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ABSTRACT

Noisy labels are very common in real-world training data, which lead to poor
generalization on test data because of overfitting to the noisy labels. In this paper,
we claim that such overfitting can be avoided by “early stopping” training a deep
neural network before the noisy labels are severely memorized. Then, we resume
training the early stopped network using a “maximal safe set,” which maintains a
collection of almost certainly true-labeled samples at each epoch since the early
stop point. Putting them all together, our novel two-phase training method, called
Prestopping, realizes noise-free training under any type of label noise for practical
use. Extensive experiments using four image benchmark data sets verify that our
method significantly outperforms four state-of-the-art methods in test error by
0.4–8.2 percent points under existence of real-world noise.

1 INTRODUCTION

By virtue of massive labeled data, deep neural networks (DNNs) have achieved a remarkable success
in numerous machine learning tasks, such as image classification (Krizhevsky et al., 2012) and object
detection (Redmon et al., 2016). However, owing to their high capacity to memorize any label noise,
the generalization performance of DNNs drastically falls down when noisy labels are contained in the
training data (Jiang et al., 2018; Han et al., 2018; Song et al., 2019). In particular, Zhang et al. (2017)
have shown that a standard convolutional neural network (CNN) can easily fit the entire training
data with any ratio of noisy labels and eventually leads to very poor generalization on the test data.
Thus, it is challenging to train a DNN robustly even when noisy labels exist in the training data.

A popular approach to dealing with noisy labels is “sample selection” that selects true-labeled
samples from the noisy training data (Jiang et al., 2018; Ren et al., 2018; Han et al., 2018; Yu
et al., 2019; Song et al., 2019). Here, (1−τ)×100% of small-loss training samples are treated as
true-labeled ones and then used to update a DNN robustly, where τ ∈ [0, 1] is a noise rate. This
loss-based separation is well known to be justified by the memorization effect (Arpit et al., 2017)
that DNNs tend to learn easy patterns first and then gradually memorize all samples. In practice,
Han et al. (2018) empirically proved that training on such small-loss samples yields a much better
generalization performance under artificial noise scenarios.

Despite its great success, Song et al. (2019) have recently argued that the performance of the loss-
based separation becomes considerably worse depending on the type of label noise. For instance,

True-labeled sample

False-labeled sample

True-labeled sample

False-labeled sample

True-labeled sample

False-labeled sample

-4-6 -2 0 2 4

Loss (log-scale)

-4-6 -2 0 2 4 -1-2 -0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

Loss (log-scale) Loss (log-scale)

(1- )    100% small-loss𝜏 × (1- )    100% small-loss𝜏 × (1- )    100% small-loss𝜏 ×

0.0

0.2

0.4

0.6

0.8

1.0

(a) Symmetric Noise. (b) Pair Noise. (c) Real-World Noise.

Figure 1: Loss distributions at the training accuracy of 50% using DenseNet (L=40, k=12): (a) and (b)
show those on CIFAR-100 with two types of synthetic noises of 40%, where “symmetric noise” flips
a true label into other labels with equal probability, and “pair noise” flips a true label into a specific
false label; (c) shows those on FOOD-101N (Lee et al., 2018) with real-world noise of 18.4%.

1



Under review as a conference paper at ICLR 2020

0%

25%

50%

75%

100%

M
em

o
ri

za
ti

o
n

 R
at

io

0%

25%

50%

75%

100%

M
em

o
ri

za
ti

o
n

 R
at

io

30%

40%

50%

60%

70%

T
es

t 
E

rr
o

r

30%

40%

50%

60%

T
es

t 
E

rr
o

r

0%

25%

50%

75%

100%

M
em

o
ri

za
ti

o
n

 R
at

io

0%

25%

50%

75%

100%

M
em

o
ri

za
ti

o
n

 R
at

io
0 12040 80

0 12040 80

0 12040 80

0 12040 80

Epochs

Epochs

Epochs

Epochs

Error-prone

Period
Symmetric

Noise

Pair

Noise

True-labeled sample False-labeled sample Default Prestopping

Error-prone

Period

Early Stop

0 12040 80

0 12040 80

Epochs

Epochs

Early Stop

Max ratio of true-labeled samples

Max ratio of true-labeled samples

Generalization

Improvement

Generalization

Improvement

(a) Default. (b) Prestopping. (c) Test Error Convergence.

Figure 2: Key idea of Prestopping: (a) and (b) show how many true-labeled and false-labeled samples
are memorized when training DenseNet (L=40, k=12)1on CIFAR-100 with two types of synthetic
noises of 40%. “Default” is a standard training method, and “Prestopping” is our proposed one; (c)
contrasts the convergence of test error between the two methods.

in symmetric noise (Figure 1(a)), the loss-based approach well separates true-labeled samples from
false-labeled ones because many true-labeled ones exhibit smaller loss than false-labeled ones. On
the other hand, in pair and real-world noises (Figures 1(b) and 1(c)), many false-labeled samples
are misclassified as true-labeled ones because the two distributions overlap closely; this overlap
confirms that the loss-based separation still accumulates severe label noise from many misclassified
cases, especially in real-world noise or pair noise which is regarded as more realistic than symmetric
noise (Ren et al., 2018; Yu et al., 2019). This limitation definitely calls for a new approach that
supports any type of label noise for practical use.

In this regard, as shown in Figure 2(a), we thoroughly investigated the memorization effect of a DNN
on the two types of noises and found two interesting properties as follows:

• A noise type affects the memorization rate for false-labeled samples: The memorization rate
for false-labeled samples is faster with pair noise than with symmetric noise. That is, the red
portion in Figure 2(a) starts to appear earlier in pair noise than in symmetric noise. This observation
supports the significant overlap of true-labeled and false-labeled samples in Figure 1(b). Thus, the
loss-based separation performs well only if the false-labeled samples are scarcely learned at an
early stage of training, as in symmetric noise.

• There is a period where the network accumulates the label noise severely: Regardless of the
noise type, the memorization of false-labeled samples significantly increases at a late stage of
training. That is, the red portion in Figure 2(a) increases rapidly after the dashed line, in which
we call the error-prone period. (See Section 3.2.1 for the details of estimating the error-prone
period). We note that the training in that period brings no benefit. The generalization performance
of “Default” deteriorates sharply, as shown in Figure 2(c).

Based on these findings, we contend that eliminating this error-prone period should make a profound
impact on robust optimization.

In this paper, we propose a novel approach, called Prestopping, that achieves noise-free training
based on the early stopping mechanism. Because there is no benefit from the error-prone period,
Prestopping early stops training before that period begins. This early stopping effectively prevents
a network from overfitting to false-labeled samples, and the samples memorized until that point
are added to a maximal safe set because they are true-labeled (i.e., blue in Figure 2(a)) with high
precision. Then, Prestopping resumes training the early stopped network only using the maximal safe
set in support of noise-free training. Notably, our proposed merger of “early stopping” and “learning
from the maximal safe set” indeed eliminates the error-prone period from the training process, as
shown in Figure 2(b). As a result, the generalization performance of a DNN remarkably improves in
both noise types, as shown in Figure 2(c).

1The learning rate, as usual, was decayed at 50% and 75% of the total number of training epochs.
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To validate the superiority of Prestopping, DenseNet (Huang et al., 2017) and VGG-19 (Simonyan &
Zisserman, 2015) were trained on both simulated and real-world noisy data sets, including CIFAR-10,
CIFAR-100, ANIMAL-10N, and Food-101N. Compared with four state-of-the-art methods,
Prestopping significantly improved test error by up to 18.1pp2 in a wide range of noise rates.

2 RELATED WORK

Numerous studies have been conducted to address the problem of learning from noisy labels. A
typical method is using “loss correction” that estimates the label transition matrix and corrects the
loss of the samples in the mini-batch. Bootstrap (Reed et al., 2015) updates the network based on their
own reconstruction-based objective with the notion of perceptual consistency. F-correction (Patrini
et al., 2017) reweights the forward or backward loss of the training samples based on the label
transition matrix estimated by a pre-trained normal network. R3: D2L (Ma et al., 2018) employs a
simple measure called local intrinsic dimensionality and then uses it to modify the forward loss in
order to reduce the effects of false-labeled samples in learning. Active Bias (Chang et al., 2017)
heuristically evaluates uncertain samples with high prediction variances and then gives higher
weights to their backward losses. Ren et al. (2018) include small clean validation data into the
training data and re-weight the backward loss of the mini-batch samples such that the updated
gradient minimizes the loss of those validation data. However, this family of methods is known to
accumulate severe noise from the false correction, especially when the number of classes or the
number of false-labeled samples is large (Han et al., 2018; Yu et al., 2019).

To be free from the false correction, many recent researches have adopted “sample selection” that
trains the network on selected samples. These methods attempt to select true-labeled samples from
the noisy training data for use in updating the network. Decouple (Malach & Shalev-Shwartz, 2017)
maintains two networks simultaneously and updates the models only using the samples that have
different label predictions from these two networks. R3: Wang et al. (2018) proposed an iterative
learning framework that learns deep discriminative features from well-classified noisy samples based
on the local outlier factor algorithm (Breunig et al., 2000). MentorNet (Jiang et al., 2018) introduces
a collaborative learning paradigm that a pre-trained mentor network guides the training of a student
network. Based on the small-loss criteria, the mentor network provides the student network with the
samples whose label is probably correct. Co-teaching (Han et al., 2018) and Co-teaching+ (Yu et al.,
2019) also maintain two networks, but each network selects a certain number of small-loss samples
and feeds them to its peer network for further training. Compared with Co-teaching, Co-teaching+
further employs the disagreement strategy of Decouple. R1: ITLM (Shen & Sanghavi, 2019) iteratively
minimizes the trimmed loss by alternating between selecting a fraction of small-loss samples at
current moment and retraining the network using them. INCV (Chen et al., 2019) randomly divides the
noisy training data and then utilizes cross-validation to classify true-labeled samples with removing
large-loss samples at each iteration. However, their general philosophy of selecting small-loss
samples works well only in some cases such as symmetric noise. RA: Differently to this family, we
exploit the maximal safe set initially derived from the memorized samples at the early stop point.

Most recently, a hybrid of “loss correction” and “sample selection” approaches was proposed by
Song et al. (2019). Their algorithm called SELFIE trains the network on selectively refurbished
false-labeled samples together with small-loss samples. SELFIE not only minimizes the number of
falsely corrected samples but also exploits full exploration of the entire training data. Its component
for sample selection can be replaced by our method to further improve the performance.
RA: For the completeness of the survey, we mention the work that provides an empirical or a theoretical
analysis on why early stopping helps learn with the label noise. Oymak et al. (2019) and Hendrycks
et al. (2019) have argued that early stopping is a suitable strategy because the network eventually
begins to memorize all noisy samples if it is trained too long. Li et al. (2019) have theoretically proved
that the network memorizes false-labeled samples at a later stage of training, and thus claimed that the
early stopped network is fairly robust to the label noise. However, they did not mention how to take
advantage of the early stopped network for further training. Please note that Prestopping adopts early
stopping to derive a seed for the maximal safe set, which is exploited to achieve noise-free training
during the remaining learning period. Thus, our novelty lies in the “merger” of early stopping and
learning from the maximal safe set.

2A pp is the abbreviation of a percentage point.
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3 ROBUST TRAINING VIA Prestopping

3.1 PRELIMINARIES

A k-class classification problem requires the training data D = {xi, y∗i }Ni=1, where xi is a sample
and y∗i ∈ {1, 2, . . . , k} is its true label. Following the label noise scenario, let’s consider the noisy
training data D̃ = {xi, ỹi}Ni=1, where ỹi ∈ {1, 2, . . . , k} is a noisy label which may not be true. Then,
in conventional training, when a mini-batch Bt = {xi, ỹi}bi=1 consists of b samples randomly drawn
from the noisy training data D̃ at time t, the network parameter θt is updated in the descent direction of
the expected loss on the mini-batch Bt as in Eq. (1), where α is a learning rate and L is a loss function.

θt+1 = θt − α∇
( 1

|Bt|
∑
x∈Bt

L(x, ỹ; θt)
)

(1)

As for the notion of network memorization, a sample x is defined to be memorized by a network if
the majority of its recent predictions at time t coincide with the given label, as in Definition 3.1.

Definition 3.1. (Memorized Sample) Let ŷt = Φ(x|θt) be the predicted label of a sample x at time
t and Ht

x(q) = {ŷt1 , ŷt2 , . . . , ŷtq} be the history of the sample x that stores the predicted labels of
the recent q times, where Φ is a neural network. Next, P (y|x, t; q) is formulated such that it provides
the probability of the label y ∈ {1, 2, ..., k} estimated as the label of the sample x based on Ht

x as in
Eq. (2), where [·] is the Iverson bracket3.

P (y|x, t; q) =

∑
ŷ∈Ht

x(q)
[ŷ = y]

|Ht
x(q)|

(2)

Then, the sample x with its noisy label ỹ is a memorized sample of the network with the parameter θt
at time t if the condition in Eq. (3) holds.

argmaxyP (y|x, t; q) = ỹ (3)

3.2 TWO MAIN COMPONENTS AND PHASES

The key idea of Prestopping is learning from a maximal safe set with an early stopped network. Thus,
the two components of “early stopping” and “learning from the maximal safe set” respectively raise
the questions about (Q1) when is the best point to early stop the training process? and (Q2) what
is the maximal safe set to enable noise-free training during the remaining period?

3.2.1 QUESTION 1: BEST POINT TO EARLY STOP

It is desirable to stop the training process at the point when the network (i) not only accumulates little
noise from the false-labeled samples, (ii) but also acquires sufficient information from the true-labeled
ones. Intuitively speaking, as indicated by the dashed line in Figure 3(a), the best stop point is the
moment when label precision and label recall in Definition 3.2 cross with each other because it is the
best trade-off between the two metrics. The period beyond this point is what we call the error-prone
period because label precision starts decreasing rapidly.

If the ground truth y∗ of a noisy label ỹ is known, the best stop point can be easily calculated by these
metrics.

Definition 3.2. (Label Metrics) LetMt ⊆ D̃ be a set of memorized samples at time t. Then, label
precision (LP) and recall (LR) (Han et al., 2018) are formulated as Eq. (4).

LP =
|{(x, ỹ) ∈Mt : ỹ = y∗}|

|Mt|
, LR =

|{(x, ỹ) ∈Mt : ỹ = y∗}|
|{(x, ỹ) ∈ D̃ : ỹ = y∗}|

(4)

However, it is not straightforward to find the exact best stop point without the ground-truth labels.
Hence, we present two practical heuristics of approximating the best stop point with minimal
supervision. These two heuristics require either a small clean validation set or a noise rate τ for
the minimal supervision, where they are widely regarded as available in many studies (Veit et al.,
2017; Ren et al., 2018; Han et al., 2018; Yu et al., 2019; Song et al., 2019).

3The Iverson bracket [P ] returns 1 if P is true; 0 otherwise.
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Figure 3: Early stop point estimated by ideal and heuristic methods when training DenseNet (L=40,
k=12) on CIFAR-100 with two types of synthetic noises of 40%: (a) and (b) show the stop point
derived by the ground-truth labels and the clean validation set, respectively.

• Validation Heuristic: If a clean validation set is given, we stop training the network when the
validation error is the lowest. It is reasonable to expect that the lowest validation error is achieved
near the cross point; after that point (i.e., in the error-prone period), the validation error likely
increases because the network will be overfitted to the false-labeled samples. As shown in Figure
3(b), the estimated stop point is fairly close to the best stop point in both noise types.

• Noise-Rate Heuristic: If a noise rate τ is known, we stop training the network when the training
error reaches τ×100%. If we assume that all true-labeled samples of (1−τ)×100% are memorized
before any false-labeled samples of τ×100% (Arpit et al., 2017), this point indicates the cross
point of label precision and label recall with their values to be all 1. This heuristic tends to perform
worse than the validation heuristic because the assumption does not hold perfectly. We further
discuss its quality in Appendix A.

3.2.2 QUESTION 2: CRITERION OF A MAXIMAL SAFE SET

Because the network is early stopped at the (estimated) best point, the set of memorized samples
at that time is quantitatively sufficient and qualitatively less noisy. That is, it can be used as a safe
and effective training set to resume the training of the early stopped network without accumulating
the label noise. Based on this intuition, we define a maximal safe set in Definition 3.3, which is
initially derived from the memorized samples at the early stop point and gradually increased as well
as purified along with the network’s learning progress. In each mini-batch Bt, the network parameter
θt is updated using the current maximal safe set St as in Eq. (5), and subsequently a more refined
maximal safe set St+1 is derived by the updated network.

Definition 3.3. (Maximal Safe Set) Let tstop be the early stop point. A maximal safe set St at time
t is defined to be the set of the memorized samples of the network Φ(x; θt) when t ≥ tstop. The
network Φ(x; θt) at t = tstop is the early stopped network, i.e., Ststop =Mtstop , and the network
Φ(x; θt) at t > tstop is obtained by Eq. (5).

θt+1 = θt − α∇
( 1

|B′
t|
∑
x∈B′

t

L(x, ỹ; θt)
)

B
′

t = {x|x ∈ St ∩ Bt}

(5)

Figure 4 shows the main advantage of learning from the maximal safe set during the remaining
period. Even when the noise rate is quite high (e.g., 40%), this learning paradigm exploits most of
true-labeled samples, in considering that the label recall of the maximal safe set was maintained
very high in both CIFAR data sets regardless of the noise type. The label recall was maintained over
0.81 in symmetric noise and over 0.84 in pair noise even in CIFAR-100 with pair noise after the
80th epoch. Further, by excluding unsafe samples that might accumulate the label noise, the label
precision of the maximal safe set tended to increase rapidly at the beginning of the remaining period;
it was maintained over 0.98 in symmetric noise and over 0.94 even in CIFAR-100 with pair noise
after the 80th epoch, which could not be realized by the small-loss trick (Han et al., 2018; Song et al.,
2019; Shen & Sanghavi, 2019; Chen et al., 2019). R2:In Section 5.3, we have empirically verified
that the maximal safe set is superior to the selected samples based on the small-loss trick.
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Figure 4: Label precision and label recall of the maximal safe set during the remaining epochs when
training DenseNet (L=40, k=12) on CIFAR data sets with two types of synthetic noises of 40%.

Algorithm 1 Prestopping with Validation Heuristic

INPUT: D̃: data, V: clean validation data, epochs: total number of epochs, q: history length
OUTPUT: θt: network parameters

1: t← 1; θt ← Initialize the network parameter;
2: θtstop ← ∅; /* The parameter of the stopped network */
3: for i = 1 to epochs do /* Phase I: Learning from a noisy training data set */
4: for j = 1 to |D̃|/|Bt| do
5: Draw a mini-batch Bt from D̃;
6: θt+1 = θt − α∇

(
1
|Bt|

∑
x∈Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (1) */

7: val_err ← Get_Validation_Error(V , θt); /* A validation error at time t */
8: if isMin(val_err) then θtstop ← θt; /*Save the network when val_error is the lowest*/
9: t← t+ 1;

10: θt ← θtstop ; /* Load the network stopped at tstop */
11: for i = stop_epoch to epochs do /* Phase II: Learning from a maximal safe set */
12: for j = 1 to |D̃|/|Bt| do
13: Draw a mini-batch Bt from D̃;
14: St ← {x|argmaxyP (y|x, t; q) = ỹ}; /* A maximal safe set in Definition 3.3 */
15: θt+1 = θt − α∇

(
1

|St∩Bt|
∑
x∈St∩Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (5) */

16: t← t+ 1;
17: return θt, St;

4 ALGORITHM DESCRIPTION

4.1 MAIN ALGORITHM: Prestopping WITH VALIDATION HEURISTIC

Algorithm 1 describes the overall procedure of Prestopping with the validation heuristic, which is
self-explanatory. First, the network is trained on the noisy training data D̃ in the default manner
(Lines 3–6). During this first phase, the validation data V is used to evaluate the best point for the
early stop, and the network parameter is saved at the time of the lowest validation error (Lines 7–8).
Then, during the second phase, Prestopping continues to train the early stopped network for the
remaining learning period (Lines 10–12). Here, the maximal safe set St at the current moment is
retrieved, and each sample x ∈ St ∩ Bt is used to update the network parameter. The mini-batch
samples not included in St are no longer used in pursuit of robust learning (Lines 14–15).

4.2 COLLABORATION WITH SAMPLE REFURBISHMENT: Prestopping+

To further improve the performance of Prestopping, we introduce Prestopping+ that employs the
concept of selectively refurbishing false-labeled samples in SELFIE (Song et al., 2019). In detail,
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the final maximal safe set Stend
is retrieved from the first run of Prestopping, and then it is used as

the true-labeled set for the next run of SELFIE with initializing the network parameter. Following the
update principle of SELFIE, the modified gradient update rule in Eq. (6) is used to train the network.
For each sample x in the mini-batch Bt, the given label ỹ of x is selectively refurbished into yrefurb
if it can be corrected with high precision. However, the mini-batch samples included in Stend

are
omitted from the refurbishment because their label is already highly credible. Then, the mini-batch
samples in the refurbished setRt are provided to update the network together with those in the final
maximal safe set Stend

. Refer to Song et al. (2019)’s work for more details.

θt+1 = θt−α∇
( 1

|{x ∈ Bt|x ∈ Rt ∪ Stend
}|
( ∑
x∈Rt∪Sc

tend

L(x, yrefurb; θt)+
∑

x∈Stend

L(x, ỹ; θt)
))

(6)

5 EVALUATION

Data Sets: To verify the superiority of Prestopping, we performed an image classification task on four
benchmark data sets: CIFAR-10 (10 classes)4 and CIFAR-100 (100 classes)4, a subset of 80 million
categorical images (Krizhevsky et al., 2014); ANIMAL-10N (10 classes)5, a real-world noisy data of
human-labeled online images for confusing animals (Song et al., 2019); FOOD-101N (101 classes)6,
a real-world noisy data of crawled food images annotated by their search keywords in the FOOD-101
taxonomy (Bossard et al., 2014; Lee et al., 2018). We did not apply any data augmentation.

Noise Injection: As all labels in the CIFAR data sets are clean, we artificially corrupted the labels in
these data sets using typical methods for the evaluation of synthetic noises (Ren et al., 2018; Han et al.,
2018; Yu et al., 2019). For k classes, we applied the label transition matrix T: (i) symmetric noise:
∀j 6=iTij = τ

k−1 and (ii) pair noise: ∃j 6=iTij = τ ∧ ∀k 6=i,k 6=jTik = 0, where Tij is the probability of
the true label i being flipped to the corrupted label j and τ is the noise rate. For the pair noise, the
corrupted label j was set to be the next label of the true label i following the recent work (Yu et al.,
2019; Song et al., 2019). To evaluate the robustness on varying noise rates from light noise to heavy
noise, we tested five noise rates τ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. In contrast, we did not inject any label
noise into ANIMAL-10N and FOOD-101N7 because they contain real label noise estimated at 8.0%
and 18.4% respectively (Lee et al., 2018; Song et al., 2019).

Clean Validation Data: Recall that a clean validation set is needed for the validation heuristic in
Section 3.2.1. As for ANIMAL-10N and Food-101N, we did exploit their own clean validation
data; 5, 000 and 3, 824 images, respectively, were included in their validation set. However, as no
validation data exists for the CIFAR data sets, we constructed a small clean validation set by randomly
selecting 1, 000 images from the original training data of 50, 000 images. Please note that the noise
injection process was applied to only the rest 49, 000 training images.

Networks and Hyperparameters: For the classification task, we trained DenseNet (L=40, k=12)
and VGG-19 with a momentum optimizer. Specifically, we used a momentum of 0.9, a batch size of
128, a dropout of 0.1, and batch normalization. Prestopping has only one unique hyperparameter,
the history length q, and it was set to be 10, which was the best value found by the grid search (see
Appendix B.1 for details). The hyperparameters used in the compared algorithms were favorably
set to be the best values presented in the original papers. As for the training schedule, we trained
the network for 120 epochs and used an initial learning rate 0.1, which was divided by 5 at 50% and
75% of the total number of epochs.

Algorithms: We compared Prestopping and Prestopping+ with not only a baseline algorithm but also
the four state-of-the-art robust training algorithms: Default trains the network without any processing
for the label noise; Active Bias re-weights the backward loss of training samples based on their
prediction variance; Co-teaching selects a certain number of small-loss samples to train the network
based on the co-training (Blum & Mitchell, 1998); Co-teaching+ is similar to Co-teaching, but its
small-loss samples are selected from the disagreement set; SELFIE selectively refurbishes noisy
samples and exploits them together with the small-loss samples. All the algorithms were implemented

4https://www.cs.toronto.edu/~kriz/cifar.html
5https://dm.kaist.ac.kr/datasets/animal-10n
6https://kuanghuei.github.io/Food-101N
7In FOOD-101N, we used a subset of the entire training data marked with whether the label is correct or not.
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Figure 5: Best test errors using two CNNs on two data sets with varying pair noise rates.
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Figure 6: Best test errors using two CNNs on two data sets with varying symmetric noise rates.

using TensorFlow 1.8.0 and executed using 16 NVIDIA Titan Volta GPUs. For reproducibility, we
provide the source code at https://bit.ly/2l3g9Jx. R2:In support of reliable evaluation, we
repeated every task thrice and reported the average and standard error of the best test error, which
was evaluated using the network at the time of the lowest validation error. Thus, the clean validation
set was used to select the best model in all algorithms during the training procedure.

5.1 PERFORMANCE COMPARISON

Figures 5 and 6 show the test error of the seven training methods using two CNNs on two data sets with
varying pair and symmetric noise rates, respectively. The results of Prestopping and Prestopping+
in Section 5 were obtained using the validation heuristic. See Appendix A for the results of the
noise-rate heuristic. In order to highlight the improvement of Prestopping and Prestopping+ over the
other methods, their lines are dark colored. Figure 7 shows the test error on two real-world noisy
data sets with different noise rates. The best test errors are detailed in Tables 1 and 2 of Appendix C.
RA: In addition, more experimental results on Tiny-ImageNet and Clothings (Xiao et al., 2015) data
sets are discussed in Appendix B.2 and B.3.

5.1.1 RESULT WITH PAIR NOISE (FIGURE 5)
The performance trend in the two network architectures was similar with each other. In general,
either Prestopping or Prestopping+ achieved the lowest test error in a wide range of noise rates on
both CIFAR data sets. With help of the refurbished samples, Prestopping+ achieved a slightly better
performance than Prestopping in CIFAR-10. However, an opposite trend was observed in CIFAR-100;
this phenomenon was due to a large number of falsely corrected labels under the pair noise, especially
when the number of classes is large (see Appendix B.4 for details). Although SELFIE achieved
relatively lower test error among the existing methods, the test error of SELFIE was still worse than
that of Prestopping. Co-teaching did not work well because many false-labeled samples were misclas-
sified as clean ones; Co-teaching+ was shown to be even worse than Co-teaching despite it being an
improvement of Co-teaching (see Section 5.4 for details). The test error of Active Bias was not com-
parable to that of Prestopping. The performance improvement of ours over the others increased as the
label noise became heavier. In particular, at a heavy noise rate of 40%, Prestopping or Prestopping+
significantly reduced the absolute test error by 2.2pp–18.1pp compared with the other robust methods.

5.1.2 RESULT WITH SYMMETRIC NOISE (FIGURE 6)
Similar to the pair noise, both Prestopping and Prestopping+ generally outperformed the other
methods. In particular, the performance of Prestopping+ was the best at any noise rate on all data
sets, because the synergistic effect was higher in symmetric noise than in pair noise. Quantitatively,
at a heavy noise rate of 40%, our methods showed significant reduction in the absolute test error
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Figure 7: Best test errors using two CNNs on two data sets with real-world noises.
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Figure 8: Convergence curves of DenseNet (L=40, k=12) on CIFAR-10 with a noise rate of 40%.

by 0.3pp–17.5pp compared with the other robust methods. Unlike the pair noise, Co-teaching and
SELFIE achieved a low test error comparable to Prestopping because true-labeled samples could be
well separated from false-labeled ones by their small-loss criteria; hence, the dominance between
Co-teaching and Active Bias was reversed so that the former slightly outperformed the latter.

5.1.3 RESULT WITH REAL-WORLD NOISE (FIGURE 7)
Both Prestopping and Prestopping+ maintained their dominance over the other methods under
real-world label noise as well. Prestopping+ achieved the lowest test error when the number of
classes is small (e.g., ANIMAL-10N), while Prestopping was the best when the number of classes
is large (e.g., FOOD-101N) owing to the difficulty in label correction of Prestopping+. (Thus,
practitioners are recommended to choose between Prestopping and Prestopping+ depending on
the number of classes in hand.) Specifically, they improved the absolute test error by 0.4pp–4.6pp
and 0.5pp–8.2pp in ANIMAL-10N and FOOD-101N, respectively. Therefore, we believe that the
advantage of our methods is unquestionable even in the real-world scenarios.

5.2 CONVERGENCE ANALYSIS ON CLEAN VALIDATION DATA (FIGURE 8)

To verify that the error-prone period is eliminated, we plot the convergence of validation error for
the seven training methods. The validation error of Default, Active Bias, and Co-teaching+ first
reached their lowest values before the error-prone period, and then increased rapidly in the error-prone
period. On the other hand, the remaining methods kept reducing the validation error even in that
period. Notably, Prestopping+ achieved the lowest validation error at the end, owing to the successful
merger of the advanced sample selection in Prestopping and the sample refurbishment in SELFIE. In
addition, the performance of Prestopping was shown to be almost the same as and comparable to
that of Prestopping+ in pair and symmetric noises, respectively. The validation error of SELFIE also
converged faster than those of the other existing methods, but it was still inferior to Prestopping+.
Thus, these results confirm that our two methods effectively overcome the error-prone period.

5.3 ACCURACY OF SAMPLE SELECTION (FIGURE 9)
RA: Figure 9 shows the average accuracy of sample selection for two different selection strategies
using DenseNet. Average accuracy is defined as the average ratio of the true-labeled samples in
selected mini-batch samples during the training process. As mentioned earlier in Section 1, because
the loss distribution of false-labeled samples was overlapped closely with that of true-labeled ones in
pair noise, the average accuracy of the small-loss trick was worse with pair noise than with symmetric
noise; it decreased to 75.0% as the noise rate increased in CIFAR-100 with pair noise. On the
other hand, the maximal safe set maintained its dominance over the small-loss trick in all data sets
regardless of the noise type. In particular, the average accuracy of the maximal safe set was 93.2%
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Figure 9: Average accuracy of selecting true-labeled samples by the small-loss trick in Co-teaching
and the maximal safe set in Prestopping using DenseNet on two data sets with synthetic noises.
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Figure 10: Anatomy of Co-teaching+ on CIFAR-100 with 40% symmetric noise: (a) and (b) show
the change in disagreement ratio for all true-labeled samples, when using Co-teaching+ to train two
networks with different complexity, where “simple network” is a network with seven layers used by
Yu et al. (2019), and “complex network” is a DenseNet (L=40, k=12) used for our evaluation; (c)
shows the accuracy of selecting true-labeled samples on the DenseNet.

even in CIFAR-100 with pair noise of 40%, which led to the huge performance improvement of
Prestopping over Co-teaching in Figure 5(b).

5.4 ANATOMY OF Co-teaching+ (FIGURE 10)

Although Co-teaching+ is the latest method, its performance was worse than expected, as shown in
Section 5.1. Thus, we looked into Co-teaching+ in more detail. A poor performance of Co-teaching+
was attributed to the fast consensus of the label predictions for true-labeled samples, especially when
training a complex network. In other words, because two complex networks in Co-teaching+ start
making the same predictions for true-labeled samples too early, these samples are excluded too early.
As shown in Figures 10(a) and 10(b), the disagreement ratio with regard to the true-labeled samples
dropped faster with a complex network than with a simple network, in considering that the ratio
drastically decreased to 49.8% during the first 5 epochs. Accordingly, it is evident that Co-teaching+
with a complex network causes a narrow exploration of the true-labeled samples, and the selection
accuracy of Co-teaching+ naturally degraded from 60.4% to 44.8% for that reason, as shown in
Figure 10(c). Therefore, we conclude that Co-teaching+ may not suit a complex network.

6 CONCLUSION

In this paper, we proposed a novel two-phase training strategy for the noisy training data, which we
call Prestopping. The first phase, “early stopping,” retrieves an initial set of true-labeled samples
as many as possible, and the second phase, “learning from a maximal safe set,” completes the rest
training process only using the true-labeled samples with high precision. Prestopping can be easily
applied to many real-world cases because it additionally requires only either a small clean validation
set or a noise rate. Furthermore, we combined this novel strategy with sample refurbishment to
develop Prestopping+. Through extensive experiments using various real-world and simulated noisy
data sets, we verified that either Prestopping or Prestopping+ achieved the lowest test error among
the seven compared methods, thus significantly improving the robustness to diverse types of label
noise. Overall, we believe that our work of dividing the training process into two phases by early
stopping is a new direction for robust training and can trigger a lot of subsequent studies.
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A Prestopping WITH NOISE-RATE HEURISTIC

Algorithm 2 describes the overall procedure of Prestopping with the noise-rate heuristic, which is
also self-explanatory. Compared with Algorithm 1, only the way of determining the best stop point
in Lines 7–9 has changed.

Algorithm 2 Prestopping with Noise-Rate Heuristic

INPUT: D̃: data, epochs: total number of epochs, q: history length, τ : noise rate
OUTPUT: θt: network parameters

1: t← 1; θt ← Initialize the network parameter;
2: θtstop ← ∅; /* The parameter of the stopped network */
3: for i = 1 to epochs do /* Phase I: Learning from a noisy training data set */
4: for j = 1 to |D̃|/|Bt| do
5: Draw a mini-batch Bt from D̃;
6: θt+1 = θt − α∇

(
1
|Bt|

∑
x∈Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (1) */

7: train_err ← Get_Training_Error(D̃, θt); /* A training error at time t */
8: if train_err ≤ τ then /*Save the network when train_err ≤ τ */
9: θtstop ← θt; break;

10: t← t+ 1;
11: θt ← θtstop ; /* Load the network stopped at tstop */
12: for i = stop_epoch to epochs do /* Phase II: Learning from a maximal safe set */
13: for j = 1 to |D̃|/|Bt| do
14: Draw a mini-batch Bt from D̃;
15: St ← {x|argmaxyP (y|x, t; q) = ỹ}; /* A maximal safe set in Definition 3.3 */
16: θt+1 = θt − α∇

(
1

|St∩Bt|
∑
x∈St∩Bt

L(x, ỹ; θt)
)
; /* Update by Eq. (5) */

17: t← t+ 1;
18: return θt, St;

A.1 RESULT WITH SYNTHETIC NOISE (FIGURE 11)

To verify the performance of Prestopping and Prestopping+ with the noise-rate heuristic in Section
3.2.1, we trained a VGG-19 network on two simulated noisy data sets with the same configuration as
in Section 5. Figure 11 shows the test error of our two methods using the noise-rate heuristic as well
as those of the other five training methods. Again, the test error of either Prestopping or Prestopping+
was the lowest at most error rates with any noise type. The trend of the noise-rate heuristic here was
almost the same as that of the validation heuristic in Section 5.1. Especially when the noise rate was
40%, Prestopping and Prestopping+ significantly improved the test error by 5.1pp–17.0pp in the
pair noise (Figure 11(a)) and 0.3pp–17.3pp in the symmetric noise (Figure 11(b)) compared with the
other robust methods.
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Figure 11: Best test errors using VGG-19 on two simulated noisy data sets with varying noise rates.

A.2 COMPARISON WITH VALIDATION HEURISTIC (FIGURE 12)

Figure 12 shows the difference in test error caused by the two heuristics. Overall, the performance
with the noise-rate heuristic was worse than that with validation heuristic, even though the worse one
outperformed the other training methods as shown in Figure 11. As the assumption of the noise-rate
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heuristic does not hold perfectly, a lower performance of the noise-rate heuristic looks reasonable.
However, we expect that the performance with this heuristic can be improved by stopping a little
earlier than the estimated point, and we leave this extension as the future work.
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Figure 12: Difference in test error between two heuristics on two simulated noisy data sets.

B SUPPLEMENTARY EVALUATION

B.1 HYPERPARAMETER SELECTION (FIGURE 13)

Prestopping requires one additional hyperparameter, the history length q in Definition 3.1. For
hyperparameter tuning, we trained DenseNet (L=40, k=12) on CIFAR-10 and CIFAR-100 with a
noise rate of 40%, and the history length q was chosen in a grid ∈ {1, 5, 10, 15, 20}. Figure 13 shows
the test error of Prestopping obtained by the grid search on two noisy CIFAR data sets. Regardless
of the noise type, the lowest test error was typically achieved when the value of q was 10 in both
data sets. Therefore, the history length q was set to be 10 in all experiments.
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Figure 13: Grid search on CIFAR-10 and CIFAR-100 with two types of noises of 40%.

B.2 EXPERIMENT USING TINY-IMAGENET DATA SET (FIGURE 14)

R3: For a larger-scale experiment, we repeated the image classification task on Tiny-ImageNet (200
classes), a subset of ImageNet (Krizhevsky et al., 2012), with 100, 000 training and 10, 000 validation
images. Because no test set exists, randomly selected 9, 000 images from the validation set were
used as the test set, and the rest 1, 000 validation images were used as the clean validation set for the
validation heuristic. The experimental configurations were the same as those in Section 5.

Figure 14 shows the test error of the seven training methods using VGG-19 on Tiny-ImageNet
with varying noise rates. Similar to CIFAR data sets in Figures 5 and 6, both Prestopping and
Prestopping+ outperformed the other robust methods in both noise types. The only difference wasDefault Active Bias Co-teaching Co-teaching+ SELFIE LESSON LESSON+
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Noise Type Pair Noise Symmetric Noise

Default 65.6±0.52 68.3±1.02
Active Bias 62.9±0.31 66.7±0.87
Co-teaching 67.6±0.22 64.0±0.41
Co-teaching+ 67.8±0.31 75.4±0.59
SELFIE 63.6±0.44 63.2±0.19
Prestopping 55.1±0.24 61.5±0.31
Prestopping+ 56.4±0.37 62.8±0.25

(c) Detailed Results at Noise Rate 40%.

Figure 14: Best test errors using VGG-19 on Tiny-ImageNet with varying noise rates.
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that there was no synergistic effect from collaboration with sample refurbishment because of the
larger number of classes (i.e., 200). In particular, compared with other robust methods, Prestopping
showed significant reduction in the absolute test error by 7.8pp–12.7pp at pair noise of 40% and
1.7pp–13.9pp at symmetric noise of 40%.

B.3 EXPERIMENT USING CLOTHING DATA SET (FIGURE 15)

R2: We additionally evaluated the superiority of Prestopping(+) on another challenging real-world
noisy data set Clothing70k (14 classes), a subset8 of Clothing1M (Xiao et al., 2015), where its noise
rate was estimated at 38.5%. For the Clothing70k data set, we randomly selected 70, 000 images from
1 million noisy training images in Clothing1M and used them as its noisy training set; we did exploit
the original clean validation and test sets consisting of 14, 313 and 10, 526 images, respectively. The
experimental configurations were the same as those in Section 5.

Figure 15 shows the test error of the seven training methods using two CNNs on Clothing70k with
real-world noise of 38.5%. Overall, Prestopping and Prestopping+ significantly outperformed the
other robust methods. In particular, Prestopping+ achieved the lowest test error because the number
of classes was not that large (i.e., 14 classes). Compared with other state-of-the-art methods, it
improved the absolute test error by 1.1pp–3.3pp using DenseNet and 0.7pp–5.8pp using VGG-19.
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Network DenseNet VGG-19

Default 38.8±0.10 46.9±0.31
Active Bias 37.7±0.09 46.5±0.70
Co-teaching 37.6±0.14 43.3±0.34
Co-teaching+ 39.7±0.18 47.8±0.51
SELFIE 37.5±0.14 42.7±0.13
Prestopping 36.6±0.11 42.2±0.12
Prestopping+ 36.4±0.07 42.0±0.11

(c) Detailed Results.

Figure 15: Best test errors on Clothing70k (τ ≈ 38.5%) along with the detailed result.

B.4 IMPACT OF NUMBER OF CLASSES ON Prestopping+ (FIGURE 16)

We investigate the impact of the number of classes on Prestopping+ under the pair noise of 40%.
Figure 16 shows the ratio of refurbished samples used for training (hatched bar) with the refurbishing
accuracy (solid line) on two data sets with 10 and 100 classes. When the number of classes is
small (e.g., 10), Prestopping+ refurbished most of false-labeled samples very accurately; the refur-
bishing accuracy was consistently over 91.6% during the entire training period. On the other hand,
when the number of classes is large (e.g., 100), the refurbishing accuracy drastically dropped from
92.0% to 76.7% as more samples were refurbished. Thus, as shown in Figure 16(b), collaboration
with sample refurbishment is not always synergistic because such a significant drop in the refurbishing
accuracy could induce many falsely corrected samples, especially when there are many classes.
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Figure 16: Refurbishing ratio and accuracy of Prestopping+ when training DenseNet (L=40, k=12)
on CIFAR-10 and CIFAR-100 with pair noise of 40%.

8R2:We used a subset of Clothing1M to finish this experiment within the ICLR’20 rebuttal period.

15



Under review as a conference paper at ICLR 2020

C COMPLETE RESULTS ON BEST TEST ERROR

Table 1 shows the test error of seven training methods using two CNNs on two simulated noisy data
sets with varying noise rates. Table 2 shows the test error of seven training methods using two CNNs
on two real-world noisy data sets with different noise rates.

Table 1: The best test errors (%) of seven training methods on two types of synthetic noises with
varying noise rates (0%, 10%, 20%, 30%, and 40%) in Figures 5 and 6.

Noise Type Pair Noise in Figure 5 Symmetric Noise in Figure 6
Data Set CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Network DenseNet VGG DenseNet VGG DenseNet VGG DenseNet VGG

Default 7.20±0.05 11.4±0.14 27.3±0.35 38.9±0.07 7.20±0.05 11.4±0.14 27.3±0.35 38.9±0.07
Active Bias 7.45±0.36 11.4±0.08 26.7±0.48 39.5±0.09 7.45±0.36 11.4±0.08 26.7±0.48 39.5±0.09
Co-teaching 7.16±0.01 11.1±0.14 27.4±0.87 37.7±0.04 7.16±0.01 11.1±0.14 27.4±0.87 37.7±0.04
Co-teaching+ 10.7±0.27 13.6±0.28 30.1±0.24 43.6±0.09 10.7±0.27 13.6±0.28 30.1±0.24 43.6±0.09
SELFIE 7.20±0.06 11.0±0.07 27.0±0.41 38.4±0.12 7.20±0.06 11.0±0.07 27.0±0.41 38.4±0.12
Prestopping 7.32±0.06 11.4±0.15 27.2±0.11 38.2±0.17 7.32±0.06 11.4±0.15 27.2±0.11 38.2±0.17
Prestopping+ 7.02±0.11 10.9±0.10 26.7±0.18 37.7±0.16 7.02±0.11 10.9±0.10 26.7±0.18 37.5±0.16

(a) The best test errors under pair and symmetric noises of 0% (τ = 0.0).

Noise Type Pair Noise in Figure 5 Symmetric Noise in Figure 6
Data Set CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Network DenseNet VGG DenseNet VGG DenseNet VGG DenseNet VGG

Default 9.79±0.02 13.8±0.62 32.1±0.19 41.4±0.15 11.9±0.74 16.8±0.05 32.7±0.66 44.9±0.24
Active Bias 9.77±0.27 13.7±0.14 30.5±0.63 42.2±0.22 11.0±0.44 14.1±0.36 30.9±0.19 45.5±0.21
Co-teaching 9.62±0.09 13.9±0.13 30.2±0.38 41.5±0.20 9.79±0.18 14.5±0.12 29.2±0.15 42.5±0.30
Co-teaching+ 12.2±0.14 14.3±0.07 33.4±0.14 43.6±0.52 13.2±0.34 16.7±0.09 33.6±0.41 50.8±0.24
SELFIE 8.62±0.36 13.0±0.07 28.7±0.20 40.9±0.14 8.73±0.12 13.7±0.23 28.4±0.09 41.3±0.32
Prestopping 7.91±0.19 12.0±0.14 28.5±0.14 38.7±0.20 8.77±0.44 13.3±0.03 28.6±0.84 39.5±0.21
Prestopping+ 7.72±0.01 12.0±0.10 28.3±0.12 38.5±0.24 8.23±0.25 12.2±0.13 27.9±0.03 38.3±0.16

(b) The best test errors under pair and symmetric noises of 10% (τ = 0.1).

Noise Type Pair Noise in Figure 5 Symmetric Noise in Figure 6
Data Set CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Network DenseNet VGG DenseNet VGG DenseNet VGG DenseNet VGG

Default 10.9±0.44 15.1±1.11 35.5±0.41 42.9±0.21 13.4±0.77 18.5±0.31 35.4±0.79 50.7±0.22
Active Bias 10.8±0.17 14.2±0.13 34.1±0.69 43.2±0.09 12.6±0.27 16.2±0.20 33.3±0.25 50.0±0.25
Co-teaching 10.7±0.13 15.1±0.16 32.3±0.95 43.9±0.31 10.9±0.27 15.5±0.08 30.4±0.20 44.9±0.17
Co-teaching+ 13.9±0.38 15.9±0.31 36.6±0.34 47.0±0.34 15.0±0.34 19.0±0.11 37.2±0.18 53.4±0.14
SELFIE 9.46±0.10 14.6±0.06 29.9±0.44 42.3±0.17 9.86±0.25 14.8±0.25 30.2±0.37 43.9±0.09
Prestopping 8.34±0.18 13.1±0.08 29.3±0.24 39.9±0.42 9.73±0.28 14.9±0.23 30.8±0.70 42.5±0.20
Prestopping+ 8.20±0.17 12.6±0.03 29.5±0.20 39.5±0.25 8.83±0.30 13.5±0.05 29.6±0.40 41.6±0.08

(c) The best test errors under pair and symmetric noises of 20% (τ = 0.2).

Noise Type Pair Noise in Figure 5 Symmetric Noise in Figure 6
Data Set CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Network DenseNet VGG DenseNet VGG DenseNet VGG DenseNet VGG

Default 12.6±1.98 18.6±1.11 41.1±0.43 46.3±0.25 15.9±1.25 23.2±0.41 39.0±0.78 54.4±0.25
Active Bias 12.2±0.80 15.6±0.12 38.4±0.91 46.0±0.16 14.6±0.48 18.7±0.31 36.7±0.66 53.7±0.12
Co-teaching 11.8±0.54 16.5±0.11 36.6±1.08 51.5±0.36 11.7±0.35 17.6±0.02 32.6±0.33 48.2±0.34
Co-teaching+ 15.7±0.19 16.6±0.12 41.8±0.79 50.2±0.21 16.8±0.12 24.0±0.17 40.6±0.24 59.6±0.23
SELFIE 10.6±0.34 16.4±0.17 32.9±0.13 45.1±0.16 10.8±0.09 16.0±0.24 31.5±0.33 45.8±0.60
Prestopping 9.24±0.24 13.6±0.14 31.1±0.73 41.3±0.14 11.2±0.97 16.8±0.23 32.1±0.94 45.2±0.31
Prestopping+ 8.67±0.29 13.0±0.09 31.3±0.19 41.3±0.05 10.1±0.70 15.1±0.05 31.0±0.88 42.6±0.06

(d) The best test errors under pair and symmetric noises of 30% (τ = 0.3).

Noise Type Pair Noise in Figure 5 Symmetric Noise in Figure 6
Data Set CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Network DenseNet VGG DenseNet VGG DenseNet VGG DenseNet VGG

Default 19.2±0.63 24.1±0.97 51.2±0.40 54.1±0.82 19.0±1.66 25.0±0.19 46.1±0.72 60.9±0.08
Active Bias 16.9±0.93 24.4±1.24 49.6±0.36 49.6±0.60 17.5±0.90 24.3±0.36 39.2±0.84 57.9±0.20
Co-teaching 13.9±1.11 26.5±2.47 45.0±1.06 60.5±0.69 13.8±0.41 19.1±0.07 34.5±0.13 54.2±0.45
Co-teaching+ 20.6±0.74 21.3±0.20 50.7±0.65 56.7±0.16 19.9±0.28 27.4±0.24 44.6±1.04 66.0±0.31
SELFIE 12.3±0.80 20.4±0.24 40.9±1.00 53.0±0.45 12.4±0.07 18.0±0.14 33.5±0.80 49.5±0.07
Prestopping 10.1±0.20 15.2±0.54 32.6±0.40 42.4±0.28 12.7±0.33 18.3±0.07 34.9±0.63 51.3±0.44
Prestopping+ 9.60±0.13 14.6±0.17 34.4±0.10 43.8±0.14 11.3±0.03 16.4±0.08 32.9±0.20 48.5±0.05

(e) The best test errors under pair and symmetric noises of 40% (τ = 0.4).
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Table 2: The best test errors (%) on real-world noises in Figure 7.

Data Set ANIMAL-10N FOOD-101N
Network DenseNet VGG DenseNet VGG

Default 18.2±0.15 20.8±0.36 57.6±0.20 72.1±0.45
Active Bias 17.6±0.13 20.0±0.30 55.4±0.10 69.2±0.84
Co-teaching 16.9±0.14 19.9±0.01 55.6±0.09 69.4±0.27
Co-teaching+ 19.8±0.11 22.4±0.61 58.6±0.24 75.5±0.53
SELFIE 16.4±0.21 18.5±0.14 55.4±0.17 68.6±0.24
Prestopping 15.7±0.18 18.1±0.14 54.3±0.24 67.3±0.21
Prestopping+ 15.5±0.12 17.8±0.07 54.9±0.17 67.9±0.09

D CASE STUDY: NOISY LABELS IN ORIGINAL CIFAR-100

One interesting observation is a noticeable improvement of Prestopping+ even when the noise rate
was 0%, as shown in Table 1(a). It was turned out that Prestopping+ sometimes refurbished the
labels of the false-labeled samples which were originally contained in the CIFAR data sets. Figure 17
shows a few successful refurbishment cases. For example, an image falsely annotated as a “Boy” was
refurbished as a “Baby” (Figure 17(a)), and an image falsely annotated as a “Mouse” was refurbished
as a “Hamster” (Figure 17(c)). Thus, this sophisticated label correction of Prestopping+ helps
overcome the residual label noise in well-known benchmark data sets, which are misconceived to be
clean, and ultimately further improves the generalization performance of a network.

(a) Boy → Baby (b) Boy → Baby (c) Mouse → Hamster (d) Shrew → Mouse (e) Lion → Tiger (f) Worm → Snake

(g) Spider → Crab (h) Flat Fish → Trout (i) Train → Street Car (j) Train → Street Car (k) Street Car → Train (l) Pear →Apple

(m) Sweet Pepper →Apple (n) Pear → Sweet Pepper (o) Tulip → Poppy (p) Forest → Maple Tree (q) House → Road (r) Plain → Sea

(s) Sea → Plain (t) Plain → Cloud (u) Cloud → Can (v) Can → Bowl (w) Can → Bottle (x) Skyscraper  → Rocket

Figure 17: Refurbishing of false-labeled samples originally contained in CIFAR-100. The subcaption
represents “original label”→ “refurbished label” recognized by Prestopping+.
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