
Under review as a conference paper at ICLR 2020

ADVERSARIALLY ROBUST NEURAL NETWORKS VIA
OPTIMAL CONTROL: BRIDGING ROBUSTNESS WITH
LYAPUNOV STABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are known to be vulnerable to adversarial perturbations. In
this paper, we bridge adversarial robustness of neural nets with Lyapunov stability
of dynamical systems. From this viewpoint, training neural nets is equivalent to
finding an optimal control of the discrete dynamical system, which allows one to
utilize methods of successive approximations, an optimal control algorithm based
on Pontryagin’s maximum principle, to train neural nets. This decoupled training
method allows us to add constraints to the optimization, which makes the deep
model more robust. The constrained optimization problem can be formulated as
a semi-definite programming problem and hence can be solved efficiently. Ex-
periments show that our method effectively improves deep model’s adversarial
robustness.

1 INTRODUCTION

Deep neural networks achieve state-of-the-art performances on a variety of tasks (LeCun et al.,
2015). However, neural nets are known to be vulnerable to adversarial examples. Imperceptibly
perturbed inputs can induce erroneous outputs in neural nets (Szegedy et al., 2013). In image clas-
sification problems of computer vision, previous work has proposed various methods to attack deep
models and induce low accuracy (Goodfellow et al., 2015; Madry et al., 2017; Papernot et al., 2016a;
Carlini & Wagner, 2017a). Whereas multiple defenses against adversarial attacks are developed,
they don’t ensure safety faced with strong attacking methods. There are also theories that explain
the existence of adversarial examples (Ilyas et al., 2019; Shamir et al., 2019), but they often fail to
fully explain the features and behaviors of this phenomenon. This makes the study of adversarial
attacks important in that it is a threat to real-life machine learning systems (Kurakin et al., 2016).

In this paper, we propose a dynamical system view on the adversarial robustness of the models, as
well as new method that significantly defense adversarial attacks.

Recent works have shown the connection between deep neural networks and dynamical systems (E,
2017; Li et al., 2017; Haber & Ruthotto, 2017; Lu et al., 2017). If we regard the neural net as a
discretization of an ordinary differential equation (ODE), then training neural nets becomes finding
an optimal control of the corresponding discrete dynamical system. Traditionally, we often treat
training neural networks as an unconstrained non-convex optimization problem

min
θ∈Θ

J(θ) +R(θ),

where θ denotes the parameters of the model, J denotes the loss function and R denotes the reg-
ularizer term, and we solve the problem with (stochastic) gradient-descent based methods (Bottou,
2010; Ruder, 2016). In the training process, we feed the network with a batch of training data,
and compute the gradient with forward and backward propagation (E. Rumelhart et al., 1986). The
propagation process resembles solving optimal control problems that tune the parameters to make
the output be close to target states. This viewpoint motivates us to bridge adversarial robustness
with Lyapunov stability of a dynamical system, and to train robust networks with algorithms that
find stable optimal control. We will formulate the discussion in later sections.
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2 RELATED WORK

2.1 ADVERSARIAL DEFENSE

Many defense methods have been proposed to improve the models’ adversarial robustness. The de-
fenses mainly fall into three types: adversarial training (Szegedy et al., 2013; Zhang et al., 2019),
modifying the networks (Gu & Rigazio, 2015; Lyu et al., 2015; Papernot et al., 2016b; Nayebi &
Ganguli, 2017; Ross & Doshi-Velez, 2017), and adding external models (Lee et al., 2017; Akhtar
et al., 2017; Gebhart & Schrater, 2017; Xu et al., 2018; Sun et al., 2019). Although various de-
fense methods have been developed, a defended deep model is often successfully attacked by newly
developed attacks or specific counter-counter measures (Carlini & Wagner, 2017b). Therefore, it
can be hoped that defenses against general attacks will be devised to make deep learning models
(adversarially) robust to real-life threats.

2.2 NEURAL ODES AND OPTIMAL CONTROL

Recent works have bridged deep neural networks with ODEs and dynamical systems. On the one
hand, deep residual networks (He et al., 2015) can be illustrated as forward Euler scheme approx-
imating an ODE (E, 2017), which motivates us to design effective network structures (Lu et al.,
2017). On the other hand, regarding the network as a dynamical system allows us to set up an op-
timal control viewpoint of neural nets. Pontryagin’s Maximum Principle (Boltyanskii et al., 1960)
has been applied to train neural nets (Li et al., 2017; Li & Hao, 2018).

3 ADVERSARIAL ROBUSTNESS AND LYAPUNOV STABILITY

3.1 DYNAMICS OF DEEP NEURAL NETS

Given a T -layer neural net, we let the dynamical system {ft(xt, θt) : t = 0, . . . , T} represents the
network, where xt is the input of t-th layer, θt is the parameter, and ft : Rdt × Θt → Rdt+1

denotes the t-th layer’s transformation, which is usually a non-linear function σ(θtxt + bt) for
fully-connected layers, convolution layers and batch normalization layers, etc. Therefore, training
the neural net can be regarded as controlling the parameters to let the dynamics fit the training
data. Specifically, the training optimization problem can be formulated as a typical optimal control
problem as follows:

min
θ

B∑
i=1

J(xiT ) +

T∑
i=0

L(θi),

subj. to xit+1 = ft(x
i
t, θt), t = 0, . . . , T − 1,

where we use xi to denote the i-th input in the batch and B denote the batch size. J and L are the
loss function and the regularizer, respectively. Specially, if the model is a deep residual network
with structure xt+1 = xt+ft(xt, θt), we can regard the problem as the forward Euler discretization
of the following continuous optimal control problem:

min
θ
J(x(T )) +

∫ T

0

L(θ(t)) dt,

subj. to ẋ = f(t, x(t), θ(t)), x(0) = x, 0 ≤ t ≤ T,

where x(t) is a continuous trajectory from the input to the output logits.

3.2 LYAPUNOV STABILITY

Adversarial examples are usually clean images added by a small calculated perturbation η. The
model predicts correct labels fed with clean inputs x0, while the output is completely different when
it is fed with perturbed input x0 + η. The dynamical system view of neural nets motivate us to
characterize this sensitivity with Lyapunov stability of a system (Hirsch et al., 2004).
Definition 1 (Lyapunov Stability). For a given dynamical system ẋ = f(x), x(0) = x0, xe is an
equilibrium, then
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• The system is Lyapunov stable, if, ∀ ε > 0, ∃ δ > 0 such that, if ‖x(0)− xe‖ < δ, then for
every t ≥ 0, ‖x(t)− xe‖ < ε.

• The system is asymptotically stable if it is Lyapunov stable and ∃ δ > 0 such that if ‖x(0)−
xe‖ < δ, then limt→∞ ‖x(t)− xe‖ = 0.

• The system is exponentially stable if it is asymptotically stable and ∃α > 0, β > 0, δ > 0
such that if ‖x(0)− xe‖ < δ, then ‖x(t)− xe‖ ≤ α‖x(0)− xe‖e−βt, for all t ≥ 0.

The definitions can be easily extended to discrete-time systems.

Intuitively, the Lyapunov stability states that for any small perturbation η, the trajectory is still “close
enough” to the original one. If we regard a neural net as a dynamical system, and ensure the network
is Lyapunov stable, then the model is robust to all (adversarial) perturbations.

3.3 ADVERSARIALLY ROBUST NEURAL NETS

Due to the connection between numerical ODEs and residual networks, we first consider robustness
(i.e. Lyapunov stability) of continuous ODEs.
Theorem 1 (Stable ODEs). For a given ODE ẋ = f(t, x, θ) = σ(Ax+b), where σ is the activation
function, e.g., Sigmoid function or ReLU function, it is stable if Re(λi(A)) ≤ 0, ∀i, where Re
denotes the real part, and λi denotes the i-th eigenvalue.

One can see, e.g. Hirsch et al. (2004), for the proof of this theorem.

Theorem 1 provides a set of conditions for stable ODEs. However, deep residual network is only a
forward Euler discretization scheme of continuous ODE. To ensure numerical stability, we require
|1− λi(A)h| ≤ 1 (Ascher & Petzold, 1998), where the step size h = 1 in residual networks. Added
by the identity mapping in residual networks, we can get the stable conditions for discrete dynamics.
Theorem 2 (Stable Discrete Networks). For a discrete neural network, i.e., discrete dynamics
{ft(xt, θt) : t = 0, . . . , T}, where ft(xt, θt) = σ(θtxt) (we omit the bias term for simplicity), the
network is stable if the ρ(θt) ≤ 1, where ρ(A) = maxi(|λi(A)|) is the spectral radius.

If the conditions are added to the unconstrained optimization problem of training, we can greatly
improve the adversarial robustness of neural nets. The methods will be discussed in the following
section.

4 TRAINING ROBUST NEURAL NETS

4.1 PMP AND MSA

For deterministic systems, the Pontryagin’s Maximum Principle (PMP) (Boltyanskii et al., 1960)
provides a set of necessary conditions for optimal control of the system. Various algorithms have
been proposed to solve the deterministic optimal control problem based on PMP. Among them, the
Method of Successive Approximations (MSA) (Krylov & Chernous’ko, 1963) is one of the simplest
algorithms. In the field of deep learning, previous work has utilized MSA to train neural networks
(Li et al., 2017; Li & Hao, 2018).

Formally, consider the optimal control problem for training neural nets in section 3. For dynam-
ics {ft(xt, θt) : t = 0, . . . , T}, assume θ∗ =

{
θ∗0 , . . . , θ

∗
T−1

}
is a solution to the optimal con-

trol problem. Also, we define the Hamiltonian function H : Rdt × Rdt+1 × Θt × [T ] → R by
H(x, p, θ, t) = p · ft(x, θ)−L(θt), where the dot denotes the inner product. We have the following
necessary conditions for θ∗.
Theorem 3 (Pontryagin’s Maximum Principle for Discrete Systems). Assume ft and J are suffi-
ciently smooth. There exists co-states p∗ = {p∗0, . . . , p∗T } s.t. the following conditions hold:

x∗t+1 = ∇pH(x∗t , p
∗
t+1, θ

∗
t , t), x

∗
0 = x0,

p∗t = ∇xH(x∗t , p
∗
t+1, θ

∗
t , t), p

∗
T = −∇xJ(x∗T ),

θ∗t = arg max
θ
H(x∗t , p

∗
t+1, θ, t).
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For simplicity of notations, here we assume the batch size is 1. One can easily extend the theorem
to minibatch training case by summing over the batch.

The theorem can be proved by KKT conditions (Boyd & Vandenberghe, 2004), where the co-states
can be seen as the Lagrangian dual variables.

Consider the conditions in PMP, one can find the x equations are exactly the forward propagation of
a neural net, and the p equations resemble the backward propagation process. The third condition
states that the model parameters must maximize the Hamiltonian function. This motivates us to
iteratively compute forward and backward propagation, and solve the Hamiltonian maximization to
find the optimal control, which is exactly the Method of Successive Approximations (Algorithm 1).
In practice, we usually add regularizer terms that penalize great changes in the maximization step to
prevent drastic steps that cause divergence. For the connection between MSA and back-propagation-
based gradient descent algorithms, see the appendix of Li & Hao (2018).

Algorithm 1 The Method of Successive Approximations

Initialize θ0 =
{
θ0

0, . . . , θ
0
T−1

}
, set k = 0;

repeat
Compute the states (forward propagation): xt+1 = ∇pH(xt, pt+1, θ

k
t , t), t = 0, . . . , T − 1;

Compute the co-states (backward propagation): pt = ∇xH(xt, pt+1, θ
k
t , t), t = T − 1, . . . , 0,

with initial pT = −∇xJ(xT );
For each t = 0, . . . , T − 1, solve the maximization θk+1

t = arg maxθH(xt, pt+1, θ, t);
Set k = k + 1;

until Converge;

The advantages of training by MSA compared with gradient descent algorithms has been discussed
in (Li et al., 2017), among which the most significant feature is that the optimization steps on differ-
ent layers are decoupled. Concretely, after computing the states x and co-states p, the optimization
step on layer t is only searching for parameters θt. This not only suggests that the optimization pro-
cess can be accelerated by parallelization, but also allows us to utilize the features of the problem.
The parameter space is greatly reduced compared with the original intractable optimization prob-
lem, and hence the optimization is much more easier. This allows us to add constraints that ensure
robustness of the model.

4.2 ROBUST CONSTRAINTS

Consider a layer in the form of ft(x) = θtx, where we leave the activation as an individual layer
with no parameters for simplicity, we can derive the following optimization problem for Hamiltonian
maximization:

max
θ

pt+1 · (θtxt)− α‖θt‖22 − β‖θt − θ′t‖22,

subj. to ρ(θt) ≤ 1,

where α‖θt‖22 is the L2 norm regularizer (weight decay), and θ′t is the initial parameter (i.e., θkt in
the algorithm). The last term keeps the training process from drastic steps that cause divergence.
The constraint, as illustrated in section 3, is the stable condition for discrete systems. It makes the
optimization quite difficult if we directly add the constraints in gradient descent based algorithms,
but the decoupled optimization in MSA allows us to do so.

With regard to the constraint of parameter’s spectral radius, a simple method is to apply special
forms of matrices for parameters, e.g. anti-symmetric matrices. For continuous deep models, the
only constraint is Theorem 1, i.e., Re(λi(θt)) ≤ 0. Anti-symmetric matrices have only imaginary
eigenvalues, and hence we can replace θt with θt − θTt − γI , where γ is a small positive constant.

For general forms of parameters, one can prove the following transformation.
Theorem 4. One sufficient condition of ρ(A) ≤ 1 is[

I A
AT I

]
� 0,

where A � B denotes A−B is positive semi-definite.

4



Under review as a conference paper at ICLR 2020

Table 1: Results of robust training on CIFAR10.

Method Vanilla Adv Training Ours
Clean data 80.73% 79.61% 74.49%

FGSM (Goodfellow et al., 2015) 2.34% 77.45% 49.32%
PGD-10 (Madry et al., 2017) 0.02% 46.67% 36.33%

C&W (Carlini & Wagner, 2017a) 0.01% 21.15% 16.80%

Proof. Recall that ρ(A) ≤ ‖A‖2 =
√
λmax(ATA), we have

‖A‖2 ≤ 1⇔ ATA � I ⇔
[
I A
AT I

]
� 0.

Hence we can replace ρ(θt) ≤ 1 with a positive semi-definite condition, and we turn the Hamilto-
nian maximization into a new optimization problem, where the target function is quadratic and the
constraint is a semi-definite condition. This can be reduced to a semi-definite programming (SDP)
problem (Vandenberghe & Boyd, 1998), which is a special case of convex optimization, and thus
can be solved efficiently by, e.g., interior point methods (Helmberg et al., 1970) in polynomial time.

Here we summarize our method. For a given neural network, we use MSA to train the model, i.e.,
iteratively computing the states (forward propagation) and co-states (backward propagation), and
solving the optimization for each layer. Instead of directly maximizing the Hamiltonian, we add a
positive semi-definite constraint to the optimization problem, which leads to a stable control of the
dynamics.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To evaluate the effectiveness of our method, we conduct experiments on CIFAR10. We trained the
network on clean data, with adversarial training (PGD-10) and with robust training (our method),
respectively. We used FGSM (Goodfellow et al., 2015), PGD-10 (Madry et al., 2017) and C&W
(Carlini & Wagner, 2017a) to attack the network.

Due to the limitation of TensorFlow, we used a simple interior point method with gradient descent
to solve SDP. The network model was an 18-layer residual network (He et al., 2015), with 8 residual
blocks. We set the perturbation size as ε = 0.1 for both FGSM and PGD. For C&W, we used the L0

metric. We trained the model for 150 epochs with a batch size of 200. The learning rate was set to
be 10−2 initially, and was divided by 5 at epoch 30, 60 and 100. The regularizer term constant was
set to be 10−3.

5.2 RESULTS

The results can be seen in Table 1. The accuracy of robust models on clean data is lower than vanilla
model’s in that robust training and generalization is more difficult and requires more data (Schmidt
et al., 2018).

Our method improves model’s adversarial robustness, compared with the vanilla model. Figure 1
displays the eigenvalues of the last fully-connected layer’s parameter. The complex norm of eigen-
values (spectral radius) of the model trained by our method are effectively bounded below 1, which
satisfies the robust constraint on parameters in section 4.2, while eigenvalues of natural training are
randomly distributed in the complex plane.

Our method is not as effective as traditional adversarial training method. However, it mainly has
the following advantages: (a) The training process doesn’t require large numbers of gradient prop-
agation, which consumes much time in adversarial training. In our experiment, adversarial training
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Figure 1: Eigenvalues of the last fully-connected layer for robust training (left) and vanilla training
(right).

spends about 10 times GPU time as much as our method. (b) The decoupled training process allows
us to set different hyperparameters and training methods for different layers, which is more maneu-
verable for large scale training. We can further control the behavior of different layers in adversarial
settings. (c) Lyapunov stability provides a framework for analyzing adversarial robustness of deep
models, which may lead to theoretical analysis of adversarial samples in future work.

6 DISCUSSION AND FUTURE WORK

Motivated by the dynamical system view of neural networks, this work bridges adversarial robust-
ness of deep neural models with Lyapunov stability of dynamical systems, and we also propose a
method that uses a stable optimal control algorithm to train neural networks to improve the adversar-
ial robustness of deep neural models. Though the result didn’t surpass STOA defense methods, the
stable control view of training neural nets points out another direction towards adversarially robust
models.

For future work, on the one hand, mathematical analysis on Lyapunov stability of neural models
may be studied to provide theoretical understanding of adversarial robustness. On the other hand,
popular platforms for deep learning, e.g., TensorFlow, PyTorch, didn’t provide frameworks for op-
timal control. We will obtain better results if specific algorithms for SDP are applied to solve the
optimization problem.
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