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ABSTRACT

The performance of deep neural networks is significantly affected by how well
mini-batches are constructed. In this paper, we propose a novel adaptive batch
selection algorithm called Recency Bias that exploits the uncertain samples
predicted inconsistently in recent iterations. The historical label predictions of
each sample are used to evaluate its predictive uncertainty within a sliding window.
By taking advantage of this design, Recency Bias not only accelerates the training
step but also achieves a more accurate network. We demonstrate the superiority
of Recency Bias by extensive evaluation on two independent tasks. Compared with
existing batch selection methods, the results showed that Recency Bias reduced
the test error by up to 20.5% in a fixed wall-clock training time. At the same time,
it improved the training time by up to 59.3% to reach the same test error.

1 INTRODUCTION

Stochastic gradient descent (SGD) for randomly selected mini-batch samples is commonly used to
train deep neural networks (DNNs). However, many recent studies have pointed out that the perfor-
mance of DNNs is heavily dependent on how well the mini-batch samples are selected (Shrivastava
et al., 2016; Chang et al., 2017; Katharopoulos & Fleuret, 2018). In earlier approaches, a sam-
ple’s difficulty is employed to identify proper mini-batch samples, and these approaches achieve
a more accurate and robust network (Han et al., 2018) or expedite the training convergence of
SGD (Loshchilov & Hutter, 2016). However, the two opposing difficulty-based strategies, i.e., prefer-
ring easy samples (Kumar et al., 2010; Han et al., 2018) versus hard samples (Loshchilov & Hutter,
2016; Shrivastava et al., 2016), work well in different situations. Thus, for practical reasons to cover
more diverse situations, recent approaches begin to exploit a sample’s uncertainty that indicates the
consistency of previous predictions (Chang et al., 2017; Song et al., 2019).

An important question here is how to evaluate the sample’s uncertainty based on its historical
predictions during the training process. Intuitively, because a series of historical predictions can
be seen as a series of data indexed in chronological order, the uncertainty can be measured based on
two forms of handling time-series observations: (i) a growing window (Figure 1(a)) that consistently
increases the size of a window to use all available observations and (ii) a sliding window (Figure 1(b))
that maintains a window of a fixed size on the most recent observations by deleting outdated ones.
While the state-of-the-art algorithm, Active Bias (Chang et al., 2017), adopts the growing window,
we propose to use the sliding window in this paper.

All available observations Recent observations

Historical observationsHistorical observations

Growing Sliding

Outdated observations

(a) Growing Window. (b) Sliding Window.

Figure 1: Two forms of handling the time-series observations.

In more detail, Active Bias recognizes uncertain samples based on the inconsistency of the predictions
in the entire history of past SGD iterations. Then, it emphasizes such uncertain samples by choosing
them with high probability for the next mini-batch. However, according to our experiments presented
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Figure 2: The difference in sample uncertainty estimated by Active Bias and Recency Bias.

in Section 5.2, such uncertain samples slowed down the convergence speed of training, though they
ultimately reduced the generalization error. This weakness is attributed to the inherent limitation of
the growing window, where older observations could be too outdated (Torgo, 2011). In other words,
the outdated predictions no longer represent a network’s current behavior. As illustrated in Figure
2, when the label predictions of two samples were inconsistent for a long time, Active Bias invariably
regards them as highly uncertain, although their recent label predictions become consistent along
with the network’s training progress. This characteristic evidently entails the risk of emphasizing
uninformative samples that are too easy or too hard at the current moment, thereby slowing down
the convergence speed of training.

Therefore, we propose a simple but effective batch selection method, called Recency Bias, that takes
advantage of the sliding window to evaluate the uncertainty in fresher observations. As opposed to
Active Bias, Recency Bias excludes the outdated predictions by managing a sliding window of a fixed
size and picks up the samples predicted inconsistently within the sliding window. Thus, as shown
in Figure 2, the two samples uninformative at the moment are no longer selected by Recency Bias
simply because their recent predictions are consistent. Consequently, since informative samples are
effectively selected throughout the training process, this strategy not only accelerates the training
speed but also leads to a more accurate network.

To validate the superiority of Recency Bias, two popular convolutional neural networks (CNNs) were
trained for two independent tasks: image classification and fine tuning. We compared Recency Bias
with not only random batch selection (baseline) but also two state-of-the-art batch selection strategies.
Compared with three batch selection strategies, Recency Bias provided a relative reduction of test
error by 1.81%–20.5% in a fixed wall-clock training time. At the same time, it significantly reduced
the execution time by 24.6%–59.3% to reach the same test error.

2 RELATED WORK

Let D = {(xi, yi)|1 ≤ i ≤ N} be the entire training dataset composed of a sample xi with its
true label yi, where N is the total number of training samples. Then, a straightforward strategy to
construct a mini-batchM = {(xi, yi)|1 ≤ i ≤ b} is to select b samples uniformly at random (i.e.,
P (xi|D) = 1/N ) from the training dataset D.

Because not all samples have an equal impact on training, many research efforts have been devoted
to develop advanced sampling schemes. Bengio et al. (2009) first took easy samples and then
gradually increased the difficulty of samples using heuristic rules. Kumar et al. (2010) determined the
easiness of the samples using their prediction errors. Recently, Tsvetkov et al. (2016) used Bayesian
optimization to learn an optimal curriculum for training dense, distributed word representations.
Sachan & Xing (2016) emphasized that the right curriculum must introduce a small number of the
samples dissimilar to those previously seen. Fan et al. (2017) proposed a neural data filter based on
reinforcement learning to select training samples adaptively. However, it is common for deep learning
to emphasize hard samples because of the plethora of easy ones (Katharopoulos & Fleuret, 2018).

Loshchilov & Hutter (2016) proposed a difficulty-based sampling scheme, called Online Batch,
that uses the rank of the loss computed from previous epochs. Online Batch sorts the previously
computed losses of samples in descending order and exponentially decays the sampling probability
of a sample according to its rank r. Then, the r-th ranked sample x(r) is selected with the probability
dropping by a factor of exp

(
log(se)/N

)
, where se is the selection pressure parameter that affects

the probability gap between the most and the least important samples. When normalized to sum
to 1.0, the probability P (x(r)|D; se) is defined by Eq. (1). It has been reported that Online Batch
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accelerates the convergence of training but deteriorates the generalization error because of the
overfitting to hard training samples (Loshchilov & Hutter, 2016).

P (x(r)|D; se) =
1/ exp

(
log(se)/N

)r∑N
j=1 1/ exp

(
log(se)/N

)j (1)

Most close to our work, Chang et al. (2017) devised an uncertainty-based sampling scheme, called
Active Bias, that chooses uncertain samples with high probability for the next batch. Active Bias
maintains the historyHt−1

i that stores all h(yi|xi) before the current iteration t (i.e., growing window),
where h(yi|xi) is the softmax probability of a given sample xi for its true label yi. Then, it measures
the uncertainty of the sample xi by computing the variance over all h(yi|xi) inHt−1

i and draws the
next mini-batch samples based on the normalized probability P (xi|D,Ht−1

i ; ε) in Eq. (2), where ε is
the smoothness constant to prevent the low variance samples from never being selected again. As
mentioned earlier in Section 1, Active Bias slows down the training process because the oldest part in
the historyHt−1

i no longer represents the current behavior of the network.

P (xi|D,Ht−1
i ; ε) =

ˆstd(Ht−1
i ) + ε∑N

j=1

(
ˆstd(Ht−1

j ) + ε
) , ˆstd(Ht−1

i ) =

√√√√var
(
h(yi|xi)

)
+
var
(
h(yi|xi)

)2
|Ht−1

i |
(2)

For the completeness of the survey, we include the recent studies on submodular batch selection.
Joseph et al. (2019) and Wang et al. (2019) designed their own submodular objectives that cover
diverse aspects, such as sample redundancy and sample representativeness, for more effective
batch selection. Differently from their work, we explore the issue of truly uncertain samples in
an orthogonal perspective. Our uncertainty measure can be easily injected into their submodular
optimization framework as a measure of sample informativeness.

In Section 5, we will confirm that Recency Bias outperforms Online Batch and Active Bias, which are
regarded as two state-of-the-art adaptive batch selection methods for deep learning.

3 Recency Bias COMPONENTS

3.1 CRITERION OF AN UNCERTAIN SAMPLE

The main challenge of Recency Bias is to identify the samples whose recent label predictions are
highly inconsistent, which are neither too easy nor too hard at the moment. Thus, we adopt the
predictive uncertainty (Song et al., 2019) in Definition 3.1 that uses the information entropy (Chandler,
1987) to measure the inconsistency of recent label predictions. Here, the sample with high predictive
uncertainty is regarded as uncertain and selected with high probability for the next mini-batch.
Definition 3.1. (Predictive Uncertainty) Let ŷit = Φ(xi, θt) be the predicted label of a sample xi at
time t andHxi

(q) = {ŷt1 , ŷt2 , . . . , ŷtq} be the label history of the sample xi that stores the predicted
labels at the previous q times, where Φ is a neural network. The label history Hxi

(q) corresponds
to the sliding window of size q to compute the uncertainty of the sample xi. Next, p(yi|xi; q) is
formulated such that it provides the probability of the label yi ∈ {1, 2, ..., k} estimated as the label of
the sample xi based onHxi

(q) as in Eq. (3), where [·] is the Iverson bracket1.

p(yi|xi; q) =

∑
ŷi∈Hxi

(q)[ŷi = yi]

|Hxi(q)|
(3)

Then, to quantify the uncertainty of the sample xi, the predictive uncertainty F (xi; q) is defined
using the empirical entropy as in Eq. (4). Because the uncertainty is bounded, we add the
standardization term δ to normalize the value to [0, 1]. For k classes, δ is the maximum entropy when
∀jp(j|xi; q) = 1/k.

F (xi; q) = −(1/δ)

k∑
j=1

p(j|xi; q) log p(j|xi; q)

δ = − log (1/k) �

(4)

1The Iverson bracket [p] returns 1 if p is true; 0 otherwise.
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3.2 SAMPLING PROBABILITY FOR MINI-BATCH CONSTRUCTION

To construct next mini-batch samples, we assign the sampling probability according to the predictive
uncertainty in Definition 3.1. Motivated by Loshchilov & Hutter (2016), the sampling probability
of a given sample xi is exponentially decayed with its predictive uncertainty F (xi; q). In detail,
we adopt the quantization method (Chen & Wornell, 2001) and use the quantization index to decay
the sampling probability. The index is obtained by the simple quantizer Q in Eq. (5), where ∆ is
the quantization step size. Compared with the rank-based index (Loshchilov & Hutter, 2016), the
quantization index is known to well reflect the difference in actual values (Widrow et al., 1996).

Q
(
F (xi; q)

)
= d
(
1− F (xi; q)

)
/∆e, 0 ≤ F (xi; q) ≤ 1 (5)

In Eq. (5), we set ∆ to be 1/N such that the index is bounded to N (the total number of samples).
Then, the sampling probability P (xi|D; se) is defined as in Eq. (6). The higher the predictive
uncertainty, the smaller the quantization index. Therefore, a higher sampling probability is assigned
for uncertain samples in Eq. (6).

P (xi|D; se) =
1/ exp

(
log(se)/N

)Q(F (xi;q))∑N
j=1 1/ exp

(
log(se)/N

)Q(F (xj ;q))
(6)

Meanwhile, it is known that using only some part of training data exacerbates the overfitting problem
at a late stage of training (Loshchilov & Hutter, 2016; Zhou & Bilmes, 2018). Thus, to alleviate
the problem, we include more training samples as the training progresses by exponentially decaying
the selection pressure se as in Eq. (7). At each epoch e from e0 to eend, the selection pressure
se exponentially decreases from se0 to 1. Because this technique gradually reduces the sampling
probability gap between the most and the least uncertain samples, more diverse samples are selected
for the next mini-batch at a later epoch. When the selection pressure se becomes 1, the mini-batch
samples are randomly chosen from the entire dataset.

se = se0

(
exp
(

log (1/se0)/(eend − e0)
))e−e0

(7)

4 Recency Bias ALGORITHM

Algorithm 1 Recency Bias Algorithm

INPUT: D: data, epochs, b: batch size, q: window size, se0 : initial selection pressure, γ: warm-up
OUTPUT: θt: model parameter

1: t← 1;
2: θt ← Initialize the model parameter;
3: for i = 1 to epochs do
4: /* Sampling Probability Derivation */
5: if i > γ then
6: se ← Decay_Selection_Pressure(se0 , i); /* Decaying se by Eq. (7) */
7: for m = 1 to N do /* Updating the index and the sampling probability in a batch */
8: q_dict[xm] = Q

(
F (xm; q)

)
; /* By Eq. (5) */

9: p_table← Compute_Prob(q_dict, se); /* By Eq. (6) */
10: /* Network Training */
11: for j = 1 to N/b do /* Mini-batch */
12: if i ≤ γ then /* Warm-up */
13: {(x1, y1), . . . , (xb, yb)} ← Randomly select next mini-batch samples;
14: else /* Adaptive batch selection */
15: {(x1, y1), . . . , (xb, yb)} ← Select next mini-batch samples based on p_table;
16: losses, labels← Inference_Step({(x1, y1), . . . , (xb, yb)},θt); /* Forward */
17: θt+1 ← SGD_Step(losses, θt); /* Backward */
18: Update_Label_History(labels); /* By Definition 3.1 */
19: t← t+ 1;
20: return θt;

Algorithm 1 describes the overall procedure of Recency Bias. The algorithm requires a warm-up
period of γ epochs because the quantization index for each sample is not confirmed yet. During
the warm-up period, which should be at least q epochs (γ ≥ q) to obtain the label history of size
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q, randomly selected mini-batch samples are used for the network update (Lines 12–13). After the
warm-up period, the algorithm decays the selection pressure se and updates not only the quantization
index but also the sampling probability in a batch at the beginning of each epoch (Lines 4–9).
Subsequently, the uncertain samples are selected for the next mini-batch according to the updated
sampling probability (Line 14–15), and then the label history is updated along with the network
update (Lines 16–19).

Overall, the key technical novelty of Recency Bias is to incorporate the notion of a sliding win-
dow (Line 8) rather than a growing window into adaptive batch selection, thereby improving both
training speed and generalization error.

Time Complexity: The main “additional” cost of Recency Bias is the derivation of the sampling
probability for each sample (Lines 4–9). Because only simple mathematical operations are needed
per sample, its time complexity is linear to the number of samples (i.e., O(N)), which is negligible
compared with that of the forward and backward steps of a complex network (Lines 16–17). Therefore,
we contend that Recency Bias does not add the complexity of an underlying optimization algorithm.

5 EVALUATION

We empirically show the improvement of Recency Bias over not only Random Batch (baseline) but also
Online Batch (Loshchilov & Hutter, 2016) and Active Bias (Chang et al., 2017), which are two state-
of-the-art adaptive batch selections. In particular, we elaborate on the effect of the sliding window
approach (Recency Bias) compared with the growing window approach (Active Bias). Random Batch
selects next mini-batch samples uniformly at random from the entire dataset. Online Batch selects hard
samples based on the rank of the loss computed from previous epochs. Active Bias selects uncertain
samples with high variance of true label probabilities in the growing window. All the algorithms
were implemented using TensorFlow 1.8.0 and executed using a single NVIDIA Titan Volta GPU.
For reproducibility, we provide the source code at https://github.com/anonymized.

Image classification and fine-tuning tasks were performed to validate the superiority of Recency Bias.
Because fine-tuning is used to quickly adapt to a new dataset, it is suitable to reap the benefit of fast
training speed. In support of reliable evaluation, we repeated every task thrice and reported the average
and standard error of the best test errors. The best test error in a given time has been widely used for
the studies on fast and accurate training (Katharopoulos & Fleuret, 2018; Loshchilov & Hutter, 2016).

5.1 ANALYSIS ON SELECTED MINI-BATCH SAMPLES

For an in-depth analysis on selected samples, we plot the loss distribution of mini-batch samples
selected from CIFAR-10 by four different strategies in Figure 3. (i) The distribution of Online Batch
is the most skewed toward high loss by the design principle of selecting hard samples. (ii) Active Bias
emphasizes moderately hard samples at an early training stage in considering that its loss distribution
lies between those of Random Batch and Online Batch. However, owing to the outdated predictions
caused by the growing window, the proportion of easy samples with low loss increases at a late
training stage. These easy samples, which are misclassified as uncertain at that stage, tend to make the
convergence of training slow down. (iii) In contrast to Active Bias, by virtue of the sliding window,
the distribution of Recency Bias lies between those of Random Batch and Online Batch regardless of
the training stage. Consequently, Recency Bias continues to highlight the moderately hard samples,
which are likely to be informative, during the training process.

Loss (Log-scale)Loss (Log-scale)

Random Batch

Online Batch

Active Bias 

(Growing window)

Recency Bias

(Sliding window)

(a) Early Stage (30%). (b) Late Stage (70%).

Figure 3: The loss distribution of mini-batch samples selected by four batch selection strategies: (a)
and (b) show the loss distribution at the 30% and 70% of total training epochs, respectively.
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5.2 TASK I: IMAGE CLASSIFICATION

Experiment Setting: We trained DenseNet (L=40, k=12) and ResNet (L=50) with a momentum
optimizer and an SGD optimizer on three benchmark datasets: MNIST (10 classes)2, classification
of handwritten digits (LeCun, 1998), and CIFAR-10 (10 classes)3 and CIFAR-100 (100 classes)3,
classification of a subset of 80 million categorical images (Krizhevsky et al., 2014). Specifically, we
used data augmentation, batch normalization, a momentum of 0.9, and a batch size of 128. As for the
algorithm parameters, we fixed the window size q = 10 and the initial selection pressure se0 = 100,4
which were the best values found by the grid search (see Appendix A for details). The warm-up
epoch γ was set to be 15. To reduce the performance variance caused by randomly initialized model
parameters, all parameters were shared by all algorithms during the warm-up period. Regarding
the training schedule, we trained the network for 40, 000 iterations and used an initial learning rate
of 0.1, which was divided by 10 at 50% and 75% of the total number of training iterations.

Results: Figure 4 shows the convergence curves of training loss and test error for four batch selection
strategies using DenseNet and a momentum optimizer. In order to highlight the improvement of
Recency Bias over the baseline (Random Batch), their lines are dark colored. The best test errors in
Figures 4(b), 4(d), and 4(f) are summarized on the left side of Table 1.

In general, Recency Bias achieved the most accurate network while accelerating the training process
on all datasets. The training loss of Recency Bias converged faster (Figures 4(a), 4(c), and 4(e))
without the increase in the generalization error, thereby achieving the lower test error (Figures 4(b),
4(d), and 4(f)). In contrast, the test error of Online Batch was not the best even if its training loss
converged the fastest among all strategies. As the training difficulty increased from CIFAR-10 to
CIFAR-100, the test error of Online Batch became even worse than that of Random Batch. That
is, emphasizing hard samples accelerated the training step but made the network overfit to hard
samples. Meanwhile, Active Bias was prone to make the network better generalized on test data.
In CIFAR-10, despite its highest training loss, the test error of Active Bias was better than that of
Random Batch. However, Active Bias slowed down the training process because of the limitation
of growing windows, as discussed in Section 5.1. We note that, although both Recency Bias and
Active Bias exploited uncertain samples, only Recency Bias based on sliding windows succeeded
to not only speed up the training process but also reduce the generalization error.

The results of the best test error for ResNet or an SGD optimizer are summarized in Tables 1 and
2 (see Appendix C for more details). Regardless of a neural network and an optimizer, Recency
Bias achieved the lowest test error except in MNIST with an SGD optimizer. The improvement of
Recency Bias over the others was higher with an SGD optimizer than with a momentum optimizer.

Table 1: The best test errors (%) of four batch selection strategies using DenseNet.

Optimizer Momentum in Figure 4 SGD in Figure 9 (Appendix C.1)
Method MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100
Random Batch 0.527 ± 0.03 7.33 ± 0.09 28.0 ± 0.16 1.23 ± 0.03 14.9 ± 0.09 40.2 ± 0.06
Online Batch 0.514 ± 0.01 7.00 ± 0.10 28.4 ± 0.25 0.765 ± 0.02 13.5 ± 0.02 40.7 ± 0.12
Active Bias 0.616 ± 0.03 7.07 ± 0.04 27.9 ± 0.11 0.679 ± 0.02 14.2 ± 0.25 42.9 ± 0.05
Recency Bias 0.490 ± 0.02 6.60 ± 0.02 27.1 ± 0.19 0.986 ± 0.06 13.2 ± 0.11 38.7 ± 0.11

Table 2: The best test errors (%) of four batch selection strategies using ResNet.

Optimizer Momentum in Figure 10 (Appendix C.2) SGD in Figure 11 (Appendix C.3)
Method MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100
Random Batch 0.636 ± 0.04 10.2 ± 0.12 33.2 ± 0.07 1.16 ± 0.03 12.7 ± 0.09 40.1 ± 0.16
Online Batch 0.666 ± 0.05 10.1 ± 0.05 33.4 ± 0.01 0.890 ± 0.03 12.2 ± 0.08 40.7 ± 0.09
Active Bias 0.613 ± 0.04 10.6 ± 0.08 34.2 ± 0.07 0.804 ± 0.01 13.5 ± 0.07 45.6 ± 0.07
Recency Bias 0.607 ± 0.01 9.79 ± 0.04 32.4 ± 0.04 0.972 ± 0.03 11.6 ± 0.09 38.9 ± 0.14

2http://yann.lecun.com/exdb/mnist
3https://www.cs.toronto.edu/~kriz/cifar.html
4Online Batch also used the same decaying selection pressure value.
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Figure 4: Convergence curves of four batch selection strategies using DenseNet with momentum.

5.3 TASK II: FINE-TUNING

Experiment Setting: We prepared DenseNet (L=121, k=32) previously trained on ImageNet (Deng
et al., 2009) and then fine-tuned the network on two benchmark datasets: MIT-67 (67 classes)5,
classification of indoor scenes (Quattoni & Torralba, 2009), and Food-100 (100 classes)6, classifi-
cation of popular foods in Japan (Kawano & Yanai, 2014). After replacing the last classification
layer, the network was trained end-to-end for 50 epochs with a batch size 32 and a constant learning
rate 2 × 10−4. Data augmentation was not applied here. The other configurations were the same
as those in Section 5.2.

Results on Test Error: Figure 5 shows the convergence curves of training loss and test error for
the fine-tuning task on MIT-67 and Food-100. Overall, all convergence curves showed similar trends
to those of the classification task in Figure 4. Only Recency Bias converged faster than Random
Batch in both training loss and test error. Online Batch converged the fastest in training loss, but
its test error was rather higher than Random Batch owing to the overfitting. Active Bias converged the

5http://web.mit.edu/torralba/www/indoor.html
6http://foodcam.mobi/dataset100.html
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Figure 5: Convergence curves for fine-tuning on two benchmark datasets.

Table 3: Recency Bias’s reduction in training time over other batch selection strategies.

Method MIT-67 FOOD-100
Random Batch (5, 218− 3, 936)/5, 218× 100 = 24.6% (7, 263− 5, 365)/7, 263× 100 = 26.1%
Online Batch (6, 079− 3, 823)/6, 079× 100 = 37.1% (8, 333− 3, 685)/8, 333× 100 = 55.8%
Active Bias (5, 738− 3, 032)/5, 738× 100 = 47.2% (7, 933− 3, 227)/7, 933× 100 = 59.3%

slowest in both training loss and test error. Quantitatively, compared with Random Batch, Recency
Bias reduced the test error by 2.88% and 1.81% in MIT-67 and Food-100, respectively.

Results on Training Time: Moreover, to assess the performance gain in training time, we computed
the reduction in the training time taken to reach the same error. For example, in Figure 5(b), the
best test error of 28.8% achieved in 5, 218 seconds by Random Batch could be achieved only in
3, 936 seconds by Recency Bias; thus, Recency Bias improved the training time by 24.6%. Table
3 summarizes the reduction in the training time of Recency Bias over three other batch selection
strategies. Notably, Recency Bias improved the training time by 24.6%–47.2% and 26.1%–59.3% in
fine-tuning MIT-67 and FOOD-100 datasets, respectively.

5.4 ABLATION STUDY ON SELECTION PRESSURE

For an ablation study on the selection pressure, we trained DenseNet (L=40, k=12) on two benchmark
datasets using Recency Bias with four different decaying strategies: se : 10→ 10, se : 100→ 100,
se : 10 → 1, and se : 100 → 1. The first two strategies used different initial selection pressures
without decaying, but the remaining strategies exponentially decayed their initial selection pressures
to 1. We used a momentum optimizer and the other experimental configurations were the same as
those in Section 5.2.

Figure 6 shows the convergence curves of Recency Bias using the different decaying strategies along
with that of Random Batch. Generally, the two strategies without decaying (i.e., se : 10 → 10,
se : 100→ 100) showed much faster convergence speed in training loss compared with those with
decaying (i.e., se : 10 → 1, se : 100 → 1). However, as mentioned earlier in Section 3.2, the
two strategies without decaying exacerbated the overfitting problem because they only used the
training samples classified as highly uncertain. Accordingly, their test errors were rather higher than
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Figure 6: Ablation study on the effect of the selection pressure.

that of Random Batch in CIFAR-100 dataset. On the other hand, the two strategies with decaying
converged faster than Random Batch in both training loss and test error in all datasets because they
exploited more diverse training samples by exponentially decaying the selection pressure. Thus, these
observations empirically prove that decaying the selection pressure is an effective way to alleviate the
overfitting problem at the later stage of training.

6 CONCLUSION

In this paper, we presented a novel adaptive batch selection algorithm called Recency Bias that
emphasizes predictively uncertain samples for accelerating the training of neural networks. Toward
this goal, the predictive uncertainty of each sample is evaluated using its recent label predictions
managed by a sliding window of a fixed size. Then, uncertain samples at the moment are selected with
high probability for the next mini-batch. We conducted extensive experiments on both classification
and fine-tuning tasks. The results showed that Recency Bias is effective in reducing the training
time as well as the best test error. It was worthwhile to note that using all historical observations to
estimate the uncertainty has the side effect of slowing down the training process. Overall, a merger of
uncertain samples and sliding windows greatly improves the power of adaptive batch selection.
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A HYPERPARAMETER SELECTION

Recency Bias receives the two hyperparameters: (i) the initial selection pressure se0 that determines
the sampling probability gap between the most and the least uncertain samples and (ii) the window
size q that determines how many recent label predictions are involved in predicting the uncertainty.
To decide the best hyperparameters, we trained ResNet (L=50) on CIFAR-10 and CIFAR-100 with a
momentum optimizer. For hyperparameters selection, the two hyperparameters were chosen in a grid
se0 ∈ {1, 10, 100, 1000} and q ∈ {5, 10, 15}.
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Figure 7: Grid search on CIFAR-10 and CIFAR-100 datasets using ResNet.

Figure 7 shows the test errors of Recency Bias obtained by the grid search on the two datasets.
Regarding the initial selection pressure se0 , the lowest test error was typically achieved when the
se0 value was 100. As for the window size q, the test error was almost always the lowest when the q
value was 10. Similar trends were observed for the other combinations of a neural network and an
optimizer. Therefore, in all experiments, we set se0 to be 100 and q to be 10.

B EXPERIMENT USING TINY-IMAGENET DATASET

For a larger-scale experiment, we repeated the image classification task on Tiny-ImageNet (200
classes), a subset of ImageNet (Krizhevsky et al., 2012), with 100, 000 training and 10, 000 validation
images. Because no test set exists, we used the validation set as the test data. For Tiny-ImageNet
dataset, we trained the network for 80, 000 iterations and used an initial learning rate of 0.1, which was
divided by 10 at 50% and 75% of the total number of training iterations. The remaining experimental
configurations were the same as those in Section 5.2.
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Figure 8: Convergence curves of four batch selection strategies using DenseNet with momentum.

Table 4: The best test errors (%) of four batch selection strategies using DenseNet.

Method Random Batch Online Batch Active Bias Recency Bias
Tiny-ImageNet 51.6 ± 0.26 52.5 ± 0.19 52.2± 0.52 51.0 ± 0.34
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Figure 8 shows the convergence curves of training loss and test error using four batch selection
strategies on Tiny-ImageNet, where the best test errors are detailed in Table 4. Again, only Recency
Bias converged faster than Random Batch in both training loss and test error. On the other hand,
although Online Batch showed the fastest convergence in training loss, its test error was worse than
that of Random Batch because of the overfitting to hard training samples. Similarly, the test error of
Active Bias was also worse than that of Random Batch because of the side effect of slowing down the
convergence speed of training. In summary, Recency Bias achieved the test error relatively lower by
1.16% than Random Batch, 2.86% than Online Batch, and 2.30% than Active Bias.

C GENERALIZATION OF Recency Bias

C.1 CONVERGENCE CURVES USING DENSENET WITH SGD

Figure 9 shows the convergence curves of training loss and test error for four batch selection strategies
using DenseNet and an SGD optimizer, which corresponds to the right side of Table 1.
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Figure 9: Convergence curves of four batch selection strategies using DenseNet with SGD.
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C.2 CONVERGENCE CURVES USING RESNET WITH MOMENTUM

Figure 10 shows the convergence curves of training loss and test error for four batch selection
strategies using ResNet and a momentum optimizer, which corresponds to the left side of Table 2.
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Figure 10: Convergence curves of four batch selection strategies using ResNet with momentum.
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C.3 CONVERGENCE CURVES USING RESNET WITH SGD

Figure 11 shows the convergence curves of training loss and test error for four batch selection
strategies using ResNet and an SGD optimizer, which corresponds to the right side of Table 2.
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Figure 11: Convergence curves of four batch selection strategies using ResNet with SGD.
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