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ABSTRACT

Graph neural networks have become increasingly popular in recent years due to
their ability to naturally encode relational input data and their ability to operate on
large graphs by using a sparse representation of graph adjacency matrices. As we
look to scale up these models using custom hardware, a natural assumption would
be that we need hardware tailored to sparse operations and/or dynamic control
flow. In this work, we question this assumption by scaling up sparse graph neu-
ral networks using a platform targeted at dense computation on fixed-size data.
Drawing inspiration from optimization of numerical algorithms on sparse matri-
ces, we develop techniques that enable training the sparse graph neural network
model from Allamanis et al. (2018) in 13 minutes using a 512-core TPUv2 Pod,
whereas the original training takes almost a day.

1 INTRODUCTION

As we seek to apply high capacity neural network models to new applications, we often encounter
data that is not structured as a vector, image, sequence, or set. In these cases, graph neural net-
works (GNNs) (Scarselli et al., 2009; Li et al., 2016) can be appealing because they operate on
graph-structured inputs. Each node can have data (e.g., an image) associated with it, and edges can
encode different kinds of relationships between nodes. The forward pass of a GNN model can be
interpreted as nodes exchanging messages with each other along edges of a graph (Gilmer et al.,
2017), combining the local per-node information with information about the surrounding context
in a flexible manner. Domains where GNNs have found success include chemistry (where graph-
structured representations of molecules are mapped to predictions about molecular properties) and
program analysis (where a graph-structured representation of a program encodes a combination of
syntactic information and semantic relationships between program entities).

In the program analysis application of Allamanis et al. (2018), graphs have up to 20,000 nodes.
Computing with dense 20,000× 20,000 adjacency matrices is expensive, so common practice is to
operate on sparse adjacency matrices. With sparse representations it is straightforward to operate
on graphs with ≈100,000 nodes per batch. The model can be implemented efficiently using sparse
operations such as scatter and gather, or sparse tensor dense matmul in TensorFlow.

From a hardware perspective, modern advances in deep learning are partly due to GPUs (LeCun
et al., 2015). Modern GPUs have many cores, and the threads started by a single program can access
memory, branch, and terminate independently from other threads. Even though performance is max-
imized when threads do not diverge (facilitating efficient dense linear algebra operations), relatively
fast implementations of sparse operations are possible (Bell & Garland, 2009). New “AI accelera-
tors” such as Google’s Tensor Processing Units (TPU), Intel’s Nervana Neural Network Processor,
and Nvidia’s Volta architecture use domain specific architectures (DSAs) (Hennessy & Patterson,
2019) to perform matrix multiplication. We refer to these collectively as “dense hardware”. While it
may seem hopeless to rewrite sparse GNN computations in terms of dense matrix multiplies that are
needed to access dense hardware computational bandwidth, we show that it can be done efficiently
enough so that training on a single dense device is comparably fast to training the sparse model on
a GPU, and that scaling out to more cores yields the fastest wall-clock training time by orders of
magnitude for a canonical sparse GNN model (to the best of our knowledge).

Our approach will be to think of appropriately-sized matrix multiplication as a primitive in a “virtual
machine”. The problem then becomes “compiling” the GNN propagation on a sparse graph to
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only use primitives in the virtual machine. The first key observation is that if we can reveal a low
bandwidth structure (Dı́az et al., 2002) in the graph adjacency matrix, then GNN propagation can
be losslessly expressed in terms of three applications of a dense batched matrix multiply primitive.
This reduces the cost of a step of densified GNN propagation from O(N2H) to O(NBH), where
N is the number of nodes, B the bandwidth, and H the node embedding dimension. The second key
observation is that it is possible to permute nodes in the graphs from Allamanis et al. (2018)—which
we take to be representative of the types of graphs that arise in program analysis tasks—to expose
approximately low bandwidth structure using algorithms from sparse numerical computing.

After applying bandwidth reduction and implementing GNN message propagation for low band-
width graphs, we achieve performance on TPUv2 hardware that is already competitive with a highly
optimized sparse GPU implementation. We then take advantage of the ease of scaling out TPU com-
putations to many cores and explore large batch training. (We are not aware of successes scaling out
to equivalent size GPU clusters and believe it to be far less trivial; see the discussion of Ma et al.
(2018) in Section 6.) We are able to achieve near-linear scaling as the number of TPU cores grows up
to 128 and then see some diminishing returns beyond that, confirming the pattern observed by Shal-
lue et al. (2018). On the challenging VarMisuse problem from Allamanis et al. (2018) (single-GPU
training takes close to a day), we reach near state-of-the-art accuracy in 13 minutes.

In summary, the contributions of this paper are as follows:

1. identifying approximate low bandwidth as a structure that enables efficient dense implemen-
tation of GNN propagation while also being present in real-world program analysis data;

2. applying algorithms from sparse numerical computing to reduce bandwidth for GNN graphs,
and developing a fast algorithm for dense propagation in sparse low bandwidth GNNs;

3. empirical results on large-batch training for GNNs, extending the large-batch steps to valida-
tion accuracy study of Shallue et al. (2018) to sparse GNN;

4. empirical results achieving orders of magnitude faster time-to-accuracy on the dataset and
task from Allamanis et al. (2018).

More broadly, the recipe of compiling sparse graph structures to dense operations could be applied
to other families of graphs (examples are mentioned in the Discussion), and since we observe that
GNN training is robust to dropping some non-conforming (out of bandwidth) edges during training
time, even approximate sparse structure can be leveraged. Finally, given that we achieve near state-
of-the-art accuracy with a densely-trained model, our work raises questions about whether there are
alternatives to sparse GNNs that would achieve even better accuracy at the same computation cost.

2 BACKGROUND

Graph neural networks There have been many developments and applications of GNNs over
recent years (Zhou et al., 2018; Wu et al., 2019). Of particular relevance are Scarselli et al. (2009),
which presented the original GNN model, and Li et al. (2016), which developed the gated GNN
(GGNN) variant used by Allamanis et al. (2018) and thus also by us.

A GGNN encoder takes as input a graph on N nodes with initial node embeddings E(0) ∈ RN×H ,
and after a fixed number T of time steps produces final node embeddings E(T ) ∈ RN×H that com-
bine local and neighborhood information. In each time step, each node computes a message from its
current embedding using a learnable linear map parametrized by W ∈ RH×H , and broadcasts the
message to all its neighbors. Each node sums up its received messages, and updates its embedding
using a GRU cell (Cho et al., 2014). Writing A ∈ {0, 1}N×N for the (transposed) adjacency matrix
(aij = 1 if there is an edge from j to i), the forward pass of a GGNN encoder is captured by

E(t+1) = GRU(AE(t)W,E(t)) for t = 0, 1, . . . , T − 1. (1)

When edges are of P discrete types, separate weights Wp parametrize the map from embeddings
to messages for each edge type: E(t+1) = GRU(

∑P
p=1 ApE

(t)Wp, E
(t)), where Ap only contains

edges of type p. The pre-multiplications by the sparse matrix A (or Ap) are the crucial sparse op-
erations that we seek to replace with fast primitives on dense hardware. The final node embeddings
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E(T ) can be used directly (e.g., for node classification), pooled together into an embedding of the
whole graph, or, as in our case, fed into an output layer that for each graph selects a node.

Program graphs Program source code can be represented as a string and treated as text, but this
ignores its precisely defined structure (the syntax of the programming language) and semantics. To
improve performance, Allamanis et al. (2018) proposed to represent source code as a graph. The
“backbone” of the graph is the code’s abstract syntax tree (AST). Additional edges of different types,
capturing the syntax and semantics of the language, are added into the graph. For example, there
is an edge type linking AST nodes to their children, an edge type linking each token in the source
code to the next one, and an edge type linking a variable token to the variables it is computed from.
Given source code, the program graph can be pre-computed using static analysis.

Variable misuse Introduced by Allamanis et al. (2018), VarMisuse is the following task: Given
a snippet of code with one of the usages of a variable masked out (the hole) select which variable
is used in the hole from a set of candidates. Once trained, the model can be run on test code by
masking out variable usages and finding where model predictions disagree with the actual code.

The model trained by Allamanis et al. (2018) is a neural network consisting of a GGNN encoder,
and a readout layer that applies a learned linear map RH → R to the candidate node embeddings to
obtain per-node logits, so that a softmax yields the normalized probability of each candidate node
filling the hole. Allamanis et al. (2018) report finding bugs in open source projects using this model.

Sparse batching Instances in a training set of (program) graphs have differing node counts, so
the question of efficient batching arises. With sparse adjacency representations of graphs an elegant
batching scheme is possible: multiple training graphs can be packed into a single supergraph of
fixed maximum size, until no more graphs fit (Allamanis et al., 2018). Individual training graphs are
represented by disjoint connected components in this supergraph, and since message passing only
proceeds along graph edges, different training graphs do not affect each other. Thanks to the sparse
representation, no quadratic overhead is incurred by the large number of nodes in the supergraph.

Sparse numerical linear algebra Performing sparse matrix multiplication on modern hardware
can be difficult due to the irregular memory access patterns. A large body of work has studied
implementing sparse matrix operations on a variety of architectures (Saad, 2003, Sec. 3). One
consideration is the storage scheme of the matrix, another the ordering of rows and columns, which
can significantly affect the performance of certain operations, see, e.g., Tinney & Walker (1967).

When the matrix is a graph adjacency matrix, this ordering corresponds to an ordering of nodes.
Finding an ordering of graph nodes to optimize an objective is known as a graph layout prob-
lem (Dı́az et al., 2002). Of particular interest in this work is bandwidth minimization. The band-
width of a square matrix A = {aij}N×N is the smallest B ∈ N0 such that aij = 0 whenever
|i− j| > B. This is an NP-hard problem, but a popular and fast (linear-time) heuristic algorithm is
Reverse Cuthill McKee (RCMK) (Cuthill & McKee, 1969).

3 METHOD

As an overview, the full training pipeline consists of the following components:

1. Compilation: a one-time preprocessing step that “compiles” each training point by finding
an efficient computation schedule for it. In our case this amounts to finding a permutation of
nodes in each training graph such that the resulting adjacency matrix has low bandwidth.

2. Input pipeline (not a novel contribution): efficient reading of compiled training data from
disk, assembly of supergraphs via sparse batching (see Section 2), and feeding them to
training hardware so that it is not blocked on waiting for training data. When training on
multiple cores, each core receives its own supergraph.

3. Model: an algorithm that executes the GGNN encoder logic by invoking operations that are
fast on the target hardware. In our case, this corresponds to three invocations of batch matrix
multiplication, which together perform the message passing logic for low-bandwidth graphs.
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3.1 COMPILATION: REDUCING BANDWIDTH

Given a sparse graph adjacency matrix, we first permute the nodes to expose reduced bandwidth
structure using the RCMK algorithm. Since predictions from a GNN are equivariant to node per-
mutation, we simply permute the labels as we permute the nodes in the graph. Compiling a training
graph (V,E) takes linear time O(|V | + |E|), and this is done as a one-time preprocessing step on
each training graph in the dataset.

3.2 MODEL

Our implementation consists of two parts: 1) an algorithm that expresses the graph message passing
operation on low-bandwidth graphs in terms of batch matrix multiplications, and 2) an efficient
implementation of this algorithm with a memory layout that avoids tensor transpositions.

Efficient densification of reduced bandwidth GNN propagation A general class of efficient
operations on dense hardware can be expressed using the einsum operation (SciPy, 2019), a par-
ticular case of which is batch matrix multiplication (BMM): Given two tensors of compatible shapes
[d1, . . . , dn−2,m, k] and [d1, . . . , dn−2, k, n], it performs the d1 · · · dn−2 matrix multiplications in
the last two dimensions, yielding a tensor of shape [d1, . . . , dn−2,m, n].

As a first step, suppose that A is a square, block diagonal matrix with K equal block sizes S, i.e. with
overall shape KS ×KS. Writing C1, . . . , CK for the individual non-zero S × S blocks of A, the
matrix product of A with another matrix E of compatible shape KS ×H can be expressed as

AE =

 C1

. . .
CK


 E1

...
EK

 =

 C1E1

...
CKEK

 (2)

where the Ek’s are S × H blocks of E. Thus it is possible to only store the non-zero blocks
C1, . . . , CK (instead of the entire matrix A) and to implement the matrix product AE as

A E = reshape(BMM([C_1,...,C_K], reshape(E, [K,S,H])), [KS,H]).

This idea can be extended to the low-bandwidth case by employing two additional
BMMs to “fill the gaps” around the block corners in the block diagonal case (see right).
Formally, if A is a KS ×KS matrix with bandwidth B ≤ S − 1, then AE =

C1 U2

L1 C2 U3

. . .
. . .

. . .
Lk−2 Ck−1 Uk

Lk−1 Ck




E1

E2

...
Ek−1

Ek

 =


C1E1

C2E2

...

CkEk

+


U2E2

U3E3

...
UkEk

0

+


0

L1E1

L2E2

...
Lk−1Ek−1

 (3)

where the blocks Ck, Uk, Lk, are all S × S matrices, and additionally the Uks are strictly lower-
triangular and the Lks are strictly upper-triangular. The three matrices on the right-hand side can be
computed using batch matrix multiplications, see Algorithm 1 for details.

In each training run, we choose the block size S depending on the bandwidths B that we wish
to handle. We still apply our low-bandwidth message passing to graphs that violate the assumption
B ≤ S−1, but some edges will be ignored (messages are not passed along them). Specifically, edges
(i, j) with |i − j| < S are always included, those with S ≤ |i − j| < 2S are sometimes included,
and those with |i − j| ≥ 2S are always ignored (see illustration above Equation 3). Interestingly,
we observe that dropping these edges at training time (but including them at test time) still achieves
near state-of-the-art accuracy.

Memory layout To efficiently feed data into the dense hardware, the data corresponding to each
matrix in the batch matrix multiplies need to be contiguous in memory. When tensor memory is
stored in lexicographic order, this corresponds to those dimensions being the last in the respective
tensors. Thus, the BMM operation described above is more efficient than an einsum over the
same values but with the order of dimensions shuffled. If memory needs to be rearranged before
applying the BMM operation, this incurs overhead. To some extent, these concerns can be hidden
by a compiler, but we found it beneficial to explicitly choose the memory layout.
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Algorithm 1 Low-bandwidth GGNN Message Propagation Step
Input: tensors of the following shapes:
• Cks [K, S*P, S] (Ck’s concatenated across the P edge types)
• Uks [K-1, S*P, S] (Uk’s concatenated across the P edge types)
• Lks [K-1, S*P, S] (Lk’s concatenated across the P edge types)
• Eks [K, S, H] (Ek’s; reshaped tensor of node embeddings)
• Wps [P*H, H] (Wp’s concatenated edge transform matrices for P edge types)

Output: new node embeddings [K, S, H] (E(t+1)
k ’s; reshaped new node embeddings)

{First compute [K, S*P, H] tensor pre messages storing the sum of node embeddings (H) sent to
each node (K*S) via an edge of each type (P), before transforming by edge model.}

1: pre messages = einsum(kzs,ksh->kzh, Cks, Eks)
2: pre messages[0:K-1] += einsum(kzs,ksh->kzh, Uks, Eks[1:K])
3: pre messages[1:K] += einsum(kzs,ksh->kzh, Lks, Eks[0:K-1])
4: pre messages = reshape(pre messages, [K, S, P*H])
5: incoming messages = einsum(ksy,yh->ksh, pre messages, Wps)
6: new node embeddings = GRU cell(incoming messages, Eks)

The challenge in the GGNN model is that we need to perform two kinds of matrix-multiplies: 1)
multiplication by the adjacency matrix to aggregate messages incoming to each node, and 2) mul-
tiplication by edge weight matrices to transform node embeddings into messages (see Equation 1).
In Algorithm 1, we lay out memory and perform a message passing step in a way that keeps the di-
mensions being multiplied in the last dimensions, and avoids any tensor transpositions. TensorFlow
code for our model is provided with the submission.

4 DATA

The dataset released by Allamanis et al. (2018) consists of VarMisuse instances constructed from
source code of 25 open source C# projects. Each program graph contains a special hole node,
representing the location in code for which a variable is to be predicted, and a set of candidate nodes,
representing all type-correct in-scope variables that could potentially fill the hole. The identity of
the correct candidate is also provided, so this is a supervised learning classification task.

The data comes with two pre-defined train-validation-test splits: SeenProj, where validation and
test data come from the same projects as the training data, and UnseenProj, where they come from
disjoint projects. Allamanis et al. (2018) provide more detailed results using SeenProj, so to allow
comparison we report results using the provided SeenProj splits. As a one-time pre-processing step
we discarded nodes from all graphs that cannot affect model predictions (and so do not influence
training) due to messages from these nodes not being able to reach the candidate nodes (see Ap-
pendix E for details). This tweak gave a small speed-up to all methods; without it the results were
similar and the conclusions identical. There are 124,592 training graphs in the dataset. The largest
number of nodes in a single graph is 18,582. Preserving the provided ordering of the non-eliminated
nodes, the largest (“original”) bandwidth of a graph adjacency matrix would be 18,535. See also the
blue and orange histograms in Figure 1 (left). There are P = 22 edge types.
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Figure 1: Statistics of the training graphs. Left: node counts and adjacency matrix bandwidths, horizontal
axis is log-scaled. Middle: proportion of graphs whose bandwidths can be reduced below the given threshold
B. Right: ratios between node count and adjacency matrix bandwidth after applying bandwidth reduction.
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5 EXPERIMENTS

We report results from four sets of experiments, demonstrating the following findings:

1. Program graphs often exhibit low-bandwidth structure (Section 5.1). For example, more than
80% of all training graphs in the (Allamanis et al., 2018) dataset are representable by an
adjacency matrix of bandwidth lower than 512.

2. Our GNN propagation method for low-bandwidth graphs allows fast processing of training
data (Section 5.2). A single TPUv2 device achieves similar speed as a highly optimized
sparse implementation on GPU, and the speed scales almost linearly with more cores.

3. Large-batch training allows training the model to the same validation accuracy significantly
faster (Section 5.3), and this is true despite ignoring some edges in large-bandwidth graphs.
Training on a 512-core TPUv2 slice can reach the target in 13 minutes.

4. Instead of using all training points, filtering out “troublesome” graphs can be considered:
we can drop graphs with large bandwidths and use our method losslessly (not ignoring any
edges), or we can drop graphs with too many nodes, so that full densification becomes feasi-
ble for the remaining (smaller) graphs. We find that these approaches scale less well or lead
to lower validation accuracies. For space, details are left to Appendix C.

5.1 ALLAMANIS ET AL. [2018] DATA HAS LOW BANDWIDTH

Figure 1 (left and middle) show that a compilation step can be designed such that most program
graphs in the Allamanis et al. (2018) dataset are reduced to a low-bandwidth representation. More-
over, Figure 1 (right) shows that after our compilation step using the RCMK algorithm, the band-
width B of virtually all training graphs in the dataset is significantly smaller than their number of
nodes N . The ratio of 3 is highlighted as it represents the crossover point at which the theoretical N2

cost of full densification surpasses the 3NB cost of covering the bandwidth using our three BMMs.

5.2 TRAINING SPEED IN TRAINING GRAPHS PROCESSED PER SECOND

First, as a baseline we reimplemented the GGNN model of Allamanis et al. (2018), for which they
reported a training speed of 55 graphs/second on a TitanX GPU, using a hidden dimension H = 64.
We optimized our input pipeline for speed, and using a newer V100 GPU we achieved a training
speed of 80 graphs/second, despite using double the hidden dimension H = 128.

We also implemented our low-bandwidth model using different block sizes S. A larger block size
covers more edges in the (large-bandwidth) training graphs, but the memory cost of storing the
wider densified block diagonals decreases the number of nodes in the supergraph that we can fit into
memory. A more detailed analysis appears in Appendix A; the table in Figure 2 (left) shows the
overall training speeds achieved in training graphs processed per second.

The GPU model does not have a block size parameter, so to obtain the corresponding speeds we
dropped edges lying outside of the corresponding bandwidth. However, unlike the low-bandwidth
model, the GPU model did not visibly benefit from decreasing the block size (the benefit of not
having to pass messages along a few edges far from the diagonal is negligible).

graphs/sec GPU model Low-bandwidth model

number of TPUv2 cores trained on
Block size trained 2 8 32 128 512
S on V100 (16GB) (device)

all edges 80 - - - - -
1024 80 25 100 400 1,600 4,500
512 80 75 260 1,000 3,900 11,000
256 80 110 450 1,800 6,900 21,000
128 80 160 630 2,500 9,700 24,000

2 8 32 128 512
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Figure 2: Training speed (graphs/s) on the full training data (ignoring non-conforming edges).
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A single TPUv2 device has 8 cores with 8GB of RAM each, so for comparison we also estimated
the speed on a hypothetical TPUv2 slice with just two cores, matching the 16GB of RAM available
on a V100 GPU. As the block size decreases from 512 to 256, this 16GB slice surpasses the GPU
training speed. A single TPUv2 device as well as TPUv2 slices with more cores lead to further
improvements in the training speed: Figure 2 (right) visualizes the almost ideal linear scaling.

5.3 TRAINING TIME TO VALIDATION ACCURACY

As explained in Section 4, we evaluate our approach on the SeenProj VarMisuse task of Allamanis
et al. (2018). They report a test set accuracy of 85.5% for this task, however 1) their model is trained
on a larger dataset than the one released, and 2) it includes an additional learnable component (node
label embeddings). Using the information provided by Allamanis et al. (2018) and our finding that
accuracies on the validation set lie 5 percentage points lower than on the test set (see Figure 4 in
Appendix B), we set the target validation accuracy at 78%. See Appendix B for the full justification.

We trained the GPU model and our low-bandwidth model capturing different bandwidths. Scaling
up to larger TPU slices we were able to train the latter using large batch sizes, and following Shallue
et al. (2018) we performed a fresh learning hyper-parameter sweep for each batch size. All runs
used the SGD optimizer with momentum; see Appendix E for hyper-parameter ranges.

For both the sparse GPU model and our low-bandwidth model the parameters learned during training
are the same: the per-edge-type matrices Wp (including a bias term), the weights of the GRU cell,
and the output layer. This means that at evaluation/prediction time, the weights of a low-bandwidth
model trained with any block size S can be used by the sparse GPU model, so that for evaluation
messages are passed across all edges in the validation graphs. We found that this performed better
than only passing messages along edges within the same block size as the one used for training.

For each training run, we evaluated training checkpoints at regular intervals on the full validation
data and smoothed the resulting curves. We then found the earliest checkpoint at which this valida-
tion accuracy curve exceeded the 78% target. Figure 3 reports the results. The visualization on the
right extends the study of Shallue et al. (2018) to the sparse GGNN model.

GPU model Low-bandwidth model

Block trained number of TPUv2 cores trained on
size S on V100 8 32 128 512

all edges 75,000 - - - -
(19 h)

1024 145,000 56,000 8,800 2,600 1,200
(32 h) (17 h) (2 h) (34 min) (22 min)

512 180,000 18,000 3,000 900 700
(50 h) (4 h) (40 min) (17 min) (13 min)

256 230,000 38,000 3,000 1,800 1,000
(52 h) (7 h) (35 min) (22 min) (18 min)

128 not not not 8,000 not
reached reached reached (75 min) reached

25 26 27 28 29 210211212213214215

batch size (# of graphs)

28

29

210

211

212

213
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S= 1024

S= 512

S= 256
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Figure 3: Training steps (and training time) until 78% validation accuracy.

6 RELATED WORK

Sparse linear algebra Our approach to sparse matrix multiplication is similar to approaches used
in classical sparse linear algebra. On vector processors a common storage scheme for sparse matrices
is the diagonal representation where a matrix is represented as a vector of integers corresponding to
the non-zero diagonals along with a dense matrix containing the entries on these diagonals (Saad,
2003, Sec. 3.4). Our storage scheme can be considered a block-diagonal version of this storage
scheme that is more efficient to process using the systolic array structure on TPUs.

Block-sparse neural networks In previous work authors have explored block-sparse connectivity
patterns as ways of combining the benefits of sparsity with the performance of dense matrix multi-
plication on modern hardware. Graph neural networks can be interpreted as sparse neural networks
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with a fixed binary weight matrix (the adjacency matrix) and a large hidden state (the node states).
Similarly, grouped convolutions (Xie et al., 2017) and depth-wise separable convolutions (Simonyan
& Zisserman, 2015) can be interpreted as block-sparse operations. Narang et al. (2017) looked into
learning block-sparse weight matrices for RNNs. Gray et al. (2017) explore the implementation of
highly performant CUDA kernels for block-sparse matrix multiplication.

Speeding up neural network training Goyal et al. (2017) used large-batch training to train a
ResNet-50 model on ImageNet in one hour. A subsequent chain of work has further reduced the
training time to minutes (Akiba et al., 2017; You et al., 2018; Jia et al., 2018). Our work can be seen
as an analogous first step for the GNN model and task from Allamanis et al. (2018). Shallue et al.
(2018) recently performed an extensive empirical investigation of large-batch training on a variety
of (non-sparse) models on multiple image classification and language modeling tasks.

There have been some efforts to speed up GNN training using GPUs. Deep Graph Library (Wang
et al., 2019) is a framework for training a variety of neural network models that involve passing
messages in a sparse graph. The main optimizations are sparse batching (discussed in Section 2),
batching together message computations across nodes, and fusing message and node update func-
tions (e.g., using a sparse-dense matrix multiply). Our GPU baseline uses all these optimizations
and an additional optimization from Allamanis et al. (2018) where node states can be pre-aggregated
by (receiving node, edge type) pairs when using linear edge transformations. Ma et al. (2018) also
develop a framework for efficient GNN training, using a number of lower-level optimizations includ-
ing custom GPU kernels for scatter and gather operations, and a ring-based data-loading pipeline to
reduce contention when transferring data from the host CPU to multiple GPUs. They show that the
custom GPU kernels lead to runtimes that range from 50% to 90% that of a baseline TensorFlow
implementation, and the ring-based data loading allows near-linear scaling up to 8 GPUs. Scaling
to more than 8 GPUs seems non-trivial (and is not reported).

Our focus is on problems where there are many graphs of large size (up to ≈100,000 nodes in a
graph). Alternative approaches are available in the domain of a single very large graph like is found
in social networks or knowledge graphs. In these cases, methods like GraphSAGE (Hamilton et al.,
2017) or the model from Dai et al. (2018) are likely more appropriate.

7 DISCUSSION AND FUTURE WORK

At the outset of this work, it was unclear if dense hardware could be made competitive with GPUs
for training sparse graph neural networks. The main result of this paper is to show that for a promi-
nent application of sparse graph neural networks on relatively large graphs, it is indeed possible.
Moreover, we studied large batch training for graph neural networks and showed that it is possible
to significantly speed up time-to-accuracy by scaling out to many cores and increasing batch sizes.

More generally, we have presented an example of a recipe for tackling the problem of
sparse graph message propagation on dense hardware. The general recipe is to think in
terms of an abstract virtual machine, comprising a runtime consisting of operations that
are fast on dense hardware and a compiler that rewrites the graph propagation step in
terms of runtime primitives. It would be straightforward to add more runtime primitives; we mention
two that we are particularly excited about. The first is “supernode” propagation where some nodes
are allowed to communicate with all nodes, which could be implemented by taking dense slices from
the first rows and columns of the adjacency matrix (see right). The second is a general block-sparse
matrix multiply like in the CUDA primitives of Gray et al. (2017). The compilation step for these
primitives will be an interesting combinatorial optimization problem. Finally, it would be interesting
to identify other primitives to handle specific classes of graphs (e.g., small world networks).

In this work, we held fixed the graph structures that were provided by Allamanis et al. (2018), and
already there is low bandwidth structure that can be leveraged for efficient computation. However,
going forward we would like to re-design graph structures that perform well but are constrained to
support even faster computation (e.g., can we design a bandwidth 128 model that performs equally
well?) We are also eager to collect much larger datasets and study how performance scales with
more data. The techniques presented in this paper make this feasible.
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APPENDIX FOR ICLR 2020 SUBMISSION: FAST TRAINING OF SPARSE GRAPH
NEURAL NETWORKS ON DENSE HARDWARE

A TRAINING SPEED ANALYSIS

In Section 5.2 we saw that a smaller block size S allowed processing a larger number of training
graphs per second. From a computational cost perspective, there are two forces at play as the block
size S decreases: 1) the S dimension of the densified block diagonals decreases, which 2) in turn
allows fitting supergraphs with more nodes N into memory. As the cost of the two types of matrix
multiplies in our low-bandwidth GGNN message passing algorithm (Algorithm 1) is O(NSH)
and O(NH2), respectively, a priori it is not clear how these two forces contribute to the increased
training speed. The purpose of this section is to shed more light on this.

A.1 NUMBER OF NODES IN A SUPERGRAPH

Having fixed the hidden dimension H = 128 and the number of T = 8 steps of GGNN message
passing in all our experiments, we can find the (approximate) largest number of nodes in a super-
graph that still fit into memory, given a model and hardware combination. All models need to store
the (T +1)×N ×H node embeddings E(t) for t = 0, 1, . . . , T . The memory cost of the sparse ad-
jacency representation on a GPU is negligible, and we can train on supergraphs with up to 110,000
nodes on a V100 GPU with 16GB of RAM, which on average translates to 73 training graphs per
supergraph. Our low-bandwidth model requires storage of three densified block diagonals of shapes
roughly [N,S], which starts to significantly add to the memory cost for larger block sizes S. Ta-
ble 1 shows the limits for this model, depending on the chosen block size S. As expected, covering
thinner bands allows fitting larger supergraphs (packing more training graphs) into memory.

Table 1: Per-core supergraph size, when training our low-bandwidth model on TPUv2.

Block size S 128 256 512 1024

Number of nodes N in a supergraph 70,272 65,536 49,125 28,672
Average number of graphs in a supergraph 42 39 25 10

Recall that each TPUv2 core receives its own supergraph, so the actual batch size will scale linearly
with the number of TPUv2 cores trained on.

A.2 NUMBER OF GRADIENT STEPS PER SECOND

Decreasing the block size S allows fitting more nodes N into memory, so a priori it is not clear
how the wall time to execute a single step of graph message passing would be affected. Table 2
shows the number of global steps (gradient updates) per second. Reading along columns of the
table, we can observe that performing a single gradient update with a block size S = 512 is slightly
slower than using a block size S = 1024, but as the block size S decreases further, not only does a
single supegraph fit more nodes (and therefore, more training graphs), but also each gradient update

step/sec GPU model Low-bandwidth model

Block size trained TPUv2 cores trained on
S on V100 8 32 128 512

all edges 1.05 - - - -
1024 1.05 1.34 1.29 1.26 0.90
512 1.05 1.30 1.27 1.20 0.88
256 1.05 1.46 1.44 1.40 1.07
128 1.05 1.89 1.87 1.82 1.12

Table 2: Global steps (gradient updates) per second for different model, hardware, and block size combina-
tions.

11
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gets faster for our low-bandwidth model. This result is not surprising, as the number of nodes in a
supergraph increases more slowly as the block size S decreases below S = 512 (see Table 1 above).

B SETTING THE VALIDATION ACCURACY TARGET

As explained in Section 4, we evaluate our approach on the SeenProj VarMisuse task of (Allamanis
et al., 2018). For this task they report a test set accuracy of 85.5% using their full model that
includes node labels with learnable embeddings. In order to simplify the comparison and eliminate
the influence of this additional learnable component, we turn off node labels in our implementation.
Allamanis et al. (2018) report a test set accuracy of 84.3% without node labels. However, these test
set accuracies are achieved by a model trained on a larger training data than their published dataset;
the difference are projects with a GPL licence that could not be released. In their Appendix D the
authors report the test set accuracy of 84.0% for their full model trained on the released data, i.e. 1.5
percentage point lower than the model trained on the extended dataset. The test set accuracy using a
model trained on the released data and without node labels is not provided, but we can estimate it to
be approximately 83% by combining the 1.5 percentage point cost of only training on the released
data, and the 1.2 percentage point cost of turning off node labels.

When iterating on models and choosing hyper-parameters, it is important to use an independent val-
idation dataset that does not pollute the test set. The dataset released by Allamanis et al. (2018) does
come with a predefined validation split. Figure 4 shows the alignment of validation and test set ac-
curacies, where we discovered that validation accuracies are well correlated with test set accuracies,
but are generally 5 percentage points lower. The figure was produced by evaluating the validation
and test set accuracies of models with different hyper-parameters and different randomness. We
have explicitly not looked at which models achieved what test performance.
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Figure 4: Alignment of validation and test set accuracies on the SeenProj VarMisuse task of Allamanis et al.
(2018). The plot on the right is a zoomed in version of the full plot on the left.

Combining the test set accuracy target of 83% with the observation about validation accuracies being
5 percentage points lower, we set the target validation accuracy at 78%.

C WHAT ABOUT FILTERING GRAPHS?

In this section we consider the strategy of filtering out graphs that we cannot fully handle. In the
context of our approach this means only training on training graphs whose bandwidth was reduced
below the bandwidth limit that the model being trained is guaranteed to cover (B ≤ S − 1, see
Section 3.2). This filtering strategy is investigated in Sections C.1 and C.2 below.

We also investigate an alternative, simple approach based on filtering, that does not rely on band-
widths: dropping graphs with the largest numbers of nodes, so that for the graphs that remain it
would be cheaper to have their adjacency matrices fully densified. See Section C.3 below.
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C.1 TRAINING SPEED ON BANDWIDTH-FILTERED DATASETS

Table 3 shows the training speed in graphs/second achieved for different combinations of model,
hardware, and training data filtering criterion.

Table 3: Training speed (graphs/s) on slices of the training data with large bandwidth graphs discarded.

graphs/second GPU model Low-bandwidth model

trained number of TPUv2 cores trained on
on V100 2 8 32 128

Training data slice (16GB) (16GB) (device)

100% (full data) 80 - - - -
91.9% (B < 1024) 130 75 300 1,200 4,500
83.5% (B < 512) 170 180 730 2,900 11,000
69.2% (B < 256) 240 400 1,600 6,200 23,000
48.9% (B < 128) 390 900 3,600 14,000 53,000

The bandwidth of a graph can be expected to be correlated with the number of nodes it has, so as
the bandwidth requirement is strengthened the graphs being trained on tend to become smaller, and
so more training graphs fit into one supergraph (see Table 4 below, and cf Table 1 above).

Table 4: Number of training graphs that fit into a supergraph on average. See Section C.1. The number of
nodes in a supergraph is constant for the GPU model thanks to the sparse representation.

Bandwidth bound 127 255 511 1023 None

Number of nodes N in a supergraph (V100) 110,000 110,000 110,000 110,000 110,000
Average number of graphs in a supergraph 370 230 170 130 70

Number of nodes N in a supergraph (TPUv2) 70,272 65,536 49,125 28,672 -
Average number of graphs in a supergraph 240 140 70 30 -

C.2 TIME TO VALIDATION ACCURACY ON BANDWIDTH-FILTERED DATASETS

Following the same procedure as in Section 5.3 where we trained on all training graphs (but ignoring
some edges in large bandwidth graphs), we evaluated training time to 78% validation accuracy when
training the GPU and low-bandwidth models on training data with large bandwidth graphs entirely
discarded. We refer to these two settings as lossy and filtered, respectively. Table 5 reports the
results. By comparing to the table in Figure 3, we can observe that while for block size S = 1024
on 8 and 32 TPUv2 cores it is more beneficial to filter out non-conforming graphs than to handle
them in a lossy way, for block size S = 512 where the lossy approach led to the fastest training time
to validation accuracy, the filtering approach does not scale nearly as well, and for S = 256 it is
unable to reach the target validation accuracy at all.

C.3 ELIMINATING GRAPHS BASED ON BANDWIDTH VS BASED ON NUMBER OF NODES

A simple strategy of training sparse models on dense hardware would be densification. Unfortu-
nately, computing with dense representations of adjacency matrices is not feasible when some of
the training graphs have a large number of nodes (in the (Allamanis et al., 2018) dataset the largest
number of nodes in a single training graph is 20,231 in the released data, and 18,852 after the
reachability-reduction described in Section 4). However, if one is content with throwing away some
number of “cumbersome” training graphs anyway (such as those with large bandwidth), one can
equally consider the natural alternative of throwing away graphs with many nodes. That way the re-
maining training graphs can have small enough adjacency matrices so that computations with fully
densified representations become feasible.

In this section we investigate the question of how discarding graphs based on number of
nodes compares to discarding based on bandwidth. To this end, for each bandwidth bound
{1024, 512, 256, 128} considered in this paper we computed the percentage of training graphs within
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Table 5: Training steps (and training time) until 78% validation accuracy on bandwidth-filtered data.

GPU model Low-bandwidth model

Block trained TPUv2 cores trained on
size S on V100 8 32 128

all edges 75,000 - - -
(19 h)

1024 115,000 12,000 2,500 2,200
(33 h) (3 h) (32 min) (30 min)

512 115,000 18,000 14,000 10,500
(38 h) (4 h) (3 h) (2.5 h)

256 not not not not
reached reached reached reached

128 not not not not
reached reached reached reached

the bound (already reported in the table in Figure 1 (middle)) and then found a corresponding bound
on the number of nodes that leads to the same percentage of conforming training graphs. For exam-
ple, 83.5% training graphs have a bandwidth smaller than 512, and if we choose a bound of 2037 on
the number of nodes, 83.5% training graphs will have a smaller number of nodes than this bound.
See the first two columns of Table 6. We then trained the (sparse) GPU model on training datasets
filtered based on these bandwidth and number of nodes bounds, and evaluated the validation accu-
racy reached at specific training steps. In each case we perfored a random hyper-parameter search
over the ranges reported in Appendix E, using 40 hyper-parameter configuration samples. Columns
3-5 of Table 6 report the best obtained results for each case.

While at 100 000 training steps filtering based on number of nodes can in some cases lead to slightly
higher validation accuracies, in all other cases filtering based on bandwidth appears to works better.
In particular, at 300 000 training steps all training runs seem to have converged, and filtering based
on bandwidth always lead to higher final validation accuracy.

Filtering based on number of nodes versus based on bandwidth has different computational impli-
cations for dense hardware implementations. While densifying (and pre-multiplying by) an N -node
adjacency matrix incurs a cost of N2, our low-bandwidth message passing algorithm (Section 3.2
for graphs with N nodes and bandwidth B incurs a cost of (approximately) 3NB. The last column
of Table 6 reports the estimated per-node computational cost of densification under the appropriate
model. One unit of cost corresponds to densifying 1000 matrix elements per graph node. We can see
that in all cases, under a fixed proportion of graphs that can be thrown away, filtering based on band-
width not only tends to lead to higher validation accuracies, but does so with lower computational
cost.

Table 6: Validation accuracy on varying slices of the training data.

Training data slice Validation accuracy at training step Iteration
size definition 100 000 200 000 300 000 cost

100% all data 78.1 78.5 78.9 18.6

91.9% bandwidth < 1024 77.9 78.5 78.9 3.1
91.9% order < 3493 78.2 78.3 78.4 3.5

83.5% bandwidth < 512 78.0 78.2 78.4 1.5
83.5% order < 2037 78.1 78.1 77.5 2.0

69.2% bandwidth < 256 77.5 77.7 77.8 0.8
69.2% order < 1191 76.6 76.0 75.8 1.2

48.9% bandwidth < 128 74.8 74.6 74.7 0.4
48.9% order < 624 73.9 73.6 73.7 0.6
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Remark. For the full training data the computation cost has been calculated as max(3 ×
9 372, 18 582) = 18 582, where 9 372 and 18 582 are the largest bandwidth and number of nodes in
the (reachability-reduced, see Section 4) training data, respectively.

To conclude this section, we note one conceptual advantage of handling graphs with low-bandwidth
rather than with a low number of nodes. When multiple low bandwidth graphs are placed into a
supergraph using the sparse batching technique described in Section 2, the resulting supergraph
is automatically low-bandwidth and our low-bandwidth message passing method applies. On the
other hand, when multiple graphs with a low number of nodes are placed into a supergraph, this
supergraph would have a large number of nodes (sum of node counts of the individual graphs)
and so either one again needs a custom densification scheme matching the sparsity structure of the
supergraphs’s adjacency matrix, or a different batching strategy needs to be applied.

D LOW-BANDWIDTH MODEL ON GPU

Out of interest it is also possible to train the low-bandwidth model on GPU. We can confirm that the
low-bandwidth model, designed with dense hardware in mind, is slower on a single V100 GPU than
the highly optimized sparse GPU implementation used in the paper. The speeds were as follows
(compare to Fig. 2): 7 graphs/s (S = 1024), 16 graphs/s (S = 512), 31 graphs/s (S = 256) and 57
graphs/s (S = 128).

E DETAILS FOR REPRODUCIBILITY

Reachability preprocessing As a one-time data preprocessing step we discarded nodes from all
graphs that cannot affect model predictions (and so do not influence training). Specifically, follow-
ing Allamanis et al. (2018) we use T = 8 message passing steps in the GGNN encoder, so only
nodes from which a candidate node is reachable within 8 steps affect the final embeddings and thus
the logits of these candidates. Any other nodes can be discarded. All reported results including the
GPU baselines use reachability-reduced data. Reachability preprocessing was a final tweak that gave
a small speed-up to all methods; without it the results were similar and the conclusions identical.

Batch size All GPU training runs used a supergraph with 110 000 nodes. The number of nodes in
a supergraph for the low-bandwidth model trained was given in Table 1. When training on multiple
cores, each core independently received a supergraph with this many nodes, i.e. the total number of
nodes used in a single gradient update scaled linearly with the number of cores in the system.

Model All our models used H = 128 hidden dimensions, T = 8 message propagation steps, and
a learnable per-edge-type bias term in the message propagation. We did not use message averaging,
i.e. messages incoming into a node were always summed, not averaged.

Optimization All our training runs used the Momentum optimizer. Further optimization tech-
niques that we employed were dropout (on the GRU cell), label smoothing, weight decay (L2-
regularization), a linear learning rate decay schedule, Nesterov momentum, and gradient clipping
(by norm).

All GPU training runs were started with 40 random hyper-parameter configurations independently
sampled from the following values:

• dropout keep prob ∈ {0.6, 0.7, 0.8, 0.9}
• label smoothing ∈ {0, 0.005, 0.05}
• weight decay ∈ {10−1, 10−6, 10−5, 10−4, 10−3}
• learning rate ∈ {0.03, 0.1, 0.3, 1.0, 3.0}
• learning rate decay steps ∈ {100000, 300000}
• end learning rate factor ∈ {0.1, 1.0}
• momentum ∈ {0.3, 0.5, 0.7, 0.9, 0.95, 0.97}
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• use nesterov ∈ { False, True }
• gradient clip ∈ {0.003, 0.01, 0.1, 0.3}

Note the random search automatically marginalizes out any potentially irrelevant hyper-
parameters; for example, when end learning rate factor = 1.0, the value of
learning rate decay steps does not matter.

Training runs of our low-bandwidth model on TPUv2 were also started with 40 independently sam-
pled random hyper-parameter configurations. As the batch size increased, we allowed the TPUv2
model to use larger learning rates and a smaller number of learning rate decay steps:

• learning rate ∈ {1.0, 3.0, 7.0, 10.0, 30.0}
• learning rate decay steps ∈ {500, 1000, 5000, 10000}

We had checked that these options would not have aided the GPU baseline.
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