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Abstract

Transforming one probability distribution to another is a powerful tool in Bayesian inference
and machine learning. Some prominent examples are constrained-to-unconstrained trans-
formations of distributions for use in Hamiltonian Monte Carlo and constructing flexible and
learnable densities such as normalizing flows. We present Bijectors.jl, a software package
in Julia for transforming distributions, available at github.com/TuringLang/Bijectors.jl.
The package provides a flexible and composable way of implementing transformations of
distributions without being tied to a computational framework. We demonstrate the use
of Bijectors.jl on improving variational inference by encoding known statistical depen-
dencies into the variational posterior using normalizing flows, providing a general approach
to relaxing the mean-field assumption usually made in variational inference.

1. Introduction

When working with probability distributions in Bayesian inference and probabilistic ma-
chine learning, transforming one probability distribution to another comes up quite often.
For example, when applying Hamiltonian Monte Carlo on constrained distributions, the con-
strained density is usually transformed to an unconstrained density for which the sampling
is performed (Neal, 2012). Another example is to construct highly flexible and learnable
densities often referred to as normalizing flows (Dinh et al., 2014; Huang et al., 2018; Durkan
et al., 2019); for a review see Kobyzev et al. (2019).

When a distribution P is transformed into some other distribution Q using some mea-
surable function b, we write Q = b∗P and say Q is the push-forward of P . When b is a
differentiable bijection with a differentiable inverse, i.e. a diffeomorphism or a bijector (Dil-
lon et al., 2017), the induced or pushed-forward distribution Qit is obtained by a simple
application of change of variables. Specifically, given a distribution P on some Ω ⊆ Rd with
density p : Ω → [0,∞), and a bijector b : Ω → Ω̃ for some Ω̃ ⊆ Rd, the induced or pushed
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forward distribution Q = b∗P has density

q(y) = p
(
b−1(y)

)
|detJb−1(y)| or q

(
b(x)

)
=

p(x)

|detJb(x)|

1.1. Coupling flow

As mentioned, one application of this idea is learnable bijectors such as normalizing flows.
One particular family of normalizing flow which has received a lot of attention is coupling
flows (Dinh et al., 2014; Rezende and Mohamed, 2015; Huang et al., 2018). The idea is to
use certain parts of the input vector x, say, xI1 to construct parameters for a bijector f
(the coupling law), which is then applied to a different part of the input vector, say, xI2 .
In full generality, a coupling flow cI1,I2 , the transformation in a coupling flow, is defined

cI1,I2(· ; f, θ) : Rd → Rd c−1I1,I2(· ; f, θ) : Rd → Rd

xI\I2 7→ xI\I2 yI\I2 7→ yI\I2

xI2 7→ f
(
xI2 ; θ(xI1)

)
yI2 7→ f−1

(
yI2 ; θ(yI1)

)
(1)

where I1, I2 ⊂ I := {1, . . . , d} are disjoint. As long as f
(
· ; θ(xI1)

)
: RI2 → RI2 is a bijector,

cI1,I2 is invertible since yI1 = xI1 . Note the parameter-map θ can be arbitrarily complex.

2. Bijectors.jl: a package for bijectors in Julia

Bijectors.jl is a framework for creating and using bijectors in the Julia programming lan-
guage. The main idea is to treat standard constrained-to-unconstrained bijectors, e.g. log :
R → (0,∞), and more complex and possibly parameterized bijectors, e.g. coupling flows,
as the same just as they are mathematically the same. This turns out to be quite a useful
abstraction allowing seamless interaction between standard and learnable bijectors, mak-
ing something like automatic differentiation variational inference (ADVI; Kucukelbir et al.,
2016) easy to implement (see Source Code 1). Table 1 shows supported mathematical
operations. Only b(x) and b−1(y) need to be manually implemented for a new bijector b.

Another example is the introduction of neural autoregressive flows (NAFs; Huang et al.,
2018) where the inverse autoregressive flow (IAF; Kingma et al., 2016) is extended by
replacing the affine coupling law used in IAF with a monotonic deep neural network. Despite
the novel introduction of neural network, in Bijectors.jl the only difference between IAF
and NAF is the choice of Bijector as the coupling law.

2.1. Related work

A summarization of the related work and how it compares to Bijectors.jl can be seen in
Table 2. More detailed comparisons can be found in Appendix A.1.

1. This refers to the torch.distributions submodule. After our submission, another transformer module
based on PyTorch was released in Pyro (Bingham et al., 2018): pyro.distributions.transforms. At
the time of writing, we have not yet done a thorough comparison with this. At a first glance its features
seem similar in natu re to tensorflow.probability which can be found in Table 2.

2. Bijectors.jl is agnostic to array-types used, therefore GPU functionality is provided basically for free
by using the independent package CuArrays.jl to construct the arrays.
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Operation Method Automatic

b 7→ b−1 inv(b) or b^(-1) 3

(b1, b2) 7→ (b1 ◦ b2) b1 ◦ b2 3

(b1, b2) 7→ [b1, b2] stack(b1, b2) 3

(b, n) 7→ bn := b ◦ · · · ◦ b (n times) b^n 3

x 7→ b(x) b(x) 7

y 7→ b−1(y) inv(b)(y) or b^(-1)(y) 7

x 7→ log |detJb(x)| logabsdetjac(b, x) AD
x 7→

(
b(x), log |detJb(x)|

)
forward(b, x) 3

P 7→ Q := b∗Q Q = transformed(P, b) 3

y ∼ Q y = rand(Q) 3

y 7→ log q(y) logpdf(Q, y) 3

P 7→ b s.t. support(b∗P ) = Rd bijector(P) 3(
x ∼ P, b(x), log |detJb(x)|, log q(y)

)
forward(Q) 3

Table 1: The table shows all the mathematical operations supported in Bijectors.jl. Automatic operations
need not be defined for new bijectors. Automatic differentiation (AD) can be used to define logabsdetjac

optionally.

Bijectors.jl TensorFlow PyTorch1 PyMC3/Stan

Unified Bijector 3 3 7 7

Compositions: b1 ◦ b2 3 3 7 N/A
Decoupled from distributions 3 3 7 7

Statically sized input soon 3 3 N/A
Dynamically sized input 3 7 3 N/A
Interop with ecosystem 3 limited limited limited

GPU compatibility 32 3 3 3

Automatic caching manual 3 3 N/A

Table 2: Comparison of support for bijectors in different packages, nothing else in frameworks. “Unified
Bijector” refers to whether or not both more classical and parameterized bijectors, e.g. normalizing flows,
are considered as the same. Limited means applicability is constrained to the underlying computational
framework. Caching refers to caching of input/output pairs and thus zero-cost inversion in simple cases.
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2.2. Examples & Interoperability

Using Bijectors.jl is straight-forward; a couple of examples can be seen in Source Code 1.
This also demonstrates the interoperability with other packages; we use the reverse-mode
AD package Tracker.jl to compute the gradients of the flow. Other examples are using
CuArrays.jl to get GPU compatibility, Distributions.jl (Lin et al., 2019) for imple-
mentations of distributions, using normalizing flows from Bijectors.jl in your generative
model in Turing.jl (Ge et al., 2018), using neural networks from Flux.jl to define the
coupling law in a coupling flow, and so on. For more examples, see the project website.

1 julia> using Bijectors

2
3 julia> dist = Beta(2, 2); # From Distributions.jl

4
5 julia> b = bijector(dist) # (0, 1) → R
6 Bijectors.Logit{Float64}(0.0, 1.0)

7
8 julia> td = transformed(dist, b); # x ∼ Beta(2, 2) =⇒ b(x) ∈ R
9

10 julia> b−¹ = inv(b) # R → (0, 1)

11 Inversed{Bijectors.Logit{Float64},0}(Bijectors.Logit{Float64}(0.0, 1.0))

12
13 julia> # Works like a standard `Distribution`

14 y = rand(td) # ∈ R
15 -0.6044789394180846

16
17 julia> logpdf(td, y), logpdf(dist, b−¹(y)) + logabsdetjac(b−¹, y)

18 (-1.1608110510380623, -1.1608110510380623)

19
20 julia> (b ◦ b−¹)(y) == y

21 true

1 dists = (InverseGamma(2, 3), Beta()) # target distributions

2
3 base = MvNormal(zeros(2), ones(2)); # base distribution

4 ibs = inv.(bijector.(dists)); # support(dist) -> [R, R]
5 sb = stack(ibs...) # -> R
6
7 # Taking gradients of ELBO wrt. parameters:

8 using Tracker: param

9 b = sb ◦ PlanarLayer(2, param) # NF + add gradient tracking

10 td = transformed(base, b)

11
12 function elbo(x, flow, num_samples)

13 # Most efficient path to obtain both `z` and `logjac`

14 z, z, logq, logjac = forward(flow, num_samples)

15 # Assumes existence of `logjoint` which computes `p(x, z)`

16 return mean(logjoint(x, z) + logjac) - entropy(q.base)

17 end

18
19 # Assumes `x` is the observations

20 Tracker.back!(elbo(x, td, 10)) # estimate ∇ with 10 samples

Source Code 1: Example code using Bijectors.jl. Left: demonstrates the basics of Bijectors.jl in the
Julia REPL. Right: demonstrates how to use Bijectors.jl to perform NF-ADVI.

3. Adding structure to mean-field VI using coupling flows

We demonstrate how to use Bijectors.jl by a possible approach to relaxing the mean-
field assumption commonly made in variational inference through the use of normalizing
flows. We consider a simple two-dimensional Gaussian with known covariance matrix with
non-zero off-diagonal entries, i.e. different components are dependent, defined as follows

m ∼ N (0,1)

xi
i.i.d.∼ N (m, LLT ), i = 1, . . . , n where L =

(
10 0
10 10

)
(2)

In this case we can obtain an analytical expression for the posterior p(m | {xi}ni=1), and
can indeed observe that the covariance matrix has non-zero off-diagonals. In this case,
the mean-field assumption often made in variational inference is incorrect. Recall that in
variational inference the objective is to maximize the evidence lower bound (ELBO) of the
variational posterior q(m) and the true posterior p(m | {xi}ni=1),

ELBO
(
q(m)

)
=

n∑
i=1

Em∼q(m)

[
log p(xi,m)

]
− Em∼q(m)

[
log q(m)

]
(3)

For the ELBO of a transformed distribution, see Appendix B.2. Here we propose using a
mean-field multivariate normal as a starting point, and then combine this with coupling
flows to encode the structure of the model we are approximating into the variational pos-
terior at a low computational cost. The idea is to encode an undirected edge between the
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(a) Posterior (b) NFVI (Affine) (c) NFVI (RQS) (d) MFVI

Figure 1: Contour plots of the resulting densities from the experiment described in Appendix B.1. For (b)
we used an affine transform and (c) rational-quadratic spline (RQS) as the coupling law. See Figure 3 & 5
in appendix for more examples.

random variables m1 and m2 by adding directed mappings in both directions; we do this
by composing coupling flows c{2},{1} and c{1},{2}.

For the coupling flows, we experimented with two different coupling laws f , affine (Dinh
et al., 2014) and the recently introduced rational-quadratic splines (Durkan et al., 2019).
The parameter maps θ1 and θ2, respectively, were defined by a simple neural network in both
cases. The resulting density, letting Qµ,σ be the distribution of an isotropic multivariate
Gaussian with mean µ and variance σ, is given by

b = c{1},{2}(· ; f, θ2) ◦ c{2},{1}(· ; f, θ1) and Q := b∗Qµ,σ (4)

We then optimized the ELBO w.r.t. the parameters of the neural networks θ1, θ2, µ and σ to
obtain our variational posteriors. The result of the standard mean-field VI (MFVI) and this
particular normalizing flow VI (NFVI) applied to the model in Equation (2) can be seen in
Figure 1. Here we observe that NFVI captures the correlation structure of the true posterior
in Figure 1(a) while MFVI, as expected, fails to do so. This is also reflected in the value
of the ELBO for the two approaches (see Appendix B.1). This can potentially provide a
flexible approach to taking advantage of structure in the joint distribution when performing
variational inference without introducing a large number of parameters in addition to the
mean-field parameters. See Appendix B.1 for specifics of the experiment.

4. Conclusion & future work

We presented Bijectors.jl, a framework for working with bijectors and thus transforma-
tions of distributions. We then demonstrated the flexibility of Bijectors.jl in an appli-
cation of introducing correlation structure to the mean-field ADVI approach. We believe
Bijectors.jl will be a useful tool for future research, especially in exploring normalizing
flows and their place in variational inference.

An interesting note about the NF variational posterior we constructed is that it only
requires a constant number of extra parameters on top of what is required by mean-field
normal VI. This approach can be applied in more general settings where one has access to
the directed acyclic graph (DAG) of the generative model we want to perform inference.
Then this approach will scale linearly with the number of unique edges between random
variables. It is also possible in cases where we have an undirected graph representing a model
by simply adding a coupling in both directions. This would be very useful for tackling issues
faced when using mean-field VI and would be of interest to explore further.
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Appendix A. Bijectors.jl

A.1. Related work

For related work we have mainly compared against Tensorflow’s tensorflow probability,
which is used by other known packages such pymc4, and PyTorch’s torch.distributions,
which is used by packages such as pyro. Other frameworks which make heavy use of such
transformations using their own implementations are stan, pymc3, and so on. But in these
frameworks the transformations are mainly used to transform distributions from constrained
to unconstrained and vice versa with little or no integration between those transformation
and the more complex ones, e.g. normalizing flows. pymc3 for example support normalizing
flows, but treat them differently from the constrained-to-unconstrained transformations.
This means that composition between standard and parameterized transformations is not
supported.

Of particular note is the bijectors framework in tensorflow probability introduced
in (Dillon et al., 2017). One could argue that this was indeed the first work to take such a
drastic approach to the separation of the determinism and stochasticity, allowing them to
implement a lot of standard distributions as a TransformedDistribution. This framework
was also one of the main motivations that got the authors of Bijectors.jl interested in
making a similar framework in Julia. With that being said, other than the name, we have not
set out to replicate tensorflow probability and most of the direct parallels were observed
after-the-fact, e.g. a transformed distribution is defined by the TransformedDistribution

type in both frameworks. Instead we believe that Julia is a language well-suited for such a
framework and therefore one can innovate on the side of implementation. For example in
Julia we can make use of code-generation or meta-programming to do program transforma-
tions in different parts of the framework, e.g. the composition b ◦ b−1 is transformed into
the identity function at compile time.3 In addition, the actual code that performs b ◦ b−1 is
b ◦ inv(b) and b ◦ b^(-1) due to the unicode-support for operators and functions in Julia.

A.1.1. Higher order bijectors

Similar to tensorflow probability we can use higher-order bijectors to construct new
bijectors. Examples of such are Inverse, Compose, and Stacked. A significant difference is
that in Bijectors.jl, the constructors are rarely called explicitly by the user but instead
through a completely intuitive interface, e.g. inv(b) gives you the Inverse, b1 ◦ b2 gives
you the composition of b1 and b2, stack(b1, b2) gives you the two bijectors “stacked”
together. Moreover, if b actually has a ”named” inverse, e.g. b = Exp(), then inv(b) will
result in Log() rather than some thin wrapper Inversed(Exp()). Irregardless of whether
the bijector has a named inverse or not, the dual-nature is exploited in compositions so that
b ◦ inv(b) results in Identity(). For type-stable code, this is all done at compile-time.

A particularly nice one is the Stacked(bijectors, ranges) which allows the user
to specify which parts (or ranges) of the input vector should be passed to which of the
“stacked”. For all methods acting on a Stacked the loop for iterating through the differ-
ent ranges and applying the corresponding Bijector will be unrolled, meaning that this

3. Julia takes a lazy approach to compilation, i.e. a function declaration is not compiled until needed, and
then any subsequent calls with a similar signature will use the already compiled native method.
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abstraction has a zero-cost overhead and the only cost is the evaluation of corresponding
methods on for the bijectors it wraps.

A.1.2. Program transforms

In a limited sense Bijectors.jl can do what is known as program transformations. A good
example is b ◦ b−1 resulting in identity at compile-time for simple transformations which we
have mentioned before.

In tensorflow probability indeed b ◦ b−1 is reduced to the identity mapping, not by
collapsing the computational graph but instead by the use of caching. This means that when
(b ◦ b−1)(x) is evaluated, work will only be done for the b−1(x) evaluation. When b−1(x)
is evaluated by b, the cached value x used to evaluate b−1 just before will be returned
immediately. torch.distributions take a similar approach but because caching can come
with its own issues, especially when used in conjunction with automatic differentiation,
there are cases where it will fail, e.g. dependency reversal.

In Bijectors.jl there are two parts of this story. First off, b◦b−1 will, as noted earlier,
be compiled to the identity map upon compilation, i.e. there is zero-overhead at run-time
to this evaluation. But one nice property of the Tensorflow and PyTorch approach which
uses caching is that one can write code that looks like

# Samples x from base and returns b(x)

y = rand(transformed_distribution)

# Do some more computation potentially involving y

# ...

# Zero cost due to caching

x = b.inverse(y) # <= equivalent of inv(b)(y) in Bijectors.jl

return x

In Bijectors.jl this has to be done manually by the user through the forward method
for a TransformedDistribution. Recall from Table 1 that forward returns a 4-tuple
(x, b(x), logabsdetjac(b, x), logpdf(q, b(x))) using the most efficient computa-
tion path. Therefore to replicate the above example in Bijectors.jl, we can do

# Samples x from base and returns y = b(x)

x, y, _, _ = forward(transformed_distribution)

# do some more computation potentially involving y

# ...

return x

Therefore ”caching” in Bijectors.jl cannot be done across function barriers at the time
of writing (unless the function explicitly returns all values used). On the bright side one
can explicitly do caching, making it more difficult to do something wrong in addition to the
fact that the computation is transparent from the users perspective.
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Appendix B. Adding structure to mean-field VI using coupling flows

B.1. Experiment: 2D multivariate normal

In the experimental setup we generate data by fixingm = 0 and generating n = 100 samples
from Equation (2). This resulted in a posterior multivariate normal with covariance matrix

Σ =

(
0.4 0.2
0.2 0.6

)

This was done by design, as we specifically chose L =

(
10 0
10 10

)
to get a posterior covariance

matrix with non-zero off-diagonals.
Let qµ,σ denote the density of a multivariate Gaussian with mean µ and diagonal co-

variance σ, and b denote the coupling flow in Equation (1) with f as a rational-quadratic
spline (RQS) with K = 3 knot points and bin [−50, 50], θ as a neural network consisting
of one layer with a (3K − 1) × 1 weight matrix and bias with identity activation, i.e. a
simple affine transformation. See (Durkan et al., 2019) for more information on RQS. We
use Distributions.jl for implementation of the Gaussian multivariate distribution (Lin
et al., 2019).

We then performed variational inference on the model in Equation (2) with variational
posterior q taking the following approaches:

1. q := qµ,σ with objective

max
µ,σ

ÊLBO
(
qµ,σ(m)

)
resulting in Figure 5(d),

2. q := qµ,σ with objective

min
µ,σ

D̂KL

(
qµ,σ(m), p(m | {x}ni=1)

)
resulting in Figure 5(e),

3. q := (bθ)∗qµ,σ with objective

max
µ,σ,θ

ÊLBO
((

(bθ)∗qµ,σ
)
(m)

)
resulting in Figure 5(b),

4. q := (bθ)∗qµ,σ with objective

min
µ,σ,θ

D̂KL

((
(bθ)∗qµ,σ

)
(m), p(m | {x}ni=1)

)
resulting in Figure 5(c).
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The resulting densities can be observed in Figure 3. Note that here we have used a slight
abuse of notation writing maxθ to mean ”maximize wrt. parameters of θ”. The expressions
for the KL-divergence and the ELBO, which under the transformation by a bijector picks
up an additional term, see Equation (5) and Equation (8), respectively. In all cases we set
the number of samples used in the Monte-Carlo estimate of the objective to be m = 50.

In all cases we used a DecayedADAGrad from Turing.jl to perform gradient updates.
This is a classical ADAGrad (Duchi et al., 2011) but with a decay for the accumulated gradient
norms. This is to circumvent the possibility of large initial gradient norms bringing all
subsequent optimization steps to practically zero step-size. For DecayedADAGrad we used a
base step-size η = 0.001, post-factor decay βpost = 1.0 and pre-factor decay βpre = 0.9, and
we performed 5 000 optimization steps before terminating.

In general we of course do not have access to the true posterior and so we cannot minimize
the KL-divergence between the variational posterior and the true posterior directly, but
instead have to do so implicitly by minimizing the ELBO. In theory there is no difference,
but in practice one usually observe a significantly lower variance in the gradient estimates of
the KL-divergence compared to the ELBO. We therefore also performed VI using the KL-
divergence to verify that the NF did not lack the expressibility to capture the true posterior,
but that the slight inaccuracy in the variational posterior obtained by maximizing the ELBO
was indeed due to the variance in the gradient estimate. And, as expected, minimizing
the KL-divergence directly in the MF-case did not provide much of a gain compared to
maximizing the ELBO.

Numerical results for multiple runs where the ELBO was used as an objective can be
seen in Table 3 and Figure 2; the NFVI approach consistently obtains lower KL divergence
and a greater ELBO.

The main quantity of interest is the KL-divergence which quantifies the difference be-
tween the variational posterior and the true posterior. The ELBO is a lower bound on the
evidence and thus the actual values can vary widely across experiments. Additionally, the
difference between the ELBO of two distributions with respect to the same set of observa-
tions is equal to the difference between KL-divergence on that set of observations, and so we
gain no additional information of the difference between the variational posterior and the
true posterior by looking at the ELBO. Therefore we visualize the KL-divergence instead
of the ELBO in Figure 2, but still provide the numerical values for both in Table 3.

MFVI NFVI

KL ELBO KL ELBO

Run 1 0.092305 -748.64 0.0022869 -748.526
Run 2 0.0729075 -753.33 0.0014182 -753.31
Run 3 0.0841829 -730.58 0.0034853 -730.486
Run 4 0.0887038 -748.34 0.0030914 -748.256
Run 5 0.0897964 -754.498 0.0043046 -754.418

Table 3: (Rational-Quadratic Spline coupling law) Exponentially smoothed estimates of the last 4000 (out
of 5000) optimization steps. As can be seen in Figure 2, after the 1000th step is basically when the optimas
are reached. Here the ELBO has been used as the objective.
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Figure 2: (Rational-Quadratic Spline coupling law) KL-divergences of different runs where the objective
used is the ELBO. The opaque lines represent the true samples while the non-opaque lines correspond to
smoothed estimates using exponential smoothing.

B.1.1. Affine coupling law

We also performed the same experiment using an affine transformation f as a coupling
law. The setup is identical, but now θ is a neural network consisting of two layers; the
first layer is a dense layer with 2× 1 weight matrix and bias and ReLU activation, and the
second layer is a dense layer with 2× 2 weight matrix and bias and identity activation. In
Flux.jl, which we have used for the neural network part of the bijector, this is given by
Chain(Dense(1, 2, relu), Dense(2, 2))) (Innes, 2018). As one can see in Table 4 and
Figure 4, even with an affine coupling law we obtain very good approximations.

MFVI NFVI

KL ELBO KL ELBO

Run 1 0.110996 -748.651 0.005025 -748.517
Run 2 0.113718 -756.825 -0.000113 -756.684
Run 3 0.091862 -735.373 -0.000506 -735.263
Run 4 0.094180 -753.609 0.001358 -753.468
Run 5 0.090356 -748.306 0.004798 -748.182

Table 4: (Affine coupling law) Exponentially smoothed estimates of the last 4000 (out of 5000) optimization
steps. As can be seen in Figure 2, after the 1000th step is basically when the optimas are reached. Here the
ELBO has been used as the objective.
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(a) Posterior

(b) NFVI (ELBO)

(c) NFVI (KL)

(d) MFVI (ELBO)

(e) MF (KL)

Figure 3: (Rational Quadratic Spline coupling law) Contour plots of the resulting densities for 5 different runs
of the the experiment described in Appendix B.1. (ELBO) means the the density has been obtained through
maximization of the ELBO, and (KL) means the density has been obtained through direct minimization of
KL-divergence between the density and the corresponding true posterior from (a).
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Figure 4: (Affine coupling law) KL-divergences of different runs where the objective used is the ELBO. The
opaque lines represent the true samples while the non-opaque lines correspond to smoothed estimates using
exponential smoothing.
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(a) Posterior

(b) NFVI (ELBO)

(c) NFVI (KL)

(d) MFVI (ELBO)

(e) MF (KL)

Figure 5: (Affine coupling law) Contour plots of the resulting densities for 5 different runs of the the exper-
iment described in Appendix B.1. (ELBO) means the the density has been obtained through maximization
of the ELBO, and (KL) means the density has been obtained through direct minimization of KL-divergence
between the density and the corresponding true posterior from (a).
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B.2. Kullback-Leibler (KL) divergence and the Evidence Lower Bound
(ELBO)

Recall the definition of the Kullback-Leibler (KL) divergence, here relating the variational
density q(z) and posterior p(z | {x}ni=1),

DKL

(
q(z), p(z | {xi}ni=1)

)
= Ez∼q(z)

[
log

q(z)

p(z | {xi}ni=1)

]
(5)

As per usual, we can rewrite this

DKL

(
q(z), p(z | {xi}ni=1)

)
= Ez∼q(z)

[
log q(z)

]
− Ez∼q(z)

[
p(z | {xi}ni=1)

]
= Ez∼q(z)

[
log q(z)

]
− Ez∼q(z)

[
p
(
{xi}ni=1 , z

)]
+ Ez∼q(z)

[
log p

(
{xi}ni=1

)]
= Ez∼q(z)

[
log q(z)

]
−

n∑
i=1

Ez∼q(z)
[
p(xi, z)

]
+

n∑
i=1

Ez∼q(z)
[

log p(xi)
]

= Ez∼q(z)
[

log q(z)
]
−

n∑
i=1

Ez∼q(z)
[
p(xi, z)

]
+

n∑
i=1

log p(xi)

where in the second-to-last equality we used the assumption that the observations are
i.i.d. and in the last equality we used the fact that log p(xi) is independent of z for all
i = 1, . . . , n. We can then arrange this into

n∑
i=1

log p(xi) = DKL

(
q(z), p(z | {xi}ni=1)

)
+

( n∑
i=1

Ez∼q(z)
[
p(xi, z)

])
− Ez∼q(z)

[
log q(z)

]
Observe that given a set of observations, the left-hand side is constant. Therefore we can
minimize the KL-divergence by maximizing the remaining terms on the right-hand side of
the equation, which we call the evidence lower bound (ELBO)

ELBO
(
q(z)

)
:=

( n∑
i=1

Ez∼q(z)
[
p(xi, z)

])
− Ez∼q(z)

[
log q(z)

]
(6)

Now suppose that the variational posterior q(z) is in fact a transformed distribution, say,
with base density q0 and using transformation b, i.e.

q(z) = q0
(
b−1(z)

)
|detJb−1(z)| or q

(
b(η)

)
=

q0(η)

|Jb(η)|

By change of variables z = b(η), the first term of the ELBO becomes

Ez∼q(z)
[

log p(xi, z)
]

=

∫
log p(xi, z)q(z) dz

=

∫
log p

(
xi, b(η)

)
q
(
b(η)

)
|detJb(η)|dη

=

∫
log p

(
xi, b(η)

)
q0(η) dη

= Eη∼q0(η)
[

log p
(
xi, b(η)

)]
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Simililarily, the second term becomes

Ez∼q(z)
[

log q(z)
]

=

∫
q(z) log q(z) dz

=

∫
q
(
b(η)

)
|detJb(η)| log

(
q
(
b(η)

))
dη

=

∫
q0(η) log

(
q0(η)

|detJb(η)|

)
dη

=

∫
q0(η) log q0(η) dη −

∫
q0(η) log |detJb(η)|dη

= Eη∼q0(η)
[

log q0(η)
]
− Eη∼q0(η)

[
log |detJb(η)|

]
= −H

(
q0(η)

)
− Eη∼q0(η)

[
log |detJb(η)|

]
Substituting these terms into the ELBO from Equation (6), we get

ELBO
(
q(z)

)
= Eη∼q0(η)

[
log |detJb(η)|+

n∑
i=1

p
(
xi, b(η)

)]
+ H

(
q0(η)

)
(7)

This expression ise very useful when q0 is a density which it is computationally cheap to
sample from and we have an analytical expression for the entropy of q0, e.g. if q0 is the
density of a mulitvariate Gaussian both of these conditions are satisfied. In practice we use
a Monte-Carlo estimate of the ELBO

ÊLBO
(
q(z)

)
=

1

m

m∑
k=1

[
log |detJb(ηk)|+

n∑
i=1

p
(
xi, b(ηk)

)]
+ H

(
q0(η)

)
(8)

where ηk ∼ q0(η) for k = 1, . . . ,m. From this we can then obtain a Monte-Carlo estimate
of the gradient wrt. parameters.
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