
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Continual Reinforcement Learning deployed in Real-life using Policy
Distillation and Sim2Real Transfer
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Abstract
We focus on the problem of teaching a robot to
solve tasks presented sequentially, i.e., in a contin-
ual learning scenario. The robot should be able to
solve all tasks it has encountered, without forget-
ting past tasks. We provide preliminary work on
applying Reinforcement Learning to such setting,
on navigation tasks for a 3 wheel omni-directional
robot. Our approach takes advantage of state rep-
resentation learning and policy distillation. Poli-
cies are trained using learned features as input,
rather than raw observations, allowing for better
sample efficiency. Policy distillation is used to
combine different policies into a single policy that
solves all encountered tasks.

1. Introduction
In realistic real-life reinforcement learning scenarios, for
example involving service robots, tasks evolve over time,
either because the context of one task changes or because
new tasks appear (Doncieux et al., 2018). Our end goal is
therefore to have an embodied agent in real-life that learns
incrementally as time passes. One example would be a
robot tasked with wrapping gifts. Most gifts are rectangular
packages (cuboids), so the robot would first learn to wrap
cuboids. Then if a soccer ball appears, the robot has to learn
how to wrap a sphere while still being able to wrap cuboids
after that. The robot should add this knowledge to his past
knowledge. Even if it would be easier to learn to wrap
spheres and cuboids before test time, there are potentially
many other shapes that have to be considered, and thus,
learning continually seems more natural and convenient
than trying to learn all at once.

Continual Learning (CL) and State Representation Learning
(SRL) are essential to build agents that face such challenge.
SRL allows to build strong representation of the world since
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Figure 1. Having access to task 1 only first, and then task 2 only,
we learn a single policy that solves two real-life navigation tasks
using policy distillation and sim2real transfer.

agents should be able to understand their surroundings, and
extract general concepts from sensory inputs of complex
scenes. An agent better sees a chair as an object, not as a
bunch of pixels together in an image. CL allows to learn
such representation without forgetting in settings where
the distribution of data change through time and is needed
for agents that learn in the real-world and are required to
adapt to changes. Combining CL and SRL would then
allow to create strong representation robust to catastrophic
forgetting.

Reinforcement learning (RL) is a popular approach to learn
robot controllers that also has to face the CL challenges, and
can take advantage of SRL to learn faster and to produce
more robust policies. Therefore we perform our experiments
(Fig. 1) in a setup where tasks are encountered sequentially
and not all at once. Note that it differs from a setting where
we can pick and shuffle experiences, often encountered in
the multi-task RL literature (cf section 2.2).

In our approach we aim to take advantage of simulations
to create this scenario. We demonstrate that deploying a
policy in real-life, which has continually learned two tasks
in simulation is successful with our approach.
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Our contribution consists on applying two major paradigms
for robotics in real life: a state representation learning ap-
proach for compact and efficient representation that facili-
tates learning a policy, and a policy that learns continually
in a sequential manner. The approach is deployed in a real
robot thanks to policy distillation and sim2real transfer. Fur-
thermore in opposition to most method in reinforcement
learning, at test time, the solution we propose does not need
a task indicator. Indeed, the information about the task to
solve can be found in the image.

The rest of the article is structured as follows. Section
2 introduces state representation learning, multi-task RL
and continual learning paradigms in an RL setting, Sec.4
details the robotics settings and tasks performed; and Sec.3
details the methods utilized and Sec.6 concludes with future
insights from our experiments.

2. Related work
2.1. State representation learning (SRL)

Scaling end-to-end reinforcement learning to control real
robots from vision presents a series of challenges, in par-
ticular in terms of sample efficiency. Against end-to-end
learning, SRL (Lesort et al., 2018) can help learn a com-
pact, efficient and relevant representation of states. Previ-
ous works as (Finn et al., 2015; Watter et al., 2015; van
Hoof et al., 2016; Lesort et al., 2017; Sermanet et al., 2017;
Thomas et al., 2017; Raffin et al., 2019) has shown that
SRL can speed up policy learning, reducing the number of
samples needed while additionally being easier to interpret.

2.2. Multi-task RL

Multi-task RL aims at constructing one single policy module
that can achieve a number of different tasks. The CURIOUS
algorithm (Colas et al., 2018) selects through exploration,
the tasks to be learned that improve an absolute learning
progress metric the most. Policy distillation (Rusu et al.,
2015) can also be used to merge different policies into one
module/network. The Distral algorithm (Teh et al., 2017)
is one successful example of such approach: a shared pol-
icy distills common behaviours from task-specific policies.
Then, the distilled policy is used to guide task-specific poli-
cies via regularization using a Kullback-Leibler (KL) di-
vergence. Other approaches like SAC-X (Riedmiller et al.,
2018) or HER (Andrychowicz et al., 2017) take advantage
of Multi-task RL by learning auxiliary tasks in order to help
the learning of an objective task.

2.3. Continual Learning

Continual learning (CL) is the ability of a model to learn
new skills without forgetting previous knowledge. In our

context, it means learning several tasks sequentially and
being able to solve any task at the end of the sequence.This
differs from the easier multi-task scenario, where tasks can
be experienced all at once.

Most CL approaches can be classified into four main meth-
ods that can also be used for classification and generation.
Those four methods differ from the way they handle mem-
ory of past tasks. The first method, referred to as rehearsal,
keeps samples from previous tasks (Rebuffi et al., 2017;
Nguyen et al., 2017). The second method, regularization,
either by constraining weight updates in order to maintain
knowledge from previous tasks (Kirkpatrick et al., 2017;
Zenke et al., 2017; Maltoni & Lomonaco, 2018) or keep-
ing old model as memory and distilling knowledge (Hinton
et al., 2015) later to remember (Li & Hoiem, 2018; Schwarz
et al., 2018; Rusu et al., 2015) The third category of strategy,
dynamic network architectures, maintains past knowledge
thanks to architecture odification while learning (Rusu et al.,
2016; Fernando et al., 2017; Li & Hoiem, 2018; Fernando
et al., 2017). The fourth and more recent method is genera-
tive replay (Shin et al., 2017; Lesort et al., 2018; Wu et al.,
2018), where a generative model is used as a memory to
produce samples from previous tasks. This approach has
also been referred to as pseudo-rehearsal.

2.4. RL in real-life

Applying RL to real-life scenarios is a major challenge
that has been studied widely. Most attempts fall into two
categories: games and robotics.

For games, AlphaGo Zero (Silver et al., 2018) has mastered
the game of Go from scratch without any human supervision
by combining RL, self-play and Monte Carlo Tree Search
(Chaslot et al., 2008). AlphaStar (Vinyals et al., 2019) and
OpenAI Five (OpenAI, 2018) were both able to get com-
petitive results against professional human players on the
game Starcraft and DOTA2, respectively. Both solutions are
based on RL, and current research is still investigating how
to master the game with the same constraints as humans
(e.g. same FPS).

In robotics, there is a plethora of successful attempts at
deploying RL on real robots. One common approach is
training policies in simulation and then deploying them in
real-life hoping that they will successfully transfer, consid-
ering the gap in complexity between simulation and the
real world. Such approaches are termed Sim2Real(Golemo,
2018), and have been successfully applied (Christiano et al.,
2016; Matas et al., 2018) in many scenarios. In order to
cope with the unpredictable nature of the real world, one can
use Domain Randomization (Tobin et al., 2017), which we
use in our approach. This technique trains policies in numer-
ous simulations that are randomly different from each other
(different backgroud colors, etc.). That way, the transfer to
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real life is easier.

Others have tried to train policy directly on real robots,
facing the hurdle of the lack of sample efficiency that RL
suffers from. SAC-X (Riedmiller et al., 2018) is one exam-
ple where a successful policy is learned directly on the real
robot.

In the literature, most approaches focus on the single-task or
simultaneous multi-task scenario. In this paper, we attempt
to train a policy on several tasks sequentially and deploy it
in real life. Hence, we attempt to apply RL in real life in a
continual learning setting.

3. Methods
In this section we present the method proposed to combine
state representation learning (SRL) and continual learning
(CL) in a real life reinforcement learning setting. First we
present how a single task is learned and how does the SRL
part works, secondly we explain how to learn continually
and thirdly we explain how we evaluate learning in the
different phase of the learning sequence.

3.1. Learning on one task

It+1
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Figure 2. SRL Combination model: combines a reconstruction of
an image I prediction and an inverse dynamic models losses in the
state representation s. Arrows represent inference, dashed frames
represent losses computation, rectangles are state representations,
circles are real observed data, and squares are model predictions.

Each task is learned according to the same procedure we
describe here. First, as we use a SRL approach, we need to
learn a state representation encoder. We sample data from
the environment Envt with an agent guided by a random
policy. We call this dataset DRt. DRt is then used to train
a SRL model composed of an inverse model and an auto-
encoder. This architecture is inspired from (Raffin et al.,
2019), and illustrated in Fig.2.

Once the SRL model is trained, we only keep the encoder
Et and use it to learn our policy Πt on top of it using re-
inforcement learning with the model M(θ) ( θ represent
the model parameters). Once Πt is learned, we use it to

generate sequences of on-policy data with associated action,
which will eventually be used for distillation (Fig. 3, left).
We call this distillation dataset DΠt. We generate DΠt in
the following way : we sample randomly a starting position
and then let the agent generate a trajectory. At each step
we save observation and associated action. We stop the
sequence when enough reward is gathered (see section 4).

From each task is only kept the dataset DΠt. As soon as we
change task, DRt and Envt are not available anymore.

In our setting, in order to decrease training time, we generate
DRt in simulation and learn Πt also in simulation. However,
in the end of T tasks, ΠD0,...,T−1 is tested in a real robot.
In order, to pass the reality gap, the datasets generated are
augmented with luminosity variation.

3.2. Learning continually

To learn continually we use a distillation method (Rusu et al.,
2015). Once we learned several tasks, we can aggregate
several distillation datasets and distill the knowledge into a
new model MDt(θ

′) to produce a single monolithic policy
(Fig. 3, right). θ′ are the parameters of the distillation
model.

The distillation consists in learning in a supervised fashion
the action probability associated to an image. Each dataset
DΠt allows to distill the policy Πt into a new network. We
name the distilled policy ΠDt. With the aggregation of sev-
eral distillation datasets, we can distill several policies into
the same network. By extension to the previous denomina-
tion, a model where policy 1 and policy 2 have been distilled
in, is called ΠD1,2.

At test time, we do not need a task indicators, but assumes
that the observations and state space allows to recognize
the current task. In the context of continual RL, the task
signal is mandatory if the observation does not give any clue
about the policy to run. In our setting, as the policy can be
inferred, we do need it necessary.

The method presented allows to learn continually several
policies without forgetting. On the other hand, M(θ) also
learn on the sequence of task but without any memorization
mechanism, its leads to catastrophic forgetting. The dataset
DΠt contains 10k samples per tasks which allows to learn
the distillation very quickly (a few minutes are needed to
learn ΠDt when several hours are needed to learn Πt).

3.3. Evaluation

The main evaluation is the performance of the final single
policy, which can supposedly achieve all previous tasks, as
well as being deployed in real life. For that, we report the
mean and standard error on 5 runs of the policy on each task
in simulation 4, and provide videos to show the behaviour
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Figure 3. Summary of the experimental setup. Step 1 and 2 correspond to learning policies for task 1 and 2, and using those to create
distillation datasets. Step 3 is the distillation of the two policies into a single policy which can be deployed in simulation and on the real
robot.

of the final policy.

In an other hand we also would like to analyze the learning
process. In order to have an insight of the evolution of
the distilled model, we save distillation datasets at different
checkpoints in the sequence of task. Those checkpoint are
saved regularly during the RL training.

By distilling and evaluating at several time step, we are ca-
pable to evaluate the evolution of learning and forgetting on
all environments separately and jointly. At each checkpoint,
we evaluate the actual policy Πt on past tasks to evaluate
forgetting and compare it to ΠD0, .., t.

It is important to note that, even if we consider Envt as
not available anymore at t+ 1, we did use it for evaluation
purpose at any time.

4. Experimental setup
We apply our approach to learn continually two navigation
tasks on a real mobile robot.

4.1. Robotic setup

The experiments consists of navigation tasks using a 3 wheel
omni-directional robot. It is similar to the 2D random target
mobile navigation ((Raffin et al., 2018), identical reward
setting and possibility of movement). The robot is identified
by a black QR code and the scene is recorded from above.

We are able to simulate the experiment, since the robot’s
input is a fixed RGB image of the scene recorded from
above. The robot uses 4 high level actions (move left/right,

move up/down in a cartesian plane relative to the robot)
rather than motor commands.

The room where the real-life robotic experiments are to be
performed is subject to illumination changes. The input
image is a top-down view of the floor, which is lighted
by surroundings windows and artificial illumination of the
room. Hence, the illumination changes depending on the
weather and time of the day. We use domain randomization
(Tobin et al., 2017) to improve the chances of the policies
learned in simulation to better transfer to the real world, by
being robust to the weather and time of the day. During RL
training, at each timestep, the color of the background is
randomly changed.

4.2. Continual learning setup

Our continual learning scenario is composed of two similar
environments, where the robot is asked to do different tasks.
In environment 1, the robot is asked to reach a red square
marker (task 1). In environment 2, it is asked to circle
around a blue square marker (task 2).

It is important to note that as the target for different task are
from different color, the algorithms can automatically infer
which policy it need to run and then does not need task label
at test time.

While generating DΠt (see section 3.1) we stop the se-
quence when 8 rewards are accumulated in a row for the
task 1 (it means that the robot successfully reach the red
target and stayed on it) and for task 2 we stop after 250 time
step (so the robot have time to circle around the blue target).
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Figure 4. Comparison between performance (normalized mean reward and standard error) of policy trained on one task only to distilled
student policy on the two tasks. The student policy has similar performance on both tasks. Left: Reach target task. Right: Circle around
task

5. Results
5.1. Main result

Our main result is the continual learning of a single policy
that solves both tasks in simulation, as presented in Fig.3 1.
The two teacher policies are learnt separately on each envi-
ronment, sequentially. Then, distillation is used to combine
the two teacher policies into a single policy that can solve
the two tasks.

Fig.4 demonstrate the efficiency of our approach. We can
see that the single student distilled policy achieve close to
maximum reward in both tasks.

5.2. Evaluation of distillation

We performed a more explicit evaluation of distillation in
the task 2 (circular movement). While we train a policy
using RL, we save the policy every 200 episodes (50000
timesteps), and distill it into a new student policy which we
test. This is illustrated in Fig.5. Both curves are very close,
which indicates distillation works as intended. It is able to
transfer a policy using only a limited distillation dataset,
with limited loss in the policy performance.

6. Discussion and future work
Our work is preliminary and offers many possibilities for
improvement. Our roadmap include having not only a policy
learned in a continual way, but also the SRL model asso-
ciated. We would need to update the SRL model as new
tasks are presented sequentially. One possible approach
would be to use Continual SRL methods like S-TRIGGER
(Caselles-Dupré et al., 2019) or VASE (Achille et al., 2018).

1The deployment and evaluation in real life is part of future
work

Figure 5. Demonstration of the effectiveness of distillation. Blue:
RL training curve of PPO2 on task circular. Green: Mean and
std performance on 8 seeds of distilled student policy. At each
point, the blue policy is used to be distilled in a student policy.
Both curves are very close, which indicates distillation works as
intended.
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We also expect to encounter issues when scaling continual
learning approaches to more tasks or environments. Indeed,
the agent should not accumulate knowledge blindly,
but rather make connections between different types of
information (i.e. generalize) and/or selectively forget
non-useful knowledge.

Moreover, we intend to soon provide with supplementary
quantitative results and videos of these tasks deployed in
the real-life setup.

We would like to train policies directly on the real robot, as
it is the end goal scenario for this research. One promising
approach would be to use Model-Based RL on models learn-
ing during the SRL phase to improve sample efficiency to
the point at which training on a real robot takes a reasonable
amount of time.

7. Conclusion
In this paper we provide preliminary results towards a proper
real life continual learning setup, where a real robot would
encounter tasks presented in a sequence and be asked to
accumulate knowledge in a scalable manner. The building
blocks for achieving a single policy that solves all presented
tasks are RL using state representation models and distil-
lation into a single policy which is a good candidate for
transfer to real life.
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