp(−3nx2/2N+(K)) dx

= 28N1(K)a−1

∫ a1/2c/2

0

x exp(−x2) dx ≤ 10N1(K)N+(K)

n
.

Once again, the condition (23) can be relaxed with the following assumption.
Assumption 4. There exists a constant c such that, for all i ∈ N,

E
[∥∥∥Σ1/2

1 FnΣ
−1/2
1

∥∥∥i ∣∣∣∣ ∥Fn∥ ≤ 1/2c

]
≤ ciE

[
∥Fn∥i

∣∣∣ ∥Fn∥ ≤ 1/2c
]
. (24)

As for Assumption 3, Assumption 4 holds when F is finite-dimensional with c2 =
∥∥K−1

∥∥ (∥K∥+1).
It holds in general with c2 = ∥Σ∥ + 1, although this would deteriorate the bound by a factor of λ
when considering Σ to be λ−1Σ.

We are finally ready to collect the different pieces.
Proposition 4. When f∗ ∈ (kerK)⊥ and 1 ≤ ∥Σ∥, under the technical Assumption 4, the variance
term can be bounded from above and below by

ε2

n
|EDn

[Vn]−N2(K)| ≤ ε2N 2
1 (K)

(
28Tr(Σ)

n
exp

(
− c2n

(4 + 2c)N+(K)

)
+

40cN+(K)

n2

)
.

(25)

A.3.4 Discussion to the variance bound

Once again, the bound presented here is somewhat unsatisfying, as it will not necessarily decrease
faster than N (K)/n. If one considers target functions that are far away from F and requires a large
search space (i.e. S(λ−1K) decreases slowly with λ, and given a fixed number of samples n the
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optimal λn is found for N (λnK) quite large compared to n), so that N+(λ
−1K)N (λ−1K)/n does

not go to zero. Several directions can be taken to improve the bound. For example, when Y is
bounded by M , the noise ε2 can be replaced by M2, and it is possible to get an upper bound of the
form

EDn
[E(f (thres.)

n )] ≤ 8M2

n
N1(K) + inf

f∈F

(
∥f − f∗∥2L2 + ∥f∥2F

)
,

for a truncated version f
(thres.)
n of the estimator (8) as proved by Mourtada et al. [19] for ridge-less

regression and extended to ridge regression in Mourtada et al. [20]. Moreover, retaking the analysis
of Mourtada and Rosasco [18], one can get a lower bound of the form

EDn
Vn ≥ n

n+ 1
EDn+1

Tr
(
ΣnΣ

−1
n,1Σn+1Σ

−1
n+1,(n+1)/n

)
≥ n

n+ 1
EDn

Tr
(
ΣnΣ

−1
n,1

)
− EDn+1

Tr
(
ΣnΣ

−1
n,1Σ

−1
n+1,(n+1)/n

)
,

which might lead to some lower bound with

EDn+1 Tr
(
ΣnΣ

−1
n,1Σ

−1
n+1,(n+1)/n

)
=

n+ 1

n
EDn,X Tr

(
ΣnΣ

−1
n,1(Σn,1 + φ(X)⊗ φ(X))−1

)
≤ n+ 1

n
EDn

Tr
(
ΣnΣ

−1
n,1

)
EX

[∥∥(Σn,1 + φ(X)⊗ φ(X))−1
∥∥] .

We also note that it should not be too hard to replace Fn by Σ1/2Σ−1
1 EnΣ

1/2Σ−1
1 , which would lead

to ε2N2(K)/n instead of ε2N1(K)/n in the right-hand side of (11).

A.3.5 Full theorem

Collecting the precedent results leads to the following theorem.

Theorem 8. Under the technical Assumptions 3 and 4, as long as 1 ≤ ∥Σ∥, when f∗ belongs to the
closure of F in L2(ρX ), the estimator (8) verifies∣∣∣∣EDn

[E(fn)]−
ε2N2(K)

n
− S(K)

∣∣∣∣ ≤ 40N1(K)

(
an · ε

2N1(K)

n
+ a1/2n S(K)

)
+ 56N1(K)

(
Tr(Σ)ε2

n
+ ∥f∗∥2L2

)
exp(−can),

(26)

where an = N+(K)/n and some constant c.

As long as its right-hand side decreases faster then EDn
[E(fn)], Theorem 8 states that EDn

[E(fn)]
behaves like

EDn
[E(fn)] ≃

ε2N2(K)

n
+ S(K).

When optimizing for λ when K is actually λ−1K, assuming that N1 ≃ N2, the right-hand side of
Theorem 8 decreases faster than EDn [E(fn)] if and only if N1(K)a

−1/2
n goes to zero with n. This

implies N (K)3 ≤ n, which is a much stronger condition than the high-sample regime condition
N (K) ≤ n.

A.4 Interpolation spaces, capacity and source conditions

This section discusses the values of N (K) and S(K), and prove the last statements of Theorem 4.

A.4.1 Variances

We begin with simple facts about the variance term.

Proposition 5 (Relation between variances). For any kernel k, we have the relation

N2(K) ≤ N1(K) ≤ N+(K). (27)
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Figure 8: Effective dimensions N1 (left) and N2 (right) as a function of (λ, σ) in one dimension (top) and
two dimension (bottom) when ρX is uniform on X = [−1, 1]d, and k is the Gaussian kernel.

Proof. Once again, the precise study of the variance is easier in H with the operator Σ rather than in
L2. First of all, notice that K = SS∗ has the same spectrum as Σ = S∗S, so that, for a ∈ [1, 2],

Na(K) = Tr((K + 1)−aKa) = Tr((Σ + 1)−aΣa) =
∑

µ∈spec(Σ)

µa

(1 + µ)a
.

This shows the first part of the inequality (27):(
0 ≤ x

x+ 1
≤ 1 ⇒ x

x+ 1
≤ xa

(x+ 1)a

)
⇒ N2(K) ≤ N1(K).

For the second part of the inequality, we need to reformulate N+(K), which is the object of the next
Lemma. In view of Lemma 6, the last inequality in (27) follows from

N2(K) = EX

[
Tr((Σ + 1)−1φ(X)⊗ φ(X)

]
≤ ess sup

X
Tr((Σ + 1)−1φ(X)⊗ φ(X)) = N+(K).

The ends the proof of the proposition.

Lemma 6. N+(K) can be expressed in H as

N+(K) = ess sup
x∼ρX

∥∥∥(Σ + 1)−1/2φ(x)
∥∥∥2 .

Proof. Observe that, for x ∈ X ,∥∥∥(Σ + 1)−1/2φ(x)
∥∥∥2 = φ(x)⊤(Σ + 1)−1φ(x) = Tr

(
(Σ + 1)−1φ(x)⊗ φ(x)

)
.

Let us introduce the operator

Sx : H → L2(ρX ), θ 7→ (x′ 7→ φ(x)⊤θ).

From
⟨Sxθ, g⟩ = E[g(X)φ(x)⊤θ] = ⟨θ,EX [g(X)φ(x)]⟩
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we get S∗
xg = E[g(X)φ(x)]. Similarly, one can check that

Kx(g)(x
′) = (SxS

∗
xg)(x

′) = (Sx(EX [g(X)]φ(x)))(x′) = φ(x)⊤φ(x)EX [g(X)] = E[g]k(x, x),

and that
Σxθ = S∗

xSxθ = EX [φ(x)⊤θ]φ(x) = (φ(x)⊗ φ(x))θ,

from which we deduce that there exists ε ∈ {−1, 1} such that

ε
∥∥(K + 1)−1Kx

∥∥ = Tr (K + 1)−1Kx) = Tr(Σ + 1)−1φ(x)⊗ φ(x)) =
∥∥∥(Σ + 1)−1/2φ(x)

∥∥∥ .
Necessarily ε = 1 since the right term is positive. Taking the essential supremum ends the proof.

The following is a reinterpretation of Proposition 29 of Cabannes et al. [5].
Proposition 7 (Capacity condition under interpolation inequalities). When Kp(L2(ρX )) is continu-
ously embedded in L∞(ρX ) with p ≤ 1/2, there exists a constant c such that

N+(λ
−1K) ≤ cλ−2p. (28)

When the function x → k(x, x) is bounded, the RKHS associated with k verifies

N+(λ
−1K) = O(λ−1).

Proof. The continuous embedding means that there exists a constant c such that, for any λ ≥ 0,

∥Kpf∥∞ ≤ c ∥f∥2 .
Stated in H, we get

∥Sθ∥∞ ≤ c
∥∥K−pSθ

∥∥
2
= c

∥∥∥Σ1/2−pθ
∥∥∥

for every θ ∈ H. In other terms,

ess sup
x

∣∣φ(x)⊤θ∣∣ ≤ c
∥∥∥Σ1/2−pθ

∥∥∥ .
Let us denote by (λi, θi) the eigenvalue decomposition of Σ. Then

ess sup
x

(φ(x)⊤θ)2 ≤ c2
∥∥∥Σ1/2−pθ

∥∥∥2 = c2
∑
i∈N

λ1−2p
i (θ⊤i θ)

2.

When considering θ = θi, this leads to∣∣θ⊤φ(x)∣∣ ≤ cλ
1/2−p
i .

Therefore,

N 1/2
∞ (λ−1K) = sup

x

∥∥∥(Σ + λ)−1/2φ(x)
∥∥∥ = sup

x
sup

θ;∥θ∥≤1

θ⊤Σ−1/2
λ φ(x)

= sup
x

sup
θ;∥θ∥≤1

∑
i∈N

θ⊤θiθ⊤i φ(x)

(λ+ λi)1/2
≤ c sup

a;
∑

a2
i≤1

∑
i∈N

aiλ
1/2−p
i

(λ+ λi)1/2

= c sup
i∈N

λ
1/2−p
i

(λ+ λi)1/2
= c sup

t∈spec(K)

t1/2−p

(λ+ t)1/2
≤ c sup

t≥0

t1/2−p

(λ+ t)1/2

= c(2p)−p(1− 2p)1/2−pλ−p,

where the last equality follows from basic calculus.

The second inequality follows from the fact that K1/2(L2) ↪→ L∞ as soon as φ is bounded since,
for any f = φ(·)⊤θ ∈ F = SH = K1/2(L2),

|f(x)| =
∣∣φ(x)⊤θ∣∣ ≤ ∥φ∥∞ ∥θ∥ = ∥φ∥∞ ∥f∥F = ∥φ∥∞

∥∥∥K−1/2f
∥∥∥
2
.

The previous characterization of N+ leads to the claim.
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A.4.2 Bias

We now focus our attention on the bias term.

Proposition 8 (Source condition). When f∗ ∈ Kq(L2(ρX ) with q ≤ 1, there exists a constant c such
that, for any λ ≥ 0,

S(λ−1K) ≤ cλ2q. (29)

Moreover,
S(λ−1K) ≤ 2 inf

q∈[0,1],f∈Kq(L2)
λ2q

∥∥K−qf
∥∥2
2
+ ∥f − f∗∥22 . (30)

Proof. The proof is straight-forward. If f∗ = Kqg with g ∈ L2, then

λ−2S(λ−1K)1/2 =
∥∥(K + λ)−1f∗∥∥

2
=
∥∥(K + λ)−1Kqg

∥∥
2

≤
∥∥(K + λ)q−1

∥∥
2

∥∥(K + λ)−qKq
∥∥
2
∥g∥2 ≤ λq−1

∥∥K−pf∗∥∥
2
.

Squaring this term and multiplying it by λ2 leads to the result.

The second equation is due to the decomposition

λ−2S(λ−1K) =
∥∥(K + λ)−1f∗∥∥2

2
≤ 2

∥∥(K + λ)−1f
∥∥2
2
+ 2

∥∥(K + λ)−1(f∗ − f)
∥∥2
2

≤ 2
∥∥(K + λ)−1f

∥∥2
2
+ 2λ−2 ∥f∗ − f∥22 .

The previous derivations explain the final result.

A.5 Application of Theorem 4 to Taylor expansions

A natural idea to estimate a target function f∗ ∈ Cα, with Cα the space of α-Hölder functions, is to
estimate its Taylor expansion. This is done with local polynomials which consists in concatenating
into φ(x) a finite number of features of the form x → 1x∈Ax

k for k ∈ [β] for some β ∈ N and A in
a partition of X ; together with the ridgeless estimator of (7). In this setting N2(K, 0) is equal to the
number of polynomials of degree at most β with d variables times the size of the partition considered.
The number of such polynomials is hβ(1d), where h⌊β⌋ is the complete homogeneous symmetric
polynomial of degree β in d variables and 1d is the vector of all ones. Thus,

N2(K, 0) = hβ(1d) =

(
d+ β

β

)
=

(d+ β)!

d!β!
∈
(
1 +

β

d

)d

·
[
1, ed

]
,

where the last inequalities is due to the fact that
(
n
k

)
∈
[
(n/k)k, (ne/k)k

]
.

When X = [0, 1) with uniform distribution, and f = f∗ is assumed to be (α,Lα)-Hölder, i.e.,∣∣∣f (⌊α⌋)(x)− f (⌊α⌋)(y)
∣∣∣ ≤ Lα |x− y|α−⌊α⌋

,

by fitting Taylor expansions on intervals [(i−1)/m, i/m) for i ∈ [m] and m ∈ Z+ with polynomials

φ(x) =

((
x− 2i− 1

2m

)j

· 1x∈[ i−1
m , i

m )

)
i∈[m],j∈[0,⌊α⌋]

,

one can ensure that [see 12, Lemma 11.1]

∥ΠFf
∗ − f∗∥2 ≤ ∥ΠFf

∗ − f∗∥∞ ≤ L

2α ⌊α⌋!mα
,

where ΠF denotes the orthogonal projection from L2 onto F . The same type of result also holds for
X = [0, 1]d when using md multivariate polynomials of degree less then ⌊α⌋. Balancing the bias and
the variance term, we get an excess risk that behaves as (up to higher order term)

E
[
∥fn − f∗∥2

]
≲ inf

m∈Z+;β∈[α]

(
ε2(me)d (1 + β/d)

d

n
+

L2
β

22ββ!2m2β

)
= inf

β∈[α]
cβn

−2β/(d+2β),
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for some constant cβ that depends on β, d and grows with Lβ , σ2, the infimum being found for
m ∝ (L2

βn)
1/(d+2β). This argument of the minimizer illustrates how the size of the window should

depend on how smooth f∗ is expected to be among the functions in Cα. Interestingly, it equally
shows that the partition size does not deteriorate with the dimension of the input space. Nor will
deteriorate the percentage of the total volume contained in each region of the partition. However, the
radius of those regions will scale as r = v1/d for v the volume of those regions, meaning that when
this volume will shrink to zero, the radius will shrink slower as the dimension grows, which will lead
to a slower minimization of the approximation error. Ultimately as n grows, the last upper bound will
end up behaving according to the “stationary behavior” in cαn

−2α/(2α+d).

A.6 Application of Theorem 4 to Fourier expansions

Rather than local properties, one could leverage global smoothness properties, such as fast decays
of Fourier coefficients, e.g. f∗ ∈ Hα with Hα the Sobolev space of functions that are α-times
differentiable with derivatives in L2(ρX ).

Fourier coefficient estimators can be built implicitly built from translation-invariant kernels, i.e.
k(x, x′) = λ−1q((x− x′)/σ) for q : Rd → R, σ a bandwidth parameter and λ > 0 a regularization
parameter. Examples are provided by the Matérn kernels, defined from q̂(ω) = (1 + ∥ω∥2)−β , the
exponential kernel, which corresponds to a Matérn kernel of low smoothness β = (d+ 1)/2, and the
Gaussian kernel, which can be seen as the limit of a Matérn kernel to infinite smoothness, defined as
q(x) = exp(−∥x∥2). The corresponding estimators 8 can be proven to guarantee the convergence
rates as Theorem 1, namely

E
[
∥fn − f∗∥2

]
≤ inf

β<α
cβn

−2β/(2β+d),

where cβ notably relates to the norm of f∗ in Hβ .

Proof. For the Matérn kernels, the generalization error reads, with τ = 2β − d, up to constants and
higher order terms, according to Table 1,

E
[
∥fn − f∗∥2

]
≲

(στλ)−d/2β

n
+ (στλ)α/β .

This is optimized for
στλ = n−2β/(2α+d),

leading to minimax convergence rates in O(n−2α/(2α+d)).

For the Gaussian kernel, we get

E
[
∥fn − f∗∥2

]
≲

σ−d log(λ−1σd)d/2

n
+ σ2α log(λ−1σd)−α,

which is optimized for
σ−2 log(λ−1σd) = n2/(2α+d),

leading to the same minimax convergence rate. In particular, when σ is fixed, this leads to

λ = λn = σd exp(−σ2n2/(2α+d)).

Based on Theorem 4, this is true as long as N (λ)N 1/2
∞ (λ)/n1/2 goes to zero with n, which imposes

some constraints on α when assuming f∗ ∈ Hα. However, considering a generalization of Mourtada
et al. [20] from linear regression to RKHS, the upper bound is actually true without this constraint,
which allows to prove the convergence rates in O(n2α/(2α+d)) for any α.

A.7 Application of Theorem 4 to Sobolev spaces

We now turn ourselves to an informal more generic reformulation of the previous facts on Fourier
expansions estimation based on well-known facts in approximation theory [30, 10].
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Proposition 9 (Informal source condition). When F = Hβ and f∗ ∈ Hα, it holds
f∗ ∈ Kα/2β(L2(ρX )).

Proof. In essence, as explained in Appendix B, K takes a function in L2(ρX ) and multiply its
Fourier transform by q̂(ω)−1 = (1 + ∥ω∥2)β , with q defining the Matérn kernel, making it 2β-
smooth in the Sobolev sense. In harmonic settings where the Fourier functions diagonalize K and
q̂(ω) parameterizes the spectrum of K, the fractional operator Kp can be seen as multiplying the
Fourier transform of f by q̂(ω)−p, making it 2pβ-smooth. This fact can be extended beyond those
harmonic settings, notably with interpolation inequalities. On the opposite direction, any α-smooth
function can be multiplied by q(ω)α/2β in Fourier while staying in L2(ρX ), so that, if f∗ is α-smooth,
it belongs to Kα/2β .

Proposition 10 (Informal interpolation inequality). When F = Hβ is the space of α-Sobolev
functions,

Kd/2β(L2) ↪→ L∞.

Proof. Note that F = SH = K1/2(L2). We have seen informally in the proof of the previous
lemma how Kp(L2) ⊂ H2pβ . Now, let us recall the Sobolev embedding theorems [1]. Under mild
assumptions on ρX , for k, r, l, s > 0

W k,r(ρX ) ↪→ W l,s(ρX ), as long as
1

r
− k

d
≤ 1

s
− l

d
.

We want to use it with k = 2pβ, r = 2, l = 0 and s = +∞, which leads to p = 4β/d.

These results could be used to explain the scaling with respect to λ in Table 1, which we will derive
formally in Appendix B. They can also be used to show convergence rates in O(n−2α/(2α+d)) for
any target functions f∗ ∈ Hα when utilizing a kernel such that F = Hβ (in terms of sets equally, F
being eventually endowed with an other norm than Sobolev norms).

B Translation-invariant kernels and Fourier analysis

This section recalls basic facts about kernel methods and Fourier analysis, before proving Table 1.

B.1 Stylized analysis on the torus

When k is a translation-invariant kernel, i.e. k(x, x′) = q(x − x′), the integral operator K is
a convolution against q. Let us expand on the friendly case provided by the torus X = Td :=
Rd/Zd = [0, 1]d/ ∼, where ∼ is the relation identifying opposite faces of the hypercube, and ρX
the uniform distribution. On the torus, a translation invariant kernel is defined through q being a
one-periodic function on Rd. Let dx denote the Lebesgue measure on Rd. The integral operator
K : L2(X ,dx) → L2(X ,dx) is the convolution

Kf(x) =

∫
[0,1]d

k(x, x′)f(x′) dx′ =
∫
[0,1]d

q(x′ − x)f(x′) dx′ = q ∗ f(x).

For m ∈ Zd, define the Fourier function fm : x 7→ exp(2iπ ⟨m,x⟩). One can check that the fm’s
form an orthonormal family that diagonalizes K with6

Kfm = q̂mfm, where q̂m =

∫
[0,1]d

q(x) exp(2iπ ⟨x,m⟩) dx.

Hence, using Pythagoras theorem, we can define the norm on F through its action on Fourier
coefficients as

∥f∥2F =
〈
f,K−1f

〉
L2(ρX )

=
∑
m∈Zd

q̂−1
m |f̂m|2 =

∫
Rd

q̂(ω)−1|f̂(ω)|2#(dω),

where f̂m = ⟨f, fm⟩L2(ρX ), and # is the counting measure on Zd ⊂ Rd.

6Indeed, the Fourier transform of a function f ∈ L2(Td) can be defined as the mapping from N to
(⟨fi, f⟩)i∈N where (fi) is a basis that diagonalizes all convolution operators (note that this definition is possible
because ρX is uniform on the torus).
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B.1.1 First part of the proof of Proposition 1

Since K is diagonalized in Fourier, we compute the size of F for a ∈ {1, 2} with

Na(K) = Tr
(
Ka(K + 1)−a

)
=
∑
m∈Zd

q̂am
(q̂m + 1)a

.

For kernels whose scales are explicitly defined through qσ = q(x/σ), we have q̂σ(ω) = σdq̂(σω),
which leads to (14).

Similarly, the bound on the bias term follows from Fourier analysis by

S(K) =
∥∥K(K + 1)−1f

∥∥2
L2(ρX )

=
∑
m∈Zd

∣∣∣f̂m∣∣∣ ( 1

q̂m + 1

)2

,

which provides (15).

B.1.2 Second part of the proof of Proposition 1

When ρ is a distribution that is absolutely continuous with respect to the Lebesgue measure and
whose density is bounded from above, we get

K ⪯ ρ∞Kdx, with ρ∞ =

∥∥∥∥dρXdx

∥∥∥∥
L∞(ρX )

,

where Kdx is the integral operator associated to the kernel k on L2(dx). Using the fact the effective
dimension is an increasing function of the eigenvalues (since x 7→ x/(x+ 1) is increasing), and that
eigenvalues are increasing with the Loewner order, this leads to

N (K) ≤ ρ∞ Tr
(
(Kdx + 1)−1Kdx

)
= ρ∞

∫
Rd

q̂(ω)

1 + q̂(ω)
dω.

Note that those derivations are written informally (since K and Kdx do not act on the same space),
but could be made formal with the isomorphic covariance operators on H, plus some technicalities
to make sure Σdx is well defined (assuming φ(X) has a fourth-order moment against Lebesgue, or
approaching Kdx within its action on compact subspaces of X where it is bounded, before taking the
limit of Ndx(K)).

For the bias term, using the fact that L2(ρX ) is continuously embedded in L2(dx) and the isometry
between the spatial and the Fourier domain, we get

∥f − f∗∥L2(ρX ) ≤ ρ1/2∞ ∥f − f∗∥L2(dx) = ρ1/2∞ ∥f̂ − f̂∗∥L2(dx).

Finally, it should be noted that the norm associated with F does not depend on the density of X ,
hence the formula can be written independently of ρX . Indeed, under definition assumption, i.e. if
q ∈ L1(dx), this formula can even be written with a measure of infinite mass. For example, when
X = Rd, one can consider the Fourier transform associated with L2(dx), and get

∥f∥2F =

∫
Rd

q̂(ω)−1|f̂(ω)|2 dω, where q̂(ω) =

∫
Rd

q(x) exp(−2iπ ⟨x, ω⟩) dx, (31)

although some care is needed to deal with the continuous version of the spectral theorem (the set of
eigenvalues being non-countable). From there the same derivations as for Proposition 1 lead to the
desired result.

B.2 Sobolev spaces

Recall the action of differentiation on the Fourier transform: for m ∈ Nd, |m| := ∥m∥1, and
f ∈ L2(dx),

∂̂|m|f∏
i∈[d] ∂

mixi
(ω) = (2iπ)|m| ∏

i∈[d]

ωmi
i f̂(ω).
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This characterizes the pseudo-norm

∥f∥2m =

∫
Rd

∥∥∥∥∥ ∂|m|f(x)∏
i∈[d] ∂

mixi

∥∥∥∥∥
2

dx = (2π)2|m|
∫
Rd

∏
i∈[d]

ω2mi
i

∣∣∣f̂(ω)∣∣∣2 dω.
This pseudo-norm is associated with the translation-invariant kernel such that q̂(ω) =

∏
i∈[d] ω

−2mi
i

as per (31). Note that q is well defined when q̂ belongs to L1(dx) (by Bochner’s theorem), that is
|m| > d. Those observations are usual to deduce that the Matérn kernels, which are defined from
q̂(ω) ∝ (1 + ∥ω∥22)−β , correspond to the Sobolev spaces Hβ(dx) endowed with the norm

∥f∥2Hβ =
∑

m;|m|≤β

∥f∥2m .

It follows from Bochner’s theorem that Hβ is a reproducing kernel Hilbert space if and only if
2β > d. Remarkably, the exponential kernel corresponds to the Matérn kernel with β = (d+ 1)/2

[24]. For the Gaussian kernel, q̂(ω) = π−d/2 exp(−π2 ∥ω∥2), and the associated function class F is
analytic (by the Paley-Wiener theorem).

B.2.1 Functional sizes

Let us now express the capacity and bias bound within Sobolev spaces.

Proposition 11 (Sobolev capacity). When q̂(ω) = λ−1(1 + ∥ω∥2)−β for β > d, λσ−d is bounded
and ρ has a bounded density, we have

N1(σ, λ) ≤
2βρ∞π(d+1)/2

Γ((d− 1)/2)
λ−d/2βσ−d(2β−d)/2β .

Moreover, when X = Td and ρX is uniform, we get

N2(σ = 1, λ) ≥ max
l∈[d]

lπ(l+1)/2

2l+1Γ((l − 1)/2)
λ−l/2β .

Proof. In this setting, Proposition 1 leads to∫
Rd

1

1 + λq̂σ(ω)−1
dω =

∫
Rd

1

1 + λσ−dq̂(σω)−1
dω =

∫
Rd

1

1 + λσ−d(1 + σ2 ∥ω∥2)β
dω

= surf(Sd+1)

∫
R+

rd−1 dr

1 + λσ−d(1 + σ2r2)β

= 2π vol(Sd)

∫ ∞

λ1/βσ−d/β

(u− λ1/βσ−d/β)d/2−1 du

λd/2βσd−d2/2β(1 + uβ)

= 2π vol(Sd)λ−d/2βσd(d−2β)/2β

∫
R+

xd/2−1 dx

1 + (x+ λ1/βσ−d/β)β

≤ 2πβ vol(Sd)λ−d/2βσd(d−2β)/2β ,

where we used the fact that∫ ∞

0

xd/2−1 dx

1 + (x+ λ1/βσ−d/β)β
≤
∫ ∞

0

xd/2−1 dx

max(1,max(xβ , λσ−d))

≤
∫ 1

0

xd/2−1 dx+

∫ ∞

1

xd/2−1 dx

xβ
= d/2− (d/2− β) = β,

which is true as long as β > d/2 to ensure proper convergence of the last integral.

For the part on the torus, in order to get a sharp learning limit, we need to be slightly more precise.
In particular, we want to relate the discrete Fourier transform integral of Proposition 1 with the
continuous one through series-integral comparison, and get a lower bound on the last integral. We
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will fix σ = 1 for simplicity. A simple cut of Rd into unit cubes, together with the fact that our
integrand is decreasing, leads to∑

m∈Zd

10/∈m
q̂2m

(q̂m + λ)2
≤
∫

q̂(ω)2

(q̂(ω) + λ)2
dω ≤

∑
m∈Zd

2#{i∈[d] |mi=0} q̂2m
(q̂m + λ)2

.

We simplify it as

N2(σ, λ) ≥ 2−d

∫
q̂(ω)2

(q̂(ω) + λ)2
dω.

We now compute the integral with the same techniques as before:∫
q̂(ω)2

(q̂(ω) + λ)2
dω =

∫
1

(1 + q̂(ω)−1λ)2
dω =

∫
1

(1 + (1 + ∥ω∥2)βλ)2
dω

= 2π vol(Sd)

∫
xd−1

(1 + (1 + x2)βλ)2
dx

= 2π vol(Sd)λ−d/2β

∫
xd−1

(1 + (λ1/β + x2)β)2
dx

≥ 2π vol(Sd)λ−d/2β

∫
xd−1

4max(1, 4β max(λ2, x4β))
dx

= 2−1π vol(Sd)λ−d/2β

(∫ 1

0

xd−1 dx+ 4−β

∫ ∞

1

xd−1

x4β
dx

)
= 2−1π vol(Sd)λ−d/2β(d+ 4−β(4β − d))

≥ 2−1π vol(Sd)λ−d/2βd.

It should be noted that this last bound is somewhat too lax, as it tends to zero when the dimension
increases. Since

∑
m∈Zd a(∥m∥) for a > 0 is strictly increasing with d, we deduce that this lower

bound holds for any k ≤ d.

Proposition 12 (Gaussian capacity). When q̂(ω) = λ−1 exp(−∥ω∥2) and ρ has a bounded density,
we have

N1(λ, σ) ≤
ρ∞π(d−1)/2d

2σd
L(λ−1σd),

where L is defined by Eq. (32). In particular, L(x) ≤ x when x < 1, and L(x) ≲ log(x)d/2 when x
gets large. Moreover when X = Td and ρX is uniform, we get

N2(λ, σ) ≥
π(d−1)/2

2d+1σd
L(λ−1σd).

Proof. With the Gaussian kernel, Proposition 1 leads to∫
Rd

1

1 + λσ−d exp(σ2 ∥ω∥2)
dω = vol(Sd)

∫
R+

2xd−1

1 + λσ−d exp(σ2x2)
dx

= vol(Sd)σ−d

∫
R+

ud/2−1

1 + λσ−d exp(u)
du

= vol(Sd)Γ(d/2)
−Lid/2

(
−σd/λ

)
σd

,

where Lid/2 is the polylogarithm function, hence the definition of L as

L(x) = −Lid/2(−x) =

∞∑
k=1

(−1)k+1xk

kd/2
. (32)

We recognize an alternating sequence, whose term amplitudes are decreasing as a function of k ∈ N
when x ≤ 1, which explains that L(x) is smaller than the first term in this case. The expansion of the
polylogarithm function at infinity leads to the upper bound when x goes to infinity.
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When it comes to a lower bound, we can proceed as the precedent lemma with

N2(σ, λ) ≥ 2−d

∫
dω

(1 + λq̂(ω)−1)2
≥ 2−d

∫
dω

1 + λq̂(ω)−1
,

which corresponds to the integral computed for the upper bound. Once again, this also holds when d
is replaced by any l ∈ [d].

B.2.2 Adherence

Let us now turn our attention to the bias, i.e. the adherence of functions in those spaces. For proof
readability, we will assume that ρX has compact support. In this setting, Wα,2 is continuously
embedded in Cα+d/2 = Wα+d/2,∞, which can be defined as

Cα+d/2 =

{
f : Rd → R

∣∣∣∣ ∥f∥α := ess sup
ω∈Rd

∣∣∣f̂(ω)∣∣∣ (1 + ∥ω∥)α+d/2 < +∞
}
.

Proposition 13 (Adherence of Hα in Hβ). When q̂(ω) = λ−1(1 + ∥ω∥2)−β , hence F = Hβ , if
α > 2β, for any f∗ ∈ Hα(ρX ), and λ small enough, we have

B(σ, λ) ≤ λ2
∥∥K−1f

∥∥2
L2(ρX)

.

If α < β and ρX has a bounded density, then for any function f∗ ∈ Cα+d/2

B(σ, λ) ≤ ρ∞
4βπ(d+1)/2ρ∞ ∥f∥2α β

(β2 − α2)Γ((d− 1)/2)
λα/βσ(2β−d)α/β . (33)

Proof. The first part results from previous considerations on the source condition since we have
the inclusion f∗ ∈ Hα ⊂ H2β = K(L2(ρX )). The second part follows from an L1 − L∞ Hölder
inequality:

B(σ, λ) ≤ ρ∞

∫
Rd

∣∣∣f̂(ω)∣∣∣2
(λ−1σdq̂(σω) + 1)2

dω ≤ ρ∞ ∥f∥2α
∫
Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σd(1 + σ2 ∥ω∥2)−β + 1)2
dω

= 2π vol(Sd)ρ∞ ∥f∥2α
∫
R+

2(1 + x2)−(d/2+α)xd−1

(λ−1σd(1 + σ2x2)−β + 1)2
dx

= 2π vol(Sd)ρ∞ ∥f∥2α aασ2α

∫ ∞

a

(u− a+ aσ2)−(d/2+α)(u− a)d/2−1

(u−β + 1)2
du

≤ 4βπ vol(Sd)ρ∞ ∥f∥2α β

β2 − α2
λα/βσ(2β−d)α/β ,

where a was set to λ1/βσ−d/β , and the last integral can be bounded by∫ ∞

a

(u− a+ aσ2)−(d/2+α)(u− a)d/2−1

(u−β + 1)2
du ≤

∫ ∞

0

ud/2+β−1

(u+ a(σ2 − 1))d/2+α(1 + uβ)2
du

≤
∫ ∞

0

ud/2+β−1

(u+ a(σ2 − 1))d/2+α(1 + uβ)2
du ≤

∫ 1

0

ud/2+β−1

ud/2+α
du+

∫ +∞

1

ud/2+β−1

ud/2+αu2β
du

=
1

β − α
+

1

β + α
=

β

α(β − α)
.

Recalling the volume of the sphere completes the proof.

Proposition 14 (Adherence of Hα in the Gaussian RKHS). When F is associated with the Gaussian
kernel and ρX has a bounded density, for any f∗ ∈ Cα+d/2 we have

B(σ, λ) ≤ 2π(d+1)/2ρ∞ ∥f∥2α
Γ((d− 1)/2)

(
1

σ2d+4α
+

2 log(2)−(d/2+2α)

d+ 2α

)
σ2α log(λ−1σd)−α.
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Proof. We follow the same path as for the adherence of Hα in Hβ :

B(σ, λ) ≤ ρ∞ ∥f∥2α
∫
Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σdq̂(σω) + 1)2
dω

= ρ∞ ∥f∥2α
∫
Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σd exp(−σ2 ∥ω∥2) + 1)2
dω

= 2π vol(Sd)ρ∞ ∥f∥2α
∫
R+

(1 + x2)−(d/2+α)xd−1

(λ−1σd exp(−σ2x2) + 1)2
dx

= 2π vol(Sd)ρ∞ ∥f∥2α σ2α

∫ +∞

1

log(x)d/2−1

(σ2 + log(x))d+2α(a+ x)
dx

≤ 2π vol(Sd)ρ∞ ∥f∥2α σ2α log(λ−1σd)−α

(
1

σ2d+4α
+

log(2)−α

α

)
,

where the integral can be bounded by∫ +∞

1

log(x)d/2−1

(σ2 + log(x))d+2α(a+ x)
dx ≤

∫ e

1

log(x)

σ2d+4α
dx+

∫ +∞

e

1

(log(x))d/2+2α+1x
dx

=
1

σ2d+4α
+

log(2)−(d/2+2α)

d/2 + 2α
.

The same type of derivations can be made for the bias in the lower bound.

Note that the proofs also work when the L1 − L∞ Hölder inequality is replaced with L∞ − L1,
showcasing the norm of f in Hα instead of in Cα+d/2. We refer to Bach [4] for details.

Remark 15 (Blessing of dimensionality). It should be noted that all our integral calculations show a
constant 2πρ∞ vol(Sd) which will be present in front of the excess risk. As d increases, this constant
goes to zero faster than any exponential profile. To see that, note how the volume of the d-sphere is
always smaller than twice the one of its inscribed hypercube, whose volume is d−d/2. We do not have
clear intuition to understand this behavior at the time of writing.

The previous derivations could be used to derive lower bound under highly specific priors on the
structure of f∗. However, this proposition is somewhat deceptive compared to Theorems 2 and 3 that
are more generic, easier to parse, and show more clearly the curse of dimensionality.

Proposition 16 (Lower-bound application example). For the Matérn kernel corresponding to F =
Hβ , on the torus Td = Rd/Zd with uniform measure ρX , when f∗ : x 7→ cos(2πm⊤x) is a function
with a single frequency m ∈ Zd,

inf
λ>0

ε2N2(λ
−1K)

n
+ S(λ−1K) ≥ max

l∈[d]

(
lπ(l−1)/2ε2

2l−1Γ((l − 1)/2)n

)γ (
1 + ∥m∥2

)γl/2
,

where γ = 4β/(4β + l) goes to one as β goes to infinity.

Proof. Using the bias and variance lower bounds decomposition and Proposition 11, we get, when
f∗ = fm is a single frequency function f̂(ω) = δm(ω) with m ∈ Zd,

ε2N2(λ
−1K)

n
+ S(λ−1K) ≥

(
dπ(d−1)/2

2d+2Γ((d− 1)/2)n
λ−d/2β +

λ2

((1 + ∥m∥2)−β + λ)2

)

≥ 1

2

(
dπ(d−1)/2

2d+1Γ((d− 1)/2)n
λ−d/2β +min(λ2(1 + ∥m∥2)2β , 1)

)
.

From the fact that

inf
x∈R

ax−α + bx2 =
(
α2/(2+α) + α−α/(2+α)

)
bα/(2+α)a2/(2+α) ≥ bα/(2+α)a2/(2+α),
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Figure 9: (Right) Noise-free convergence rates for f∗(x) = x5
1 with k(x, y) ∝ (1 + x⊤y)5. We

observed similar deterioration of convergence rates as a function of the dimension d as on Figure 2.
The fact that the error is not exactly zero when d = 1 and n ≥ 5 is due to a small regularization
added in our algorithm to avoid running into computational issues when inverting a matrix online. (Left)
Convergence rates for f∗(x) = cos(4πx1) on the torus X = Td with the (periodic) exponential kernel
k(x, y) = q(−100 ∥x− y∥2 /d). We observe similar behavior as on Figure 2, the picture being worse
because the kernel weights all frequencies in the Fourier domain, and not only the first

(
d+5
5

)
ones.

we have that, whatsoever λ is (if it is fixed for all n independently of the realization Dn).

dπ(d−1)/2

2d+1Γ((d− 1)/2)n
λ−d/2β + λ2(1 + ∥m∥2)2β

≥
(

dπ(d−1)/2

n2d−1Γ((d− 1)/2)

)4β/(4β+d) (
1 + ∥m∥2

)2βd/(4β+d)

.

Once again, this lower bound is also true when d is replaced by any l ∈ [d].

C Experimental details

C.1 Online solving of problems of increasing size

In order to solve a big number of least-squares problems with increasing numbers of samples, one
can use recursive matrix inversion. When A ∈ Rn×n, x ∈ Rn and b ∈ R, one can check that(

A x
x⊤ b

)−1

=

(
A−1 + cyy⊤ −cy

−cy⊤ c

)
,

where
c =

1

b− x⊤y
, and y = A−1x.

This allows efficient computation of matrix inversion online as the number of samples increases.

C.2 Example of convergence rates for “atomic” functions

Polynomial estimation. Consider the target function f∗(x) = 63x5
1 − 70x3

1 + 15x1, learned with
the polynomial kernel k(x, y) = (1 + x⊤y)p with p = 5 on X = [0, 1]d and ρX uniform, in the
interpolation regime λ = 0. In this setting, F is exactly the space of polynomials of degree no
larger than 5, which follows from the fact that k can be rewritten through a vector φ that enumerates
monomials:

(1 + x⊤y)p =

p∑
i=0

(
p

i

) ∑
(ij)j :

∑
j ij=i

(
i

(ij)j

)∏
x
ij
j y

ij
j = φ(x)⊤φ(y).

As a consequence, f∗ belongs to F , and we expect the bias term to be zero. Yet, we expect the
variance, hence the generalization error, to behave as ε2 dimF/n, where ε corresponds to some
notion of variability between labels. The dimension of the class of polynomials in dimension d of
degree no larger than p is

(
p+d
d

)
. In particular, in dimension d = 100, a polynomial of degree at
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most p = 5 can have up to one hundred million coefficients, so that one needs about one hundred
million observations to enter the high-sample regime and expect an excess risk E(fn) of order ε2 as
per Theorem 4. While one could fit a polynomial of lower maximum degree, e.g. 4 instead of 5, since
the f∗ considered here is actually orthogonal to all polynomials of lower degree, there is no hope
to obtain better rates. On Figure 2, the target function is f∗(x) = x5

1, and the polynomial kernel is
normalized as

k(x, y) =

(
1 + x⊤y
1 + d

)5

to avoid computational issues. The noise level ε is set to 10−2, and the lower bound in ε2 dimF/n
is plotted on Figure 2. In practice, this lower bound describes well the learning dynamic when the
number of samples is high compared to the effective dimension of the space of functions considered.

Same examples in Fourier. To transpose the previous example in the Fourier domain, one can
consider f∗(x) = cos(ω0x1) together with some translation-invariant kernel. We illustrate this case
on Figure 9. The deterioration of the rates with respect to dimension can be understood precisely. In
harmonic settings, such as on the torus with uniform measure, one can consider f∗ as an eigenfunction
of the integral operator K associated with the eigenvalue λω0

. The lower bound on the bias is given
by

S(λ−1K) =
λ2

(λ+ λω0)
2
.

When k is translation-invariant, k(x, y) = q(x− y), we get that

Tr(K) =
∑
ω∈Zd

λω = Tr
(
E[φ(X)φ(X)⊤]

)
= E[φ(X)⊤φ(X)] = E[k(X,X)] = q(0).

When q(0) does not depend on d, this quantity is constant. On the other hand, we expect λω to
decrease with ∥ω∥. But since the number of frequencies below ∥ω0∥ grows exponentially with
the dimension, in order to keep this sum constant λω0

has to decrease exponentially fast with the
dimension, hence the bias will increase exponentially fast with the dimension.

Example of “wrongfully” arbitrarily fast convergence rates. To further emphasize the impor-
tance of constants and transitory regimes, let us discuss an even simpler example. Assume that one
wants to learn a polynomial of a unknown degree s ∈ N in a noiseless setting; or equivalently, learn
an analytical function such that f (s+1) = 0 for an unknown s ∈ N. This polynomial can be learned
exactly when provided with as many points as the unknown coefficients in the polynomial, meaning
that the generalization error will almost surely goes to zero when provided enough points. As a
consequence,

∀h : N → R, E(fn) ≤ O(h(n)),

where fn is defined in (7) with F the space of polynomials of any degree. In other terms, we are able
to prove arbitrarily fast convergence rates. Yet, such convergence rates hide constants that are the
real quantities governing convergence behaviors of any learning procedure. Figure 9 shows how the
number of coefficients in a Taylor expansion of order s is once again the right quantity to look at.

C.3 Different convergence rates profiles

Figure 4 was computed with the Gaussian kernel on either the one-dimensional torus or R. One
hundred runs were launched and averaged to get a meaningful estimate of the expected excess risk.
Convergence rates were computed for different hyperparameters, and the best set of hyperparameters
(changing with respect to the number of samples but constant over run) was taken to show the best
achievable convergence rate.

Fast then slow profile. Let us focus on the example provided by f∗ : x 7→ exp(−max(x2,M))−
exp(−M) (note that we substract exp(−M) so that the function goes to zero at infinity, which remove
the burden of learning a constant offset with the Gaussian kernel). Note that, for qσ = exp(−x2/σ),
the convolution qσ ∗ f for a large σ will not modify f much, while making it analytical. This
follows from Fourier analysis: if f is integrable, its Fourier transform is bounded; since a convolution
corresponds to a product in Fourier, and since the Fourier transform of qσ decays exponentially fast,
so does f ∗ qσ, which implies its analytical property. As a consequence, all functions are close to
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Figure 10: Excess risk when the target at the top is taken as f∗(x) = exp(−max(x2,M))− exp(M)
with M = 1/4, and x ∈ R with unit Gaussian distribution. Note that the learning of the smooth part is
more efficient when the regularizer is big, which forces the reconstruction to be smooth.
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Figure 11: Example of a smooth target function with a C1-singularity whose estimation is expected
to showcase convergence rates that decrease first fast and then slowly. The x-axis represents the input
space X = [−2, 2], the y-axis represent the output space f∗(x) and fn,λ for n = 102 and n = 104. The
first fast decrease of excess risk corresponds to the easy estimation of the coarse details of the function,
while the slow decrease thereafter corresponds to the precise estimation of the C1-singularity. The target
function x 7→ exp(−max(x2, 1))− exp(−1) is represented in blue, the estimation with 104 samples is
represented in orange, and the one with 102 samples is represented in dashed green. The left picture zooms
in on the estimation of the singularity. We see that the increase from 102 to 104 does not lead to a much
better estimate.

analytical functions, whose approximation should exhibit convergence rates in O(n−1). In particular,
for f∗ defined as before for a some M large enough, without enough observations one will not be
able to distinguish between f∗ and qσ ∗ f∗, and as the number of sample first increases, one will
learn quite fast a smooth version of f∗. After a certain number of samples, the learning will stall until
enough points are provided to distinguish between f∗ and its smoothing, and learn the C1-singularity
of the former. Figures 10 and 11 illustrate this observation. Note that similar reasoning could be
made for any RKHS that is dense in L2(ρX ).

Slow then fast profile. The slow then fast profile was computed with X = S1, ρX being uniform
and f∗ : x 7→ cos(2πωx) with ω = 20. One hundred runs were launched and averaged to get an
estimate of the excess risk of the estimator in (8) for different values of σ and λ. Again, the best
results for different sample sizes were reported to get an estimate of convergence rates on Figure 4. A
log-log-log-log plot of the results is provided on Figure 12.

C.4 Exploring the low-sample regime

Looking at the empirical weights. While the previous paragraph discusses the weights αX(x)
when given access to the full distribution, similar derivations can be made when accessing a finite
number of samples. Indeed, kernel ridge regression reads as

fλ,n(x) =
∑
i∈[n]

Yiα̂i(x), α̂(x) = (K̂ + nλ)−1K̂x ∈ Rn,

where
K̂ = (k(Xi, Xj))i,j∈[n] ∈ Rn×n, K̂x = (k(Xi, x))i∈[n] ∈ Rn.
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Figure 12: Excess of risk when the target at the top is taken as f∗(x) = cos(2πωx) with ω = 20, and
x ∈ S1 = R/Z uniform on the circle. Observe how the risk first stalls, before learning the function quite
fast. The two graphs {(n,Na(λ, σ)} for a ∈ {1, 2} are plotted with the blue lines.
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Figure 13: Same picture as Figure 6 yet with σ = .05, which leads to an effective dimension N = 85.

Note that α̂i(x) = α̂Xi|X(x) where X = (X1, · · · , Xn) is the input dataset. As a consequence,

EDn [fn(x)] =
∑
i∈[n]

EDn [Yiα̂Xi|X(x)] = n · · ·EDn [Y1α̂X1|X(x)].

In other terms, fn is a bias estimator whose average is defined as
EDn

[fn] = E(X,Y )[Y α̂X ], α̂X = n · EX
[
α̂X1|X

∣∣X1 = X
]
. (34)

These are the weights plotted on Figures 6 and 13. In order to compute those weights efficiently, one
can use the block matrix inversion. Using the sliced indices matrix notations, we have

α̂Xn|Dn
(x) = [(K̂ + nλ)−1K̂X ]n = [(K̂ + nλ)−1]n,: × K̂x

= [(K̂ + nλ)−1]n,:n−1 × [K̂x]:n−1 + [(K̂ + nλ)−1]n,n × [K̂x]n

= −(b− x⊤A−1x)−1([K̂x]n − x⊤A−1 × [K̂x]:n−1).

where

K̂ + nλI =

(
A x
x⊤ b

)
=

(
[K̂]:n−1,:n−1 + nλ [K̂]n,:n−1

[K̂]⊤n,:n−1 [K̂]n,n + nλ

)
.

Denoting

K̃ = (k(Xi, Xj))i,j∈[n−1] ∈ Rn−1×n−1K̃x = (k(Xi, x))i∈[n−1] ∈ Rn−1,

we get

α̂X|Dn
(x) =

(
k(X,X)− Z⊤

XZX + nλ
)−1 (

k(X,x)− Z⊤
XZx

)
, Zx = (K̃ + nλ)−1/2K̃x.

34


	Introduction
	The Significance of Constants
	Established Upper Bounds
	Minimax Lower Bounds

	Crisp Picture in RKHS Settings
	Backbone Analysis
	Approach Generality
	Exploration of Transitory Regimes

	Conclusion
	Generic Proofs and Discussions
	What do we mean by Transitory Regimes?
	Generic Lower Bounds
	Precise Excess Risk Bound
	Bounding the bias term
	Discussion on the bias bound
	Bounding the variance term
	Discussion to the variance bound
	Full theorem

	Interpolation spaces, capacity and source conditions
	Variances
	Bias

	Application of Theorem 4 to Taylor expansions
	Application of Theorem 4 to Fourier expansions
	Application of Theorem 4 to Sobolev spaces

	Translation-invariant kernels and Fourier analysis
	Stylized analysis on the torus
	First part of the proof of Proposition 1
	Second part of the proof of Proposition 1

	Sobolev spaces
	Functional sizes
	Adherence


	Experimental details
	Online solving of problems of increasing size
	Example of convergence rates for ``atomic'' functions
	Different convergence rates profiles
	Exploring the low-sample regime


