
Under review as a conference paper at ICLR 2020

SEMI-SUPERVISED SEMANTIC DEPENDENCY PARSING
USING CRF AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Semantic dependency parsing, which aims to find rich bi-lexical relationships,
allows words to have multiple dependency heads, resulting in graph-structured
representations. We propose an approach to semi-supervised learning of semantic
dependency parsers based on the CRF autoencoder framework. Our encoder is
a discriminative neural semantic dependency parser that predicts the latent parse
graph of the input sentence. Our decoder is a generative neural model that re-
constructs the input sentence conditioned on the latent parse graph. Our model
is arc-factored and therefore parsing and learning are both tractable. Experiments
show our model achieves significant and consistent improvement over the super-
vised baseline.

1 INTRODUCTION

Semantic dependency parsing (SDP) is a task aiming at discovering sentence-internal linguistic in-
formation. The focus of SDP is the identification of predicate-argument relationships for all content
words inside a sentence (Oepen et al., 2014; 2015). Compared with syntactic dependencies, se-
mantic dependencies are more general, allowing a word to be either unattached or the argument of
multiple predicates. The set of semantic dependencies within a sentence form a directed acyclic
graph (DAG), distinguishing SDP from syntactic dependency parsing tasks, where dependencies are
usually tree-structured. Extraction of such high-level structured semantic information potentially
benefits downstream NLP tasks (Reddy et al., 2017; Schuster et al., 2017).

Several supervised SDP models are proposed in the recent years by modifying syntactic dependency
parsers. Their parsing mechanisms are either transition-based (Ribeyre et al., 2014; Kanerva et al.,
2015; Wang et al., 2018) or graph-based (Martins & Almeida, 2014; Peng et al., 2017; Dozat &
Manning, 2018; Wang et al., 2019).

One limitation of supervised SDP is that labeled SDP data resources are limited in scale and diver-
sity. Due to the rich relationships in SDP, the annotation of semantic dependency graphs is expensive
and difficult, calling for professional linguists to design rules and highly skilled annotators to anno-
tate sentences. This limitation becomes more severe with the rise of deep learning, because neural
approaches are more data-hungry and susceptible to over-fitting when lacking training data. To alle-
viate this limitation, we investigate semi-supervised SDP capable of learning from both labeled and
unlabeled data.

While a lot of work has been done on supervised SDP, the research of unsupervised and semi-
supervised SDP is still lacking. Since parsing results of semantic dependencies are DAGs with-
out the tree-shape restriction, most existing successful unsupervised (Klein & Manning, 2004;
I. Spitkovsky et al., 2010; Jiang et al., 2016; Cai et al., 2017) and semi-supervised (Koo et al.,
2008; Druck et al., 2009; Suzuki et al., 2009; Corro & Titov, 2019) learning models for syntactic
dependency parsing cannot be applied to SDP directly.

There also exist several unsupervised (Poon & Domingos, 2009; Titov & Klementiev, 2011) and
semi-supervised (Das & Smith, 2011; Kočiskỳ et al., 2016; Yin et al., 2018) methods for seman-
tic parsing, but these models are designed for semantic representations different from dependency
graphs, making their adaptation to SDP difficult.

In this work, we propose an end-to-end neural semi-supervised model leveraging both labeled and
unlabeled data to learn a dependency graph parser. Our model employs the framework of Condi-

1

Under review as a conference paper at ICLR 2020

tional Random Field Autoencoder (Ammar et al., 2014), modeling the conditional reconstruction
probability given the input sentence with its dependency graph as the latent variable. Our encoder
is the supervised model of Dozat & Manning (2018), formulating an SDP task as labeling each arc
in a directed graph with a simple neural network. Analogous to a CRF model (Sutton et al., 2012),
our encoder is capable of computing the probability of a dependency graph conditioned on the input
sentence. The decoder is a generative model based on recurrent neural network language model
(Mikolov et al., 2010), which formulates the probability of generating the input sentence, but we
take into account the information given by the dependency parse graphs when generating the input.

Our model is arc-factored, i.e., the encoding, decoding and reconstructing probabilities can all be
factorized into the product of arc-specific quantities, making both learning and parsing tractable.
A unified learning objective is defined that takes advantage of both labeled and unlabeled data.
Compared with previous semi-supervised approaches based on Variational Autoencoder (Kingma &
Welling, 2013), our learning process does not involve sampling, promising better stability.

We evaluate our model on SemEval 2015 Task 18 Dataset (English) (Oepen et al., 2015) and find
that our model consistently outperforms the state-of-the-art supervised baseline. We also conduct
detailed analysis showing the benefits of different amounts of unlabeled data.

2 MODEL

Our model is based on the CRF autoencoder framework (Ammar et al., 2014) which provides a
unified fashion for structured predictors to leverage both labeled and unlabeled data. A CRF autoen-
coder aims to produce a reconstruction of the input X̂ from the original input X with an intermediate
latent structure Y. It is trained to maximize the conditional reconstruction probability P (X̂ = X|X)
with the latent variable Y marginalized. Ideally, successful reconstruction implies that the latent
structure captures important information of the input.

We adopt the following notations when describing our model. We represent a vector in lowercase
bold, e.g., s, and use a superscript for indexing, e.g., si for the i-th vector. We represent a scalar in
lowercase italics, e.g., s, and use a subscript for indexing, e.g., si for the i-th element of vector s.
An uppercase italic letter such as Y denotes a matrix. A lower case letter with a subscript pair such
as yi,j refers to the element of matrix Y at row i and column j. An uppercase bold letter, e.g., U,
stands for a tensor. We maintain this convention when indexing, e.g., yi is the i-th row of matrix Y .

In our model, the input is a natural language sentence consisting of a sequence of words. A sentence
withmwords is represented by s = (s0, s1, s2, . . . , sm), where s0 is a special token TOP. The latent
variable produced by our encoder is a dependency parse graph of the input sentence, represented
as a matrix of booleans Y ∈ {0, 1}(m+1)×(m+1), where yi,j = 1 indicates that there exists an
dependency arc pointing from word si to word sj . The reconstructed output generated by our
decoder is a word sequence ŝ = (ŝ1, ŝ2, . . . , ŝm).

Our encoder with parameters Θ computes PΘ(Y |s), the probability of generating a dependency
parse graph Y given a sentence s. Our decoder with parameters Λ computes PΛ(ŝ|Y), the proba-
bility of reconstructing sentence ŝ conditioned on the parse graph Y . The encoder and decoder in
combination specify the following conditional distribution.

PΘ,Λ(ŝ, Y |s) = PΘ(Y |s)PΛ(ŝ|Y)

To compute the conditional probability P (ŝ|s), we sum out the latent variable Y .

PΘ,Λ(ŝ|s) =
∑
Y ∈Y

PΘ,Λ(ŝ, Y |s)

where Y is the set of all possible dependency parse graphs of s. During training, we set ŝ = s and
maximize the conditional reconstruction probability P (ŝ|s).

Note that throughout our model, we only consider dependency arc predictions (i.e., whether an arc
exists between each word pair). Arc-labels will be learned separately as described in Section 3. We
leave the incorporation of arc-label prediction in our model for future work.

2

Under review as a conference paper at ICLR 2020

⋯

Embedding

FNN

BiLSTM

𝑠𝑖 𝑠𝑗

Biaff

𝐡𝑖
(dep) 𝐡𝑖

(head)

𝛹

⋯⋯

𝐱𝑖 𝐱𝑗

(a) Encoder.

𝑠3𝑠𝑘

𝐦𝑘
head

𝑠2 𝑠4

⋯⋯

Embedding

FNN

LSTM

FC

 𝑠3 𝑠4
 𝝓4
𝑘𝝓3

𝑘softmax

Sub-graph 𝐲𝑘

𝐦2
pre

Biaff

𝐦3
pre

𝐱2 𝐱3 𝐱4𝐱𝑘

(b) Decoder.

Figure 1: (a) Illustration of the encoder structure, following the design of Dozat & Manning (2018).
(b) Illustration of the decoder generating ŝk from the k-th neural generator, guided by sub-graph
yk. Dashed arcs at the bottom represent dependency arcs. A cross over arc (sk, s4) indicates the
absence of this arc.

2.1 ENCODER

Our encoder can be any arc-factored discriminative SDP model. Here we adopt the model of Dozat
& Manning (2018), which formulates the semantic dependency parsing task as independently label-
ing each arc in a directed complete graph. To predict whether or not a directed arc (si, sj) exists, the
model computes contextualized representations of si and sj and feeds them into a binary classifier.

The architecture of our encoder is shown in Fig.1a. Word, part-of-speech tag (for short, POS tag),
and lemma embeddings1 of each word in the input sentence are concatenated and fed into a multi-
layer bi-directional LSTM to get a contextualized representation of the word.

xi =e
(word)
i ⊕ e

(tag)
i ⊕ e

(lemma)
i (1)

R = BiLSTM(X)

where e
(word)
i , e

(tag)
i and e

(lemma)
i are notations for the word, POS tag and lemma embedding re-

spectively, concatenated (⊕) to form an embedding xi for word si. Stacking xi for i = 0, 1, . . . ,m
forms matrix X .

The contextualized word representation is then fed into two single-layer feedforward neural net-
works (FNN) with different parameters to produce two vectors: one for the representation of the
word as a dependency head and the other for the representation of the word as a dependent. They
are denoted as h

(head)
i and h

(dep)
i respectively.

h
(head)
i = FNN(enc−head)(ri) h

(dep)
i = FNN(enc−dep)(ri)

Finally, a biaffine function is applied to every arc between word pairs (si, sj) to obtain an arc-
existence score ψi,j .

ψi,j = h
(head)
i Wh

(dep)
j + b

where W is a square matrix of size d × d (d is the size of vector h
(head)
i and h

(dep)
j) , and b is a

scalar. The likelihood of every arc’s presence given a sentence, P (yi,j = 1|s), can be computed by
applying a sigmoid function on score ψi,j . The arc-absence probability P (yi,j = 0|s) is evidently
1− P (yi,j = 1|s).

To conclude, the probability of producing a dependency parse graph Y from the encoder given an
input sentence s can be computed as below.

P (Y |s) =
∏
i,j

P (yi,j |s)

1Unless stated otherwise, our model makes use of lemma embeddings by default.

3

Under review as a conference paper at ICLR 2020

2.2 DECODER

Our generative decoder is based on recurrent neural network language models (Mikolov et al., 2010),
but we take dependency relationships into account during reconstruction. Our inspiration sources
from the decoder with a Graph Convolutional Network (GCN) used by Corro & Titov (2019) to in-
corporate tree-structured syntactic dependencies when generating sentences, but our decoder differs
significantly from theirs in that ours handles parse graphs and is arc-factored.

As mentioned above, semantic dependency parsing allows a word to have multiple dependency
heads. If we generate a word conditioned on multiple heads, then it becomes difficult to make the
decoder arc-factored and hence inference and learning becomes less tractable. Instead, we propose
to generate a word for multiple times, each time conditioned on a different head.

Specifically, we split dependency graph Y of a sentence s = (s0, s1, . . . , sm) with m words and a
TOP token into m+ 1 parts:

Y = [y0; y1; y2; . . . ; ym]

Each yi is the i-th row of Y , representing a sub-graph where arcs are rooted at the i-th word of the
sentence s. Mathematically, we have yi = {yi,j |j ∈ (1, 2, ...,m)}.

We then generatem+1 sentences (ŝ0, ŝ1, ŝ2, . . . , ŝm) usingm+1 neural generators. The generation
of sentence ŝk is guided by the k-th sub-graph yk. Each generator is a left-to-right LSTM language
model and computes PΛ(ŝki |ŝk1:i−1, yk,i), the probability of generating each word conditioned on
its preceding words and whether yk contains a dependency arc to the word. We share parameters
among all the m+ 1 generators.

Fig.1b shows an example for computing the generative probability of ŝk by the k-th generator (k ∈
{0, 1, . . . ,m}) that incorporates the information of the k-th sub-graph yk. Recall that yk contains
only dependencies rooted at sk. Below we describe how to compute the generative probability of
each word ŝki with and without the dependency arc (sk, si) respectively.

Generative probability with a dependency Suppose there is a dependency arc from sk to si, we
need to compute the generative probability PΛ(ŝki |ŝk1:i−1, yk,i = 1). The LSTM in the k-th generator
takes the embedding of the previous word si−1 computed through Eq.1 as its input and outputs
the hidden state gi−1, which is fed into an FNN to produce a representation m

(pre)
i−1 . Meanwhile,

the embedding of the k-th word (also computed through Eq.1) is fed into another FNN to get its
representation m

(head)
k as a dependency head.

G = LSTM(X)

m
(pre)
i−1 = FNN(dec−pre)(gi−1) (2)

m
(head)
k = FNN(dec−head)(xk) (3)

m
(head)
k and m

(pre)
i−1 are fed into a bilinear function to obtain a vocabulary-size score vector φk

i .

φk
i = m

(head)
k Um

(pre)
i−1 (4)

Here, U is a tensor of size d × V × d, where V is the vocabulary size and d is the size of vector
m

(head)
k and m

(pre)
i−1 . To conserve parameters, the tensor U is diagonal (i.e., ui,k,j = 0 wherever

i 6= j). A softmax function can then be applied to φk
i , from which we pick the generative probability

of ŝki .

Generative probability without a dependency Suppose there is no dependency arc from sk to si.
In this case, reconstruction of ŝki resembles a normal recurrent neural network language model. The
representation m

(pre)
i−1 from Eq.2 is fed into a fully connected layer to get φ̄k

i , a vector of vocabulary
size containing generative scores of all the words.

φ̄k
i = FC(m

(pre)
i−1) (5)

The generative probability PΛ(ŝki |ŝk1:i−1, yk,i = 0) can then be computed by applying a softmax
function on φ̄k

i and selecting the corresponding probability of ŝki . Since we simply reconstruct word

4

Under review as a conference paper at ICLR 2020

si without considering the dependency arc information, this probability is exactly the same in the
m+ 1 generators and only needs to be computed once.

To conclude the overall design of our decoder, it is worth noting that in m + 1 generation pro-
cesses, parameters among all LSTMs are shared, as well as those among all FNNs2 and FCs. Still,
embeddings in Eq.1 are shared among both encoder and decoder.

With P (ŝki |ŝk1:i−1, yk,i) computed for i = 1, . . . ,m, k = 0, 1, . . . ,m, the probability of generating
ŝ0, ŝ1, ŝ2, . . . , ŝm from dependency graph Y can be computed through:

PΛ(ŝ0, ŝ1, . . . , ŝm|Y) =

m∏
k=0

PΛ(ŝk|yk) =

m∏
k=0

m∏
i=1

PΛ(ŝki |ŝk1:i−1, yk,i)

In our model, we are only interested in the case where all the m + 1 sentences are the same. In
addition, to balance the influence of the encoder and the decoder, we take the geometric mean of the
m+ 1 probabilities. The final decoding probability is defined as follows.

PΛ(ŝ|Y) :=

m∏
i=1

m∏
k=0

m+1

√
PΛ(ŝi|ŝ1:i−1, yk,i)

Note that this is not a properly normalized probability distribution, but in practice we find it sufficient
for semi-supervised SDP.

2.3 PARSING

Given parameters {Θ,Λ} of our encoder and decoder, we can parse a sentence s by finding a Y ∈
Y(s) which maximizes probability P (ŝ = s, Y |s), where Y(s) is the set of all parse graphs of
sentence s.

Y ∗ = arg max
Y ∈Y(s)

logPΘ,Λ(ŝ, Y |s) = arg max
Y ∈Y(s)

logPΛ(ŝ|Y)PΘ(Y |s) (6)

= arg max
Y ∈Y(s)

log
∏
i,j

m+1

√
PΛ(ŝj |ŝ1:j−1, yi,j)PΘ(yi,j |s)

= arg max
Y ∈Y(s)

∑
i,j

(1

m+ 1
logPΛ(ŝj |ŝ1:j−1, yi,j) + logPΘ(yi,j |s)

)
Since the probability is arc-factored, we can determine the existence of each dependency arc inde-
pendently by picking the value of yi,j that maximizes the corresponding term. The time complexity
of our parsing algorithm is O(m2) for a sentence with m words.

3 LEARNING

Since we want to train our model in a semi-supervised manner, we design loss functions for labeled
and unlabeled data respectively. For each training sentence s, the overall loss function is defined as
a combination of supervised loss Ll and unsupervised loss Lu.

L(s) = ι(s) ∗ Ll(s) + (1− ι(s)) ∗ ρLu(s) (7)

where an indicator ι(s) ∈ {0, 1} specifies whether training sentence s is labeled or not and a tunable
constant ρ balances the two losses.

Supervised Loss For any labeled sentence (s, Y ∗), where s stands for a sentence and Y ∗ stands
for a gold parse graph, we can compute the discriminative loss.

Ll(s) = − logPΘ,Λ(ŝ = s, Y ∗|s) (8)

2FNN(dec−pre) and FNN(dec−head) never share parameters between each other, since their usages are
different.

5

Under review as a conference paper at ICLR 2020

Following the derivation of Eq.6, we have:

logPΘ,Λ(ŝ, Y ∗|s) =
∑
i,j

(
1

m+ 1
logPΛ(ŝj |ŝ1:j−1, y

∗
i,j) + logPΘ(y∗i,j |s)) (9)

Gold parses also provide a label for each dependency. We follow Dozat & Manning (2018) and
model dependency labels with a purely supervised module on top of the BiLSTM layer of the en-
coder. Its parameters are learned by optimizing a cross-entropy loss function.

Unsupervised Loss For any unlabeled sentence s, we maximize the conditional reconstruction
probability P (ŝ = s|s). The unsupervised loss is:

Lu(s) = − logPΘ,Λ(ŝ|s) = − log
∑

Y ∈Y(s)

PΘ,Λ(Y, ŝ|s) (10)

= − log
∑

Y ∈Y(s)

PΛ(ŝ|Y)PΘ(Y |s) = −
∑
i,j

log
∑

yi,j∈{0,1}

(
PΘ(yi,j |s)× m+1

√
PΛ(ŝj |ŝ1:j−1, yi,j)

)
Derivations of Eq.10 are provided in Appendix A. Given a dataset containing both labeled and
unlabeled sentences, our model can be trained end-to-end by optimizing the loss function Eq.7 over
the combined dataset using any gradient based method.

4 EXPERIMENTS

4.1 SETTINGS

Dataset We examine the performance of our model on the English corpus of the SDP 2014 &
2015: Broad Coverage Semantic Dependency Parsing dataset (Oepen et al., 2015). The corpus
is composed of three distinct and parallel semantic dependency annotations (DM, PAS, PSD) of
Sections 00-21 of the WSJ Corpus, as well as a balanced sample of twenty files from the Brown
Corpus. More information of this dataset is shown in Table 3 in Appendix B. We evaluate the
performance of models through two metrics: Unlabeled F1 score (UF1) and Labeled F1 score (LF1).
UF1 measures the accuracy of the binary classification of arc existence, while LF1 measures the
correctness of each arc-label as well.

Network Configuration For our encoder, we adopt the hyper-parameters of Dozat & Manning
(2018). Following Dozat & Manning (2018), words or lemmas whose occurrences are less than 7
times within the training set are treated as UKN. For our decoder, we set the number of layer(s)
of uni-directional LSTM to 1, whose recurrent hidden size is 600. For FNN(dec−head) and
FNN(dec−pre), the output sizes are both 400, activated by a tanh(·) function.

Learning Our loss function (Eq.7) is optimized by the Adam+AMSGrad optimizer (Reddi et al.,
2018), with hyper-parameters β1, β2 kept the same as those of Dozat & Manning (2018). The
interpolation constant ρ is tuned with the size of unlabeled data. A detailed table of hyper-parameter
values is provided in Appendix C. The training time for one batch with our autoencoder is 2–3 times
of that of Dozat & Manning (2018) because of the extra decoder.

4.2 VARYING SIZE OF UNLABELED DATA

In our first experiment (with the DM annotations only), we fix the amount of labeled data and
continuously incorporate more unlabeled data into the training set. Specifically, we randomly sample
10% of the whole dataset as labeled data. Unlabeled data are then sampled from the remaining part
(with their gold parses removed), with a proportion increasing from 0% to 90% of the complete
dataset. For unlabeled data, we find that long sentences do not help in improving F1 scores and
therefore in this and all the subsequent experiments we remove unlabeled sentences longer than 20
to reduce the running time and memory usage.

Experimental results are visualized in Fig.2. First, we observe that in the purely supervised setting
(i.e., +0% unlabeled data), our model already outperforms the baseline (Dozat & Manning, 2018)

6

Under review as a conference paper at ICLR 2020

(a) UF1 for
in-domain tests.

(b) LF1 for
in-domain tests.

(c) UF1 for
out-of-domain tests.

(d) LF1 for
out-of-domain tests.

Figure 2: Results with fixed amount of labeled data and varying amount of unlabeled data. Exper-
iments are carried out on DM representations. +10U represents using 10% unlabeled data, and so
on. Numbers on Y-axes represent F1 scores. Dashed horizontal lines are results of the supervised
baseline (Dozat & Manning, 2018) trained on labeled data only. Solid lines are our results.

Models
Labeled:Unlabeled

0.1:9.9 1:9 3:7 5:5 10:0
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id
D&M 75.15 70.8 88.13 86.33 91.61 90.41 92.91 92.03 94.1 93.34

Ours-Sup 75.22 70.66 88.38 86.48 92.02 90.87 93.15 92.24 94.23 93.49
Ours-Semi 76.96 72.43 89.01 87.19 92.22 91.15 93.09 92.25 - -

ood
D&M 70.03 65.19 82.62 80.22 86.87 85.14 88.51 87.03 89.97 88.84

Ours-Sup 70.39 65.70 83.20 80.79 87.29 85.49 88.84 87.49 90.23 89.15
Ours-Semi 72.00 67.15 83.96 81.61 87.54 85.86 88.94 87.55 - -

Table 1: Experimental results with varying proportions of labeled and unlabeled data. D&M stands
for the supervised model of Dozat & Manning (2018) trained on labeled data only. Ours-Sup stands
for our model trained on labeled data only. Ours-Semi stands for our model trained on both labeled
and unlabeled data.

and the advantage of our model is larger on the out-of-domain test set than on the in-domain test
set. Since our encoder is exactly the baseline model, this shows the benefit of adding the decoder
for joint learning and parsing even in the supervised setting.

Second, with an increasing size of unlabeled dataset from 0% to 30%, we see a clear increase
in performance of our model, suggesting the benefit of semi-supervised learning with our model.
However, we observe little improvement when the size of unlabeled data exceeds 40% (not shown
in the figure), indicating a possible upper bound of the effectiveness of unlabeled data.

4.3 VARYING PROPORTION OF UNLABELED DATA

In our second experiment (again with the DM annotations), we use the full training set and vary
the proportion of labeled and unlabeled data. Experimental results are shown in Table 1. Our
semi-supervised model shows the largest advantage over the supervised models with the 0.1:9.9
proportion (which contains only 339 labeled sentences). With the increased proportion of labeled
data, the performance of all the models goes up, but the advantage of our semi-supervised model
vanishes. This demonstrates the diminishing effectiveness of unlabeled data when adding more
labeled data. Another worth-noting observation is that the superiority of our semi-supervised model
is much stronger on the out-of-domain tests and does not vanish even with the 5:5 proportion. This
suggests good generalizability of our semi-supervised model.

4.4 ON ALL REPRESENTATIONS

In the previous two experiments, we evaluate our model on the DM representation. Here we evaluate
our model on all the three representations: DM, PAS and PSD. We slightly tune the hyper-parameters
based on the optimal values from the previous experiments of the DM representation. We use 10%
of the sentences as labeled data and the rest 90% of the sentences as unlabeled data. For the com-
pleteness of our experiment, we follow Dozat & Manning (2018) and examine four different word
representations: basic (i.e., using only word and POS tag embeddings), +Lemma (i.e., using word,

7

Under review as a conference paper at ICLR 2020

Models DM PAS PSD Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id, +Lemma
D&M 88.13 86.33 91.99 90.61 88.24 73.20 89.45 83.38

Ours-Sup 88.38 86.48 92.27 91.00 88.28 73.33 89.64 83.60
Ours-Semi 89.01 87.19 92.10 90.88 88.64 73.69 89.92 83.92

ood, +Lemma
D&M 82.62 80.22 88.25 86.22 85.07 70.68 85.31 79.04

Ours-Sup 83.20 80.79 88.68 86.79 85.03 71.20 85.64 79.59
Ours-Semi 83.96 81.61 88.83 86.85 85.32 71.56 86.04 80.01

Table 2: Experimental results on all the three representations. D&M stands for the supervised
model of Dozat & Manning (2018). Ours-Sup stands for our model trained on labeled data only.
Ours-Semi stands for our model trained on both labeled and unlabeled data.

POS tag and lemma embeddings), +Char (i.e., using word, POS tag and character embeddings) and
+Lemma+Char (i.e. using word, POS tag, lemma and character embeddings).

Table 2 shows the experimental results of +Lemma, the default word representation. The results of
the other word representations show very similar trends (see Appendix D). We observe significant
improvement of our semi-supervised model over the two supervised baselines on both DM and PSD
representations. However, it is surprising to find that on the PAS representation, our semi-supervised
model exhibits little advantage over its supervised counterpart. One possible explanation, as Dozat
& Manning (2018) also noted, is that PAS is the easiest of the three representations (as can be seen
by comparing the scores of the three representations in Table 2) and our supervised model may
already reach the performance ceiling.

5 RELATED WORK

Work on unsupervised or semi-supervised dependency parsing, to the best of our knowledge, is
dominated by tree-structured parsing (Koo et al., 2008; Druck et al., 2009; Suzuki et al., 2009).
Recently, Corro & Titov (2019) introduced an approximate inference method with a Variational
Autoencoder (Kingma et al., 2014) for semi-supervised syntactic dependency parsing. Our decoder
is inspired by their work, but differs from theirs in that our decoder handles parse graphs and is
arc-factored. Cai et al. (2017) used the framework of CRF Autoencoder (Ammar et al., 2014) to
perform unsupervised syntactic dependency parsing. The same framework has been used by Zhang
et al. (2017) for semi-supervised sequence labeling. Our work also adopts the CRF Autoencoder
framework, but with both the encoder and the decoder redesigned for semantic dependency parsing.

Existing unsupervised and semi-supervised approaches to semantic parsing focused on semantic
representations different from dependency graphs, e.g., general-purpose logic forms (Sondheimer &
Nebel, 1986) and formal meaning representations (Bordes et al., 2012). Therefore, these approaches
cannot be applied to SDP directly. Poon & Domingos (2009) presented the first unsupervised se-
mantic parser to transform dependency trees into quasi-logical forms with Markov logic. Following
this work, Titov & Klementiev (2011) proposed a non-parametric Bayesian model for unsupervised
semantic parsing using hierarchical PitmanYor process (Teh, 2006). Das & Smith (2011) described
a semi-supervised approach to frame-semantic parsing. Kočiskỳ et al. (2016) proposed a semi-
supervised semantic parsing approach making use of unpaired logical forms. Recently, Yin et al.
(2018) proposed a variational autoencoding model for semi-supervised semantic parsing of tree-
structured semantic representations.

6 CONCLUSION

In this work, we proposed a semi-supervised learning model for semantic dependency parsing us-
ing CRF Autoencoders. Our model is composed of a discriminative neural encoder producing a
dependency graph conditioned on an input sentence, and a generative neural decoder for input re-
construction based on the dependency graph. The model works in an arc-factored fashion, promis-
ing end-to-end learning and efficient parsing. We evaluated our model under both full-supervision
settings and semi-supervision settings. Our model outperforms the baseline on multiple target rep-
resentations. By adding unlabeled data, our model exhibits further performance improvements.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Waleed Ammar, Chris Dyer, and Noah A. Smith. Conditional Random Field Autoencoders for
Unsupervised Structured Prediction. Advances in Neural Information Processing Systems, 4:
3311–3319, 2014.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint Learning of Words and
Meaning Representations for Open-text Semantic Parsing. In Artificial Intelligence and Statistics,
pp. 127–135, 2012.

Jiong Cai, Yuanyuan Jiang, and Kewei Tu. CRF Autoencoder for Unsupervised Dependency Pars-
ing. In EMNLP, 2017.

Caio Corro and Ivan Titov. Differentiable Perturb-and-Parse: Semi-Supervised Parsing with a Struc-
tured Variational Autoencoder. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=BJlgNh0qKQ.

Dipanjan Das and Noah A Smith. Semi-Supervised Frame-Semantic Parsing for Unknown Predi-
cates. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pp. 1435–1444. Association for Computational
Linguistics, 2011.

Timothy Dozat and Christopher D. Manning. Simpler but More Accurate Semantic Dependency
Parsing. In ACL, 2018.

Gregory Druck, Gideon S. Mann, and Andrew McCallum. Semi-Supervised Learning of Depen-
dency Parsers using Generalized Expectation Criteria. In IJCNLP-ACL, 2009.

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky, and Christoper Manning. Viterbi Training
Improves Unsupervised Dependency Parsing. CoNLL 2010 - Fourteenth Conference on Compu-
tational Natural Language Learning, Proceedings of the Conference, pp. 9–17, 07 2010.

Yong Jiang, Wenjuan Han, and Kewei Tu. Unsupervised Neural Dependency Parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 763–771,
2016.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter. Turku: Semantic Dependency Parsing as A Se-
quence Classification. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pp. 965–969, 2015.

Diederik Kingma and Max Welling. Auto-Encoding Variational Bayes. ICLR, 12 2013.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-Supervised
Learning with Deep Generative Models. In Advances in neural information processing systems,
pp. 3581–3589, 2014.

Dan Klein and Christopher D Manning. Corpus-based Induction of Syntactic Structure: Models of
Dependency and Constituency. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, pp. 478. Association for Computational Linguistics, 2004.

Tomáš Kočiskỳ, Gábor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. Semantic Parsing with Semi-Supervised Sequential Autoencoders. In
EMNLP, 2016.

Terry Koo, Xavier Carreras, and Michael Collins. Simple Semi-Supervised Dependency Parsing. In
In Proceedings of ACL-08, 2008.

André FT Martins and Mariana SC Almeida. Priberam: A Turbo Semantic Parser with Second Order
Features. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), pp. 471–476, 2014.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
Neural Network Based Language Model. In Eleventh annual conference of the international
speech communication association, 2010.

9

https://openreview.net/forum?id=BJlgNh0qKQ

Under review as a conference paper at ICLR 2020

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. Semeval 2014 task 8: Broad-Coverage Semantic Dependency
Parsing. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), pp. 63–72, 2014.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinkov, Dan Flickinger,
Jan Haji, and Zdeka Ureov. SemEval 2015 Task 18: Broad-Coverage Semantic Dependency
Parsing. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval
2015), pp. 915–926, Denver, CO, USA, 2015.

Hao Peng, Sam Thomson, and Noah A Smith. Deep Multitask Learning for Semantic Dependency
Parsing. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2017.

Hoifung Poon and Pedro Domingos. Unsupervised Semantic Parsing. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, pp.
1–10. Association for Computational Linguistics, 2009.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam and Beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ.

Siva Reddy, Oscar Tackstrom, Slav Petrov, Mark Steedman, and Mirella Lapata. Universal Semantic
Parsing. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2017. URL http://aclweb.org/anthology/D/D17/D17-1009.
pdf.

Corentin Ribeyre, Éric Villemonte de La Clergerie, and Djamé Seddah. Alpage: Transition-based
Semantic Graph Parsing with Syntactic Features. In International Workshop on Semantic Evalu-
ation, 2014.

Sebastian Schuster, Éric Villemonte de La Clergerie, Marie Candito, Benoı̂t Sagot, Christopher
Manning, and Djamé Seddah. Paris and Stanford at EPE 2017: Downstream Evaluation of Graph-
based Dependency Representations. In EPE 2017-The First Shared Task on Extrinsic Parser
Evaluation, pp. 47–59, 2017.

Norman K Sondheimer and Bernhard Nebel. A Logical-Form and Knowledge-Base Design for
Natural Language Generation. In Proceedings of the workshop on Strategic computing natural
language, pp. 231–241. Association for Computational Linguistics, 1986.

Charles Sutton, Andrew McCallum, et al. An Introduction to Conditional Random Fields. Founda-
tions and Trends R© in Machine Learning, 4(4):267–373, 2012.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins. An Empirical Study of Semi-
Supervised Structured Conditional Models for Dependency Parsing. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 2-Volume 2, pp.
551–560. Association for Computational Linguistics, 2009.

Yee Whye Teh. A Hierarchical Bayesian Language Model Based on Pitman-Yor Processes. In
Proceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pp. 985–992. Association for
Computational Linguistics, 2006.

Ivan Titov and Alexandre Klementiev. A Bayesian Model for Unsupervised Semantic Parsing. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pp. 1445–1455. Association for Computational Linguis-
tics, 2011.

Xinyu Wang, Jingxian Huang, and Kewei Tu. Second-Order Semantic Dependency Parsing with
End-to-End Neural Networks. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4609–4618, Florence, Italy, July 2019. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/P19-1454.

10

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://aclweb.org/anthology/D/D17/D17-1009.pdf
http://aclweb.org/anthology/D/D17/D17-1009.pdf
https://www.aclweb.org/anthology/P19-1454

Under review as a conference paper at ICLR 2020

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu. A Neural Transition-Based Approach for
Semantic Dependency Graph Parsing. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Pengcheng Yin, Chunting Zhou, Junxian He, and Graham Neubig. StructVAE: Tree-Structured
Latent Variable Models for Semi-Supervised Semantic Parsing. In ACL, 2018.

Xiao Zhang, Yong Jiang, Hao Peng, Kewei Tu, and Dan Goldwasser. Semi-Supervised Structured
Prediction with Neural CRF Autoencoder. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 1701–1711, 2017.

11

Under review as a conference paper at ICLR 2020

A DETAILED DERIVATION

Derivation of the marginalized probability over all possible dependency graphs of a sentence with
m words for Eq.10 is shown below.

log
∑
Y ∈Y

P (s, Y |s) = log
∑
Y ∈Y

P (s|Y)P (Y |s)

= log
∑
Y ∈Y

(∏
i,j

P (yi,j |s) m+1

√
P (ŝj |ŝ1:j−1, yi,j)

)
= log

∑
y0,1

∑
y0,2

· · ·
∑
ym,m

(
P (yi,j |s) m+1

√
P (ŝj |ŝ1:j−1, yi,j)

)
= log

((∑
y0,1

P (y0,1|s) m+1

√
P (ŝ1|ŝ0, y0,1)

)
...
(∑

ym,m

P (ym,m|s) m+1

√
P (ŝm|ŝ1:m−1, ym,m)

))
= log

∏
i,j

(∑
yi,j

P (yi,j |s) m+1

√
P (ŝj |ŝ1:j−1, yi,j)

)
=
∑
i,j

log

(∑
yi,j

(
P (yi,j |s) m+1

√
P (ŝj)|ŝ1:j−1, yi,j)

))

B DATASET

Table 3 shows the source and size of each part of the English corpus of the SDP 2014 & 2015: Broad
Coverage Semantic Dependency Parsing dataset (Oepen et al., 2015).

Source Sentences Tokens
train WSJ Sec.00-20 35,657 802,717

test (id) WSJ Sec.21 1,410 31,948
test (ood) Brown 1,849 31,583

Table 3: The sources and sizes of the training and test sets of the SDP 2014 & 2015 (English) dataset.
We extract WSJ Section 20 (1,692 sentences) from the train set for development purpose. id stands
for in-domain testing, while ood stands for out-of-domain testing.

C HYPER-PARAMETERS

Here we provide a summary of hyper-parameters in our experiments, as shown in Table 4.

D EXPERIMENTS ON ALL REPRESENTATIONS

Complete experimental results on DM, PAS and PSD under the setting of Section 4.4 (i.e., basic,
+Char, +Lemma and +Lemma+Char) are shown in Table 6.

E STABILITY OF OUR MODEL

To test the stability of our model, we repeat the experiment of Section 4.4 on the DM annotation for
three times, each time with a differently sampled dateset. Table 5 shows the results. We observe
consistent advantage of our model over the baseline on all the three datasets.

12

Under review as a conference paper at ICLR 2020

Hidden Layer Hidden Sizes
Word/GloVe/POS/Lemma/Char 100
GloVe Linear 125
Encoder BiLSTM 3*600
Encoder FNN(head) 3*400
Encoder FNN(dep) 3*400
Decoder UniLSTM 1*600
Decoder FNN(head) 1*400
Decoder FNN(pre) 1*400
Dropouts Dropout Prob.
Word/GloVe/POS/Lemma 20%
Encoder FNN 25 %
BiLSTM (FF/recur) 45%/25%
Optimizer & Loss Value
Adam β1 0
Adam β2 0.95
Learning rate 1e−3

L2 regularization 3e−9

Table 4: Summary of hyper-parameters.

Models Random1 Random2 Random3 Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id, +Lemma
D&M 88.13 86.33 88.19 86.38 88.80 87.20 88.37 86.64

Ours-Sup 88.38 86.48 88.65 86.94 88.93 87.27 88.65 86.90
Ours-Semi 89.01 87.19 89.09 87.33 89.27 87.46 89.12 87.33

ood, +Lemma
D&M 82.62 80.22 83.32 80.96 83.20 80.84 83.05 80.67

Ours-Sup 83.20 80.79 83.79 81.34 83.58 81.24 83.52 81.12
Ours-Semi 83.96 81.61 84.25 81.93 83.88 81.44 84.03 81.66

Table 5: Experimental results on three randomly sampled datasets. D&M stands for the supervised
model of Dozat & Manning (2018). Ours-Sup stands for our model trained on labeled data only.
Ours-Semi stands for our model trained on both labeled and unlabeled data.

13

Under review as a conference paper at ICLR 2020

Models DM PAS PSD Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id, basic
D&M 86.92 84.77 91.57 90.18 87.31 71.71 88.60 82.22

Ours-Sup 87.64 85.29 92.06 90.75 87.67 72.25 89.12 82.76
Ours-Semi 88.32 85.95 91.93 90.65 88.27 73.30 89.51 83.30

ood, basic
D&M 81.52 78.77 88.22 86.20 84.05 69.53 84.60 78.17

Ours-Sup 82.23 79.36 88.52 86.55 84.16 69.80 84.97 78.57
Ours-Semi 83.03 80.04 88.46 86.53 84.68 70.72 85.39 79.10

id, +Char
D&M 87.38 85.35 91.85 90.46 87.64 72.28 88.96 82.70

Ours-Sup 87.81 85.80 92.08 90.85 87.91 72.68 89.27 83.11
Ours-Semi 88.20 85.87 91.97 90.74 88.12 73.19 89.43 83.27

ood, +Char
D&M 82.14 79.55 88.30 86.25 84.43 69.92 84.96 78.57

Ours-Sup 82.34 79.71 88.62 86.71 84.60 70.34 85.19 78.92
Ours-Semi 82.60 79.84 88.66 86.81 84.69 70.83 85.32 79.16

id, +Lemma
D&M 88.13 86.33 91.99 90.61 88.24 73.20 89.45 83.38

Ours-Sup 88.38 86.48 92.27 91.00 88.28 73.33 89.56 83.54
Ours-Semi 89.01 87.19 92.10 90.88 88.64 73.69 89.85 83.85

id, +Lemma
D&M 88.13 86.33 91.99 90.61 88.24 73.20 89.45 83.38

Ours-Sup 88.38 86.48 92.27 91.00 88.28 73.33 89.64 83.60
Ours-Semi 89.01 87.19 92.10 90.88 88.64 73.69 89.92 83.92

ood, +Lemma
D&M 82.62 80.22 88.25 86.22 85.07 70.68 85.31 79.04

Ours-Sup 83.20 80.79 88.68 86.79 85.03 71.20 85.64 79.59
Ours-Semi 83.96 81.61 88.83 86.85 85.32 71.56 86.04 80.01

ood, +Lemma+Char
D&M 83.26 80.96 88.51 86.54 85.18 71.02 85.65 79.51

Ours-Sup 83.59 81.48 88.80 86.91 85.39 71.18 85.93 79.86
Ours-Semi 84.29 82.02 88.78 86.85 85.49 71.58 86.19 80.15

Table 6: Experimental results on all the three SDP representations with four different word repre-
sentations. D&M stands for the supervised model of Dozat & Manning (2018). Ours-Sup stands
for our model trained on labeled data only. Ours-Semi stands for our model trained on both labeled
and unlabeled data.

14

	Introduction
	Model
	Encoder
	Decoder
	Parsing

	Learning
	Experiments
	Settings
	Varying Size of Unlabeled Data
	Varying Proportion of Unlabeled Data
	On All Representations

	Related Work
	Conclusion
	Detailed Derivation
	Dataset
	Hyper-parameters
	Experiments on All Representations
	Stability of Our Model

