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Abstract: Large crossed data sets, often modeled by generalized linear
mixed models, have become increasingly common and provide challenges
for statistical analysis. At very large sizes it becomes desirable to have the
computational costs of estimation, inference and prediction (both space and
time) grow at most linearly with sample size.

Both traditional maximum likelihood estimation and numerous Markov
chain Monte Carlo Bayesian algorithms take superlinear time in order to
obtain good parameter estimates in the simple two-factor crossed random
effects model. We propose moment based algorithms that, with at most lin-
ear cost, estimate variance components, measure the uncertainties of those
estimates, and generate shrinkage based predictions for missing observa-
tions. When run on simulated normally distributed data, our algorithm
performs competitively with maximum likelihood methods.
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1. Introduction

Modern electronic activity generates enormous data sets with an unbalanced
crossed random effects structure. The factors are customer IDs, URLs, product
IDs, cookies, IP addresses, news stories, tweets, and query strings, among others.
These variables could be treated as fixed effects, plain categorical variables that
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just happen to have a large number of levels. But in many cases, the specific
category levels are evanescent. Customers turn over at some rate, cookies get
deleted at an even faster rate, products or news stories grow in popularity but
then fade. In such cases it is more realistic to treat such variables as random
effects. We want our inferences to apply to the population from which the future
and observed levels of those variables are sampled. For realism we should also
treat data in the same level of a factor as correlated.

The statistically efficient way to treat data sets with crossed random effects is
through generalized linear mixed models (GLMMs), maximizing the likelihood
with respect to both the parameters and the random effects. However, the cost
of these computations is dominated by matrix algebra that takes time cubic in
the number of distinct levels and space quadratic in that number; see [1] or [16].
Such costs are infeasible for big data.

It has been suggested to us that stochastic gradient descent (SGD) could pro-
vide an alternative way to maximize the likelihood. However, SGD approaches
with theoretical guarantees have only been developed for data that can be split
into independent subsets, which is not possible for data sets with crossed random
effects.

With GLMMs infeasible, it is natural to consider the Gibbs sampler and other
Markov Chain Monte Carlo (MCMC) methods. But, as shown in Section 2, those
methods in the crossed random effects context have computational cost that is
superlinear in the sample size. This is very different from the great success that
MCMC has on hierarchical models for data with a nested structure. See for
instance [5], [20] and [24].

With both likelihood and Bayesian methods running into difficulties, we turn
to the method of moments. It seems ironic to use a 19th century method in
this era of increased computer power. But data growth has been outpacing
processing power for single-threaded computation, so it is appropriate to revisit
methods from an earlier time when the data was large compared to the available
computing power. A compelling advantage of the method of moments is that
it is easily parallelizable. It also makes no distributional assumptions, has no
tuning parameters, and does not require cumbersome diagnostics.

We are motivated by generalized linear mixed models with linear fixed effects
but we focus the present paper on a very special case. We consider a setting
with identity link, just two factors that are both random, and intercept only
regression. In this paper, we assume that the data follow:

Model 1. Two-factor crossed random effects,

Yij = μ+ ai + bj + eij , i, j ∈ N where

ai
iid∼ (0, σ2

A), bj
iid∼ (0, σ2

B), eij
iid∼ (0, σ2

E) and

E(a4i ) < ∞, E(b4j ) < ∞, E(e4ij) < ∞.

(1)

For example, i might index a customer while j indexes a product and Yij is
the most recent rating of product j by customer i. Then bj represents product
quality, ai represents easy versus hard to please customers, and eij is noise.
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More realistic models incorporate fixed effects and interactions and bilinear
(SVD) terms. We choose this model because it is the simplest case that exhibits
the intrinsic difficulty of the large unbalanced crossed random effects setting.
Our goal is not to resolve the issue of analyzing massive crossed data sets via
GLMMs in one go. Our contribution is a computationally affordable analogue of
Henderson I (mentioned below) while analogues of Henderson II and Henderson
III would offer richer modeling capabilities.

In the available data we only see N of the Yij , where 1 � N < ∞, in R
distinct rows (i’s) and C distinct columns (j’s). For example, R or C could
be the number of distinct customers or products. We assume that observations
are missing completely at random. See Section 7.1 for comments on informative
missingness. Note that we do not make any distributional assumptions.

Let θ = (σ2
A, σ

2
B , σ

2
E)

T be the vector of variance components. Our first task

is to get an unbiased estimate θ̂ of θ at computational cost O(N) and using
additional storage that is O(R+ C), which is often sublinear in N .

Our second and more challenging task is to find the variance of θ̂, Var(θ̂ | θ, κ).
This variance depends on both θ and the vector of kurtoses of the random effects
κ = (κA, κB, κE)

T. We develop formulas V (θ, κ) approximating Var(θ̂ | θ, κ)
that can be computed in O(N) time and O(R + C) storage, given values for θ
and κ. After developing an estimate κ̂ that can be computed in O(N) time and

O(R+C) space, we let V̂ar(θ̂) = V (θ̂, κ̂) be our plug-in estimate of the variance

of θ̂.

Notice that in order to achieve the complexity bounds, we choose to over-
estimate Var(θ̂). Specifically, we require the functions V to satisfy diag(V (θ, κ))�
diag(Var(θ̂ | θ, κ)). As we show, the overestimation is by a mild factor.

For large data sets we might suppose that Var(θ̂) is necessarily very small and
getting exact values is not important. While this may be true, it is wise to check.
The effective sample size (as defined in [11]) in model (1) might be as small as R
or C if the row or column effects dominate. Moreover, if the sampling frequencies
of rows or columns are very unequal, then the effective sample size can be much
smaller than R or C. For example, the Netflix data set [2] has N

.
= 108. But

there are only about 18,000 movies and so for statistics dominated by the movie
effect the effective sample size might be closer to 18,000. That the movies do not
appear equally often would further reduce the effective sample size. Indeed, [13]
shows that for some linear statistics the variance could be as much as 50,000
times larger than a formula based on IID sampling would yield. That factor is
perhaps extreme but it would translate a nominal sample size of 108 into an
effective sample size closer to 2,000.

An outline of this paper is as follows. Section 2 describes the difficulties with
Gibbs sampling and other MCMC algorithms for crossed random effects, as
suggested by theoretical results and shown through simulations. Section 3 in-
troduces further notation and assumptions. Section 4 presents our linear-cost
algorithm to estimate θ and conservatively approximate the variance of that
estimate. Section 5 studies how knowledge of σ2

A, σ
2
B , and σ2

E can be used to
construct shrinkage predictions of unknown Yij . Section 6 illustrates the meth-
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ods in Section 4 on both simulated Gaussian data and real world data. Section 7
concludes the paper and discusses informative missingness. Appendix A, Sec-
tion 8, has a proof of convergence rates for MCMC methods and tables of their
simulation results. Appendix B, Section 9, develops the variance formulas for
our moment estimates and provides proofs of our theorems about prediction.
We conclude this section with a few more pointers to the literature.

Our procedure to find variance component estimates is similar to those of
Henderson [8] as described in Searle et al. [19, Chapter 5], but there are im-

portant differences in both cost and generality. Computing V̂ar(θ̂) for Hender-
son I requires terms k21 and k22 [19, p. 434] that cost O(R2 + C2) space and
O(RC(R + C)) time. That is over our budget. Henderson II addresses a flaw
in Henderson I making it possible to incorporate fixed effects, but those fixed
effects do not reduce the computational complexity. Henderson III addresses
a flaw in Henderson II making it possible to incorporate interactions between
fixed and random effects, but then the computation goes up to O((R+C)3). We
get estimates and quantify their uncertainty within O(R+ C) space and O(N)
time budgets. As stated in [19], analyzing the variance of Henderson’s estima-
tors is difficult without the Gaussian assumption. Gaussian variables are not
a reasonable assumption in our target applications. We use U -statistics that
are weighted sums of within-row and within-column variances, while [8] uses
statistics that estimate the variances of row means and column means. Follow-
ing this approach we are able to find the variances of our U -statistics without
any distributional assumptions. In our opinion, the quantities estimated by our
U -statistics are easier to interpret than the ones Henderson uses.

For crossed random effects models with missing data [4] propose an alter-
nating imputation-posterior (AIP) algorithm, which they show has good per-
formance on fairly large data sets. It may be termed a ‘pseudo-MCMC’ method
since it alternates between sampling the missing data from its distribution given
the parameter estimates and sampling the parameters from a distribution cen-
tered on the maximum likelihood estimates. Because of this last step, we do not
consider AIP to be scalable to Internet size problems.

In our model (1), for simplicity the variance components are homoscedastic.
Alternatively, we could allow them to be heteroscedastic; see [13] or [14], who
study bootstrap variance estimates for means and smooth functions of means.
The latter paper also considers a more complex model in the sense that there
are more than two factors as well as interactions among factors.

2. MCMC for large crossed data

In this section we consider some common MCMC methods to estimate the
parameters σ2

A, σ2
B , and σ2

E of model (1). We show that numerous MCMC
methods cannot scale. Some readers may prefer to skip directly to Section 3
describing our moments approach.

For this section we assume that ai, bj and eij are normally distributed in
order to analyze MCMC. We also use normally distributed data in some sim-
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ulations in Section 6, but otherwise no normality assumptions are used in this
paper.

Balanced data is a fully sampled R×C matrix with Yij for rows i = 1, . . . , R
and columns j = 1, . . . , C. We present some analyses for balanced data with
interspersed remarks on how the general unbalanced case behaves. The bal-
anced case allows sharp formulas that we find useful and that case is the one
we simulate. In particular, we can obtain convergence rates for some MCMC
algorithms.

To estimate σ2
A, σ2

B , and σ2
E MCMC methods sample from the posterior

distribution given the data: π = p(μ, a, b, σ2
A, σ

2
B , σ

2
E | Y ) where a is the vector

of ai and b is the vector of bj . Let

S(t) =
(
μ(t) a(t)

T

b(t)
T

σ
2(t)
A σ

2(t)
B σ

2(t)
E

)T
, for t � 1

denote the resulting chain. While MCMC is effective for hierarchical random
effects models, it scales badly for crossed random effects models as we will see.
Indeed, in limits where R,C → ∞, the dimension of our chain S(t) approaches
infinity. Convergence rates of many MCMCmethods slow down as the dimension
of the chain increases, making them ineffective for high dimensional parameter
spaces.

The MCMC methods we consider go over the entire data set at each iteration.
There are alternative samplers that save computation time by only looking at
subsets of data at each iteration. However, so far those approaches are developed
for IID data only.

2.1. Gibbs sampling

In each iteration of Gibbs sampling [6], we draw from the conditional posteriors
of μ, a, b, σ2

A, σ
2
B , and σ2

E in turn. To analyze the behavior of this sampler,
let us consider the problem of Gibbs sampling from the ‘smaller’ distribution
φ = p(a, b | μ, σ2

A, σ
2
B , σ

2
E , Y ). At iteration t + 1, we sample a(t+1) ∼ p(a |

b(t), μ, σ2
A, σ

2
B , σ

2
E , Y ) and b(t+1) ∼ p(b | a(t+1), μ, σ2

A, σ
2
B , σ

2
E , Y ), which are nor-

mal distributions with diagonal covariance matrices. Let X(t) be the resulting
chain.

Roberts and Sahu [18] give the following definition.

Definition 2.1. Let θ(t), for integer t � 0 be a Markov chain with stationary
distribution h. Its convergence rate is the minimum number ρ such that

lim
t→∞

Eh

[
(Eh[f(θ

(t)) | θ(0)]− Eh[f(θ)])
2
]
r−t = 0

holds for all measurable functions f such that Eh(f(θ)
2) < ∞ and all r > ρ.

Theorem 2.1. Let ρ be the convergence rate of X(t) to φ, as in Definition 2.1.
Then,

ρ =
σ2
B

σ2
B + σ2

E/R
× σ2

A

σ2
A + σ2

E/C
.
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Proof. See Section 8.1.

We see that ρ → 1 as R,C → ∞, outside of trivial cases with σ2
A or σ2

B

equal to zero. If R and C grow proportionately then ρ = 1− α/
√
N + O(1/N)

for some α > 0. We can therefore expect the Gibbs sampler to require at least
some constant multiple of

√
N iterations to approximate the target distribution

sufficiently. When the data are not perfectly balanced, numerical computation of
ρ shows that Gibbs still mixes increasingly slowly as N → ∞ while the sampler
requires O(N) computation per iteration. In sum, Gibbs takes O(N3/2) work to
sample from φ, which is not scalable.

Because sampling from φ can be viewed as a subproblem of sampling from π,
we believe that the Gibbs sampler that draws from π, which also requires O(N)
time per iteration, will exhibit the same slow convergence and hence require
superlinear computation time.

2.2. Other MCMC algorithms

The Gibbs sampler is widely used for problems like this, where the full condi-
tional distributions are tractable to sample from. But there are other MCMC al-
gorithms that one could use. Here we consider random walk Metropolis (RWM),
Langevin diffusion, and Metropolis adjusted Langevin (MALA). They also have
difficulties scaling to large data sets.

At iteration t + 1 of RWM, a Gaussian random walk proposal S(t+1) ∼
N (S(t), σ2I) for σ2 > 0 is made and the step is taken with the Metropolis-
Hastings acceptance probability. If the target distribution is a product distri-
bution of dimension d, the chain S̃(t) ≡ S(dt) (i.e. the chain formed by every
dth state of the chain S(t)) converges to a diffusion whose solution is the target
distribution. We may interpret this as a convergence time for the algorithm that
grows as O(d) [17].

For our problem, evaluating the acceptance probability requires time at least
O(N), so the overall algorithm then takes O(N(R + C)) time. This is at best
O(N3/2), as we found for Gibbs sampling, and could be worse for sparse data
where N 	 RC. Our target distribution is not of product form, but we have
no reason to expect that RWM mixes orders of magnitude faster here than for
a distribution of product form. Indeed, it seems more likely that mixing would
be faster for product distributions than for distributions with more complicated
dependence patterns such as ours.

At iteration t+1, Langevin diffusion steps S(t+1) ∼N (S(t)+(h/2)∇ log π(S(t)),
hI) for h > 0. As h → 0, the stationary distribution for this process con-
verges to π, as shown for general target distributions in [12]. Because h �= 0
in practice, the Langevin algorithm is biased. To correct this, the MALA al-
gorithm uses the Metropolis-Hastings algorithm with the Langevin proposal
S(t+1). When the target distribution is a product distribution of dimension d,

the chain S̃(t) ≡ S(d1/3t) converges to a diffusion with solution π; the con-
vergence time grows as O(d1/3) [17]. With similar reasoning as for RWM, the
computation time is O(N(R+ C)1/3), which is at best O(N1+1/6).
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Table 1

Summary of simulation results for cases with R = C = 1000. The first row gives CPU time
in seconds. The next four rows give median estimates of the 4 parameters. The next four

rows give the number of lags required to get an autocorrelation below 0.5.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

CPU sec. 3432 15046 4099 2302 4760 2513 2141 2635 1966

med μ 0.97 1.02 1.04 0.99 0.96 2.39 1.55 1.07 1.53
med σ2

A 1.96 1.99 2.02 1.90 1.95 1.78 2.01 1.96 1.99
med σ2

B 0.51 0.50 0.50 0.40 0.50 2.94 0.51 0.50 0.49
med σ2

E 1.00 1.00 1.00 65.22 2.66 0.15 0 0.93 0

ACF(μ) 801 790 694 1 2501 5000+ 1133 1656 1008
ACF(σ2

A) 1 1 1 122 2656 5000+ 1133 989 912
ACF (σ2

B) 1 1 1 477 2514 5000+ 1133 855 556
ACV(σ2

E) 1 1 1 385 3062 5000+ 1518 1724 621

2.3. Simulation results

We carried out simulations of the four algorithms described above, as well as
five others: the block Gibbs sampler (‘Block’), the reparameterized Gibbs sam-
pler (‘Reparam.’), the independence sampler (‘Indp.’), RWM with subsampling
(‘RWM Sub.’), and the pCN algorithm of [7]. Descriptions of these five algo-
rithms are given below with discussions of their simulation results. Every algo-
rithm was implemented in MATLAB and run on a cluster using 4GB memory.

For each algorithm and a range of values of R and C, we generated balanced
data from model (1) with μ = 1, σ2

A = 2, σ2
B = 0.5, and σ2

E = 1. We ran 20,000
iterations of the algorithm, retaining the last 10,000 for analysis. We record the
CPU time required, the median values of μ, σ2

A, σ
2
B , and σ2

E , and the number of
lags needed for their sample auto-correlation functions (ACF) to go below 0.5.

The entire process is repeated in 10 independent runs. Table 1 presents me-
dian values of the recorded statistics over the 10 runs for the case R = C = 1000.
Section 8 includes corresponding results at a range of (R,C) sizes.

Block Gibbs, which updates a and b together to try to improve mixing, has
computation time superlinear in the number of observations. Also to improve
mixing, reparameterized Gibbs scales the random effects to have equal variance.
This gives an algorithm equivalent to the conditional augmentation of [21]. For
all three Gibbs-type algorithms, the parameter estimates are good but μ mixes
slower as R and C increase, while the variance components do not exhibit this
behavior.

The computation times of Langevin diffusion (‘Lang.’) and MALA are ap-
proximately linear in the number of observations. However, σ2

E tends to explode
for large data sets in Langevin diffusion, while the chain does not mix well in
MALA.

The independent sampler is a Metropolis-Hastings algorithm where the pro-
posal distribution is fixed. We propose μ ∼ N (1, 1), a ∼ N (0, IR), b ∼ N (0, IC),
and σ2

A, σ
2
B , σ

2
E ∼ InvGamma(1, 1). The computation time grows linearly with

the data size. The parameters do not mix well, and their estimates are not good.
It is possible that better results would be obtained from a different proposal dis-
tribution, but it is not clear how best to choose one in practice.
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RWM and RWM with subsampling, the latter of which updates a subset of
parameters at each iteration, both have computation time linear in the number
of observations. Neither algorithm mixed well, and for RWM σ2

E tended to go
to zero in large data sets.

The pCN algorithm is a Metropolis-Hastings algorithm where the proposals
are Gaussian random walk steps shrunken towards zero: S(t+1) ∼N (

√
1−σ2S(t),

σ2I), for σ2 ≤ 1. Hairer, Stuart and Vollmer [7] show that under certain condi-
tions on the target distribution, the convergence rate of this algorithm does not
slow with the dimension of the distribution. We include it here, even though our
π does not satisfy those conditions. The computation time grows linearly with
the data size. However, the estimates for μ and σ2

E are not good, and those for
σ2
E even get worse as the data size increases. None of the parameters seem to

mix well.
In summary, for large data sets each algorithm mixes increasingly slowly

or returns flawed estimates of μ and the variance components. We have also
simulated some unbalanced data sets and slow mixing is once again the norm,
with worse performance as R and C grow.

3. Further notation and assumptions

In this section, we go over pertinent notation and assumptions about the pattern
of observations. Our data are realizations from model (1).

We refer to the first index of Yij as the ‘row’ and the second as the ‘column’.
We use integers i, i′, r, r′ to index rows and j, j′, s, s′ for columns. The actual
indices may be URLs, customer IDs, or query strings and are not necessarily
the integers we use here.

The variable Zij takes the value 1 if Yij is observed and 0 otherwise. We
assume that there can be at most one observation in position (i, j).

The sample size is N =
∑

ij Zij < ∞. The number of observations in row i
is Ni• =

∑
j Zij and the number in column j is N•j =

∑
i Zij . The number of

distinct rows is R =
∑

i 1Ni•>0 and there are C =
∑

j 1N•j>0 distinct columns.
In the following, all of our sums over rows are only over rows i with Ni• > 0,
and similarly for sums over columns. We state this because there are a small
number of expressions where omitting rows without data changes their values.
Our convention corresponds to what happens when one makes a pass through
the whole data set.

Let Z be the matrix containing Zij . Of interest are (ZZT)ii′ =
∑

j ZijZi′j ,
the number of columns for which we have data in both rows i and i′, and
(ZTZ)jj′ . Note that (ZZT)ii′ � Ni• and furthermore∑

ir

(ZZT)ir =
∑
jir

ZijZrj =
∑
j

N2
•j , and

∑
js

(ZTZ)js =
∑
i

N2
i•.

Two other useful idioms are

Ti• =
∑
j

ZijN•j and T•j =
∑
i

ZijNi•. (2)
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Here Ti• is the total number of observations in all of the columns j that are
represented in row i.

Our notation allows for an arbitrary pattern of observations. Some special
cases are as follows. A balanced crossed design can be described via Zij =
1i�R1j�C . If maxi Ni• = 1 but maxj N•j > 1 then the data have a nested
structure with rows nested in columns. If maxi Ni• = maxj N•j = 1, then the
observed Yij are IID.

Some patterns are difficult to handle. For example, if all the observations are
in the same row or column, some of the variance components are not identifiable.
We are motivated by problems that are not such worst cases.

Our main results are formulas that can be applied to finite samples. In some
cases we use limits N → ∞ to get insight into those formulas. The quantities

εR = max
i

Ni•/N, and εC = max
j

N•j/N (3)

measure the extent to which a single row or column dominates the data set. We
expect that these are both small and in limiting arguments, where N → ∞, we
may assume that

max(εR, εC) → 0. (4)

It is also often reasonable to suppose that maxi Ti•/N and maxj T•j/N are both
small.

In many data sets, the average row and column sizes are large, but much
smaller than N . One way to measure the average row size is N/R. Another
way to measure it is to randomly choose an observation and inspect its row
size, obtaining an expected value of (1/N)

∑
i N

2
i•. Similar formulas hold for the

average column size. Therefore, we assume that as N → ∞

max(R/N,C/N) → 0 (5)

and

min
( 1

N

∑
i

N2
i•,

1

N

∑
j

N2
•j

)
→ ∞, and

max
( 1

N2

∑
i

N2
i•,

1

N2

∑
j

N2
•j

)
→ 0.

(6)

Notice that

1

N2

∑
i

N2
i• � 1

N2

∑
i

Ni•(εRN) � εR, and
1

N2

∑
j

N2
•j � εC (7)

and so the second part of (6) follows from (3) and (4).
While the average row count may be large, many of the rows corresponding

to newly seen entities can have Ni• = 1. In our analysis, it is not necessary to
assume that all of the rows and columns contain at least some minimum number
of observations. Thus, we avoid losing information by the practice of iteratively
removing all rows and columns with few observations.
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To illustrate the appropriateness of our assumptions, the Netflix data has
N = 100,480,507 ratings on R = 17,770 movies by C = 480,189 customers.
Therefore R/N

.
= 0.00018 and C/N

.
= 0.0047. It is sparse with N/(RC)

.
=

0.012. It is not dominated by a single row or column because εR
.
= 0.0023 and

εC = 0.00018 even though one customer has rated an astonishing 17,653 movies.
Similarly

N∑
i N

2
i•

.
= 1.78× 10−5,

∑
i N

2
i•

N2

.
= 0.00056,

N∑
j N

2
•j

.
= 0.0015, and

∑
j N

2
•j

N2

.
= 6.43× 10−6

so that the average row or column has size 
 1 and 	 N .
There are various possible data storage models. We consider the log-file model

with a collection of (i, j, Yij) triples, which for the purposes of this paper we
assume are stored at the same location. A pass over the data proceeds via an
iteration over all (i, j, Yij) triples in the data set. Such a pass may generate
intermediate values that we assume can be retained for further computations.

4. Moment estimates of variance components

Here we develop a method of moments estimate θ̂ for θ = (σ2
A, σ

2
B , σ

2
E)

T that

requires one pass over the data. We also find an expression for Var(θ̂ | θ, κ) and
describe how to obtain an approximation of it after a second pass over the data.

Naturally, we would also want to estimate μ, and there are a number of ways
to do so. The simplest is to let μ̂ = Ȳ••, the sample mean. From [14],

Var(Ȳ••) = σ2
A

∑
r N

2
r•

N2
+ σ2

B

∑
s N

2
•s

N2
+

σ2
E

N
� εRσ

2
A + εCσ

2
B +

σ2
E

N
. (8)

The upper bound in (8) is tight for balanced data, but otherwise it can be
very conservative. The properties of this estimator have been well-studied in
the literature, so in this paper we focus on estimating the variance components.

4.1. U-statistics for variance components

The usual unbiased sample variance estimate can be formulated as a U -statistic,
which is more convenient to analyze. Thus, we use the following U-statistics as
our method of moments estimators:

Ua =
1

2

∑
ijj′

N−1
i• ZijZij′(Yij − Yij′)

2,

Ub =
1

2

∑
jii′

N−1
•j ZijZi′j(Yij − Yi′j)

2, and

Ue =
1

2

∑
iji′j′

ZijZi′j′(Yij − Yi′j′)
2.

(9)
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To understand Ua note that for each row i, the quantities Yij − μ− ai are IID
with variance σ2

B + σ2
E . Thus, Ua is a weighted sum of within-row unbiased

estimates of σ2
B+σ2

E . The explanation for Ub is similar, while Ue is proportional
to the sample variance estimate of all N observations.

Lemma 4.1. Let Yij follow the two-factor crossed random effects model (1)
with the observation pattern Zij as described in Section 3. Then the U -statistics
defined at (9) satisfy

E(Ua) = (σ2
B + σ2

E)(N −R)

E(Ub) = (σ2
A + σ2

E)(N − C), and

E(Ue) = σ2
A(N

2 −
∑
i

N2
i•) + σ2

B(N
2 −

∑
j

N2
•j) + σ2

E(N
2 −N).

Proof. See Section 9.2.1.

To obtain unbiased estimates σ̂2
A, σ̂

2
B , and σ̂2

E given values of the U -statistics,
we solve the 3× 3 system of equations

M

⎛
⎝σ̂2

A

σ̂2
B

σ̂2
E

⎞
⎠ =

⎛
⎝Ua

Ub

Ue

⎞
⎠ for M =

⎛
⎝ 0 N −R N −R

N − C 0 N − C
N2 −

∑
i N

2
i• N2 −

∑
j N

2
•j N2 −N

⎞
⎠ (10)

For our method to return unique and meaningful estimates, the determinant
of M

detM = (N −R)(N − C)
(
N2 −

∑
i

N2
i• −

∑
j

N2
•j +N

)
� (N −R)(N − C)(N2(1− εR − εC) +N)

must be nonzero. This is true when no row or column has more than half of the
data and at least one row and at least one column has more than one observation.

To compute the U -statistics, notice that Ua =
∑

i Si•, where Si• =∑
j Zij(Yij − Ȳi•)

2 and Ȳi• = (1/Ni•)
∑

j ZijYij . In one pass over the data and

time O(N), we compute Ni•, Ȳi•, and Si• for all R observed levels of i using the
incremental algorithm described in the next paragraph. We can also compute
N , R and C in such a pass if they are not known beforehand.

Chan, Golub and LeVeque [3] show how to compute both Yi• = Ni•Ȳi• and
Si• in a numerically stable one pass algorithm. At the initial appearance of an
observation in row i, with corresponding column j = j(1), set Ni• = 1, Yi• = Yij

and Si• = 0. After that, at the kth appearance of an observation in row i with
corresponding column j(k), Yij(k),

Ni• ← Ni• + 1, Yi• ← Yi• + Yij(k), and Si• ← Si• +
(k × Yij(k) − Yi•)

2

k(k − 1)
.

(11)
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Chan, Golub and LeVeque [3] give a detailed analysis of roundoff error for
update (11) as well as generalizations that update higher moments from groups
of data values.

In that same pass over the data, Ue and the analogous quantities needed to
compute Ub (S•j , Ȳ•j , N•j) are also computed using the incremental algorithm.
Finally, in additional time O(R+C), we calculate

∑
i Si•,

∑
j S•j ,

∑
i N

2
i•, and∑

j N
2
•j . Now, we have Ua, Ub, Ue, and all the entries of M .

Given Ua, Ub, Ue, and M we can calculate σ̂2
A, σ̂

2
B , and σ̂2

E in constant time.
Therefore, finding our method of moments estimators takes O(N) time overall.
Note that in practice we may get negative estimates of the variance components,
since the method of moments does not take into account any constraints. How-
ever, there is no consensus on how to deal with this situation. In this paper, we
automatically set any negative variance component estimates to zero.

4.2. Variances of the estimators

Now we show how to estimate the covariance matrix of θ̂ = (σ̂2
A, σ̂

2
B , σ̂

2
E)

T.

4.2.1. True variance of θ̂

This section discusses the finite sample covariance matrix of θ̂. Theorem 4.1
below gives the exact variances and covariances of our U -statistics.

Theorem 4.1. Let Yij follow the random effects model (1) with the observation
pattern Zij as described in Section 3. Then the U -statistics defined at (9) have
variances

Var(Ua) = σ4
B(κB + 2)

∑
ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• )

+ 2σ4
B

∑
ir

N−1
i• N−1

r• (ZZT)ir[(ZZT)ir − 1] + 4σ2
Bσ

2
E(N −R)

+ σ4
E(κE + 2)

∑
i

Ni•(1−N−1
i• )2 + 2σ4

E

∑
i

(1−N−1
i• ),

(12)

and

Var(Ub) = σ4
A(κA + 2)

∑
js

(ZTZ)js(1−N−1
•j )(1−N−1

•s )

+ 2σ4
A

∑
js

N−1
•j N−1

•s (ZTZ)js[(Z
TZ)js − 1] + 4σ2

Aσ
2
E(N − C)

+ σ4
E(κE + 2)

∑
j

N•j(1−N−1
•j )2 + 2σ4

E

∑
j

(1−N−1
•j ),

(13)

with Var(Ue) equaling



1248 K. Gao and A. Owen

2σ4
A

[(∑
iN

2
i•

)2

−
∑

iN
4
i•

]
+ 2σ4

B

[(∑
jN

2
•j

)2

−
∑
j

N4
•j

]

+ σ4
A(κA + 2)

(
N2

∑
i

N2
i• − 2N

∑
i

N3
i• +

∑
i

N4
i•

)

+ σ4
B(κB + 2)

(
N2

∑
j

N2
•j − 2N

∑
j

N3
•j +

∑
j

N4
•j

)
+ 2σ4

EN(N − 1) + σ4
E(κE + 2)N(N − 1)2

+ 4σ2
Aσ

2
B

(
N3 − 2N

∑
ij

ZijNi•N•j +
∑
ij

N2
i•N

2
•j

)

+ 4σ2
Aσ

2
E

(
N3 −N

∑
i

N2
i•

)
+ 4σ2

Bσ
2
E

(
N3 −N

∑
j

N2
•j

)
.

(14)

Their covariances are

Cov(Ua, Ub) = σ4
E(κE + 2)

∑
ij

Zij(1−N−1
i• )(1−N−1

•j ), (15)

Cov(Ua, Ue) = 2σ4
B

(∑
i

N−1
i• T 2

i• −
∑
ij

ZijN
−1
i• N2

•j

)

+ σ4
B(κB + 2)

∑
ij

Zij(N −N•j)N•j(1−N−1
i• ) (16)

+ 2σ4
E(N −R) + σ4

E(κE + 2)(N −R)(N − 1)

+ 4σ2
Bσ

2
EN(N −R), and

Cov(Ub, Ue) = 2σ4
A

(∑
j

N−1
•j T 2

•j −
∑
ij

ZijN
−1
•j N2

i•

)

+ σ4
A(κA + 2)

∑
ij

Zij(N −Ni•)Ni•(1−N−1
•j ) (17)

+ 2σ4
E(N − C) + σ4

E(κE + 2)(N − C)(N − 1)

+ 4σ2
Aσ

2
EN(N − C).

Proof. Equation (12) is proved in Section 9.4 and then equation (13) follows
by exchanging indices. Equation (14) is proved in Section 9.5. Equation (15) is
proved in Section 9.6. Equation (16) is proved in Section 9.7 and then equa-
tion (17) follows by exchanging indices.

Now we consider Var(θ̂). From (10)

Var(θ̂) = M−1Var

⎛
⎝Ua

Ub

Ue

⎞
⎠ (M−1)T. (18)

We show in Section 4.2.2 that while Var(Ue) and the covariances of the U -
statistics may be exactly computed in time O(N), Var(Ua) and Var(Ub) cannot.
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Therefore, we approximate Var(Ua) and Var(Ub) such that when we apply for-
mula (18) we get conservative estimates of Var(σ̂2

A), Var(σ̂
2
B), and Var(σ̂2

E) (the
values of primary interest).

For intuition on what sort of approximation is needed, we give a linear ex-
pansion of Var(θ̂) in terms of the variances and covariances of the U -statistics.
Letting ε = max(εR, εC , R/N,C/N) we have as ε → 0

M =

⎛
⎝N

N
N2

⎞
⎠

⎛
⎝0 1 1
1 0 1
1 1 1

⎞
⎠ (1 +O(ε))

and so

M−1 =

⎛
⎝−1 0 1

0 −1 1
1 1 −1

⎞
⎠

⎛
⎝N−1

N−1

N−2

⎞
⎠ (1 +O(ε)).

It follows that

σ̂2
A = (Ue/N

2 − Ua/N)(1 +O(ε)),

σ̂2
B = (Ue/N

2 − Ub/N)(1 +O(ε)), and

σ̂2
E = (Ua/N + Ub/N − Ue/N

2)(1 +O(ε)).

(19)

Disregarding the O(ε) terms,

Var(σ̂2
A)

.
= Var(Ue)/N

4 +Var(Ua)/N
2 − 2Cov(Ua, Ue)/N

3,

Var(σ̂2
B)

.
= Var(Ue)/N

4 +Var(Ub)/N
2 − 2Cov(Ub, Ue)/N

3, and

Var(σ̂2
E)

.
= Var(Ua)/N

2 +Var(Ub)/N
2 +Var(Ue)/N

4

− 2Cov(Ua, Ue)/N
3 − 2Cov(Ub, Ue)/N

3 + 2Cov(Ua, Ub)/N
2.

(20)

In light of equation (20), to find computationally attractive but conservative

approximations of Var(θ̂) in finite samples, we use (slight) over-estimates of
Var(Ua) and Var(Ub). We discuss how to do so in Section 4.2.2.

In practice, when obtaining V̂ar(θ̂), we plug in σ̂2
A, σ̂

2
B , σ̂

2
E , and estimates

of the kurtoses into the covariance matrix of the U -statistics where Var(Ua)
and Var(Ub) have been replaced by their over-estimates. Then we apply equa-
tion (18). We discuss estimating the kurtoses in Section 4.2.4.

4.2.2. Computable approximations of Var(U)

First, we show how to obtain over-estimates of Var(Ua) in time O(N); the case
of Var(Ub) is similar. In addition to N − R, Var(Ua) contains the following
quantities∑

ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• )
∑
ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1)
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i

Ni•(1−N−1
i• )2, and

∑
i

(1−N−1
i• ).

The third and fourth quantities above can be computed in O(R) work after the
first pass over the data.

The first quantity is a sum over i and r, and cannot be simplified any further.
Computing it takes more than O(N) work. Since its coefficient σ4

B(κB + 2) is
nonnegative, we must use an upper bound to obtain an over-estimate of Var(Ua).
We have the bound∑

ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• ) �
∑
ij

∑
r

ZijZrj(1−N−1
i• )

=
∑
j

N2
•j −

∑
ij

ZijN•jN
−1
i• ,

which can be computed in O(N) work in a second pass over the data. Other
weaker bounds may be obtained without the second pass. An example is∑

ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• ) �
∑
ir

(ZZT)ir =
∑
j

N2
•j

which can be computed in O(C) work.
For our motivating problems this over-estimation of variance is negligible.

The true term is a weighted sum of (ZZT)ir and we use a weight of 1 instead
of 1 − N−1

r• and a typical Nr• will be large. Consider first a small row r, with
Nr• = 1. Let j(r) be the unique column with Zrj(r) = 1. Our bound replaces
that row’s contribution of 0 by∑

ij

ZijZrj(1−N−1
i• ) =

∑
i

ZijZrj(r)(1−N−1
i• ) = Zij(r)(1−N−1

i• ) � 1

thereby adding at most 1 to the sum. The total from such terms is then at most
the number of singleton rows which is in turn below R 	 N 	

∑
j N

2
•j . The

latter quantity dominates that coefficient. When Nr• � 2 our approximation at
most doubles the contribution. A near doubling of one term under the extreme
setting where most rows have only two observations, is acceptable.

For the same reason as the first quantity, the second quantity cannot be
computed in time O(N) and we upper bound it via (ZZT)ir � Nr•, getting∑

ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1) �
∑
ir

N−1
i• N−1

r• (ZZT)ir(Nr• − 1)

=
∑
ij

ZijN
−1
i• N•j −

∑
ir

N−1
i• N−1

r• (ZZT)ir

�
∑
ij

ZijN
−1
i• N•j

which can be computed in O(N) work on a second pass. Even this upper bound
is a small part of the variance. It is a sum of column sizes divided by row sizes.
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Another term in the variance is of order
∑

ij ZijN•j . When typical row sizes are

large then
∑

ij ZijN•jN
−1
i• 	

∑
ij ZijN•j .

All but one expression in Var(Ue) (see (14)) can be computed in O(R + C)
time after the first pass over the data. The one expression is∑

ij

ZijNi•N•j . (21)

Equation (21) requires a second pass over the data in time O(N), because it is
the sum over i and j of a polynomial in Zij , Ni•, and N•j . Hence computing
Var(Ue) takes O(N) time total.

With the same reasoning as for (21), we see that Cov(Ua, Ub) can be computed
in a second pass over the data in time O(N). This reasoning also shows that we
can compute nearly every term in Cov(Ua, Ue) in a second pass over the data;
the exception is ∑

i

N−1
i• T 2

i•. (22)

We compute Ti• for each i in a second pass over the data. But we must use
additional time O(R) to get (22). Nevertheless, the total computation time is
still O(N). Symmetrically Cov(Ub, Ue) can be computed in time O(N) as well.

4.2.3. Asymptotic approximation of Var(θ̂)

Under asymptotic conditions, we may obtain simple, analytic approximate ex-
pressions for the covariance matrix of our method of moments estimators.

Theorem 4.2. As described in Section 3, suppose that Ni• � δN ,

N•j � δN, R � δN, C � δN, N � δ
∑
i

N2
i•, and N � δ

∑
j

N2
•j ,

hold for the same small δ > 0 and that

0 < κA + 2, κB + 2, κE + 2, σ4
A, σ

4
B , σ

4
E < ∞.

Suppose additionally that∑
ij

ZijN
−1
i• N•j � δ

∑
i

N2
i•, and

∑
ij

ZijNi•N
−1
•j � δ

∑
j

N2
•j (23)

hold. Then

Var(Ua) = σ4
B(κB + 2)

∑
j

N2
•j(1 +O(δ))

Var(Ub) = σ4
A(κA + 2)

∑
i

N2
i•(1 +O(δ)), and
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Var(Ue) =
(
σ4
A(κA + 2)N2

∑
i

N2
i• + σ4

B(κB + 2)N2
∑
j

N2
•j

)
(1 +O(δ)).

Similarly

Cov(Ua, Ub) = σ4
E(κE + 2)N(1 +O(δ)),

Cov(Ua, Ue) = σ4
B(κB + 2)N

∑
j

N2
•j(1 +O(δ)), and

Cov(Ub, Ue) = σ4
A(κA + 2)N

∑
i

N2
i•(1 +O(δ)).

Finally σ̂2
A, σ̂

2
B and σ̂2

E are asymptotically uncorrelated as δ → 0 with

Var(σ̂2
A) = σ4

A(κA + 2)
1

N2

∑
j

N2
i•(1 +O(δ))

Var(σ̂2
B) = σ4

B(κB + 2)
1

N2

∑
j

N2
•j(1 +O(δ)), and

Var(σ̂2
E) = σ4

E(κE + 2)
1

N
(1 +O(δ)).

Proof. See Section 9.8.

In an asymptotic setting with δ → 0 the three variance estimates become
uncorrelated. Also each of them has the same variance it would have had if the
other variance components had truly been zero.

4.2.4. Estimating kurtoses

Under a Gaussian assumption, κA = κB = κE = 0. If however the data have
heavier tails than this, a Gaussian assumption will lead to underestimates of
Var(θ̂). Therefore, we will estimate the kurtoses using the method of moments
on U -statistics.

Let μA,4 = E(a4i ) = (κA + 3)σ4
A, μB,4 = E(b4i ) = (κB + 3)σ4

B , and μE,4 =
E(e4ij) = (κE + 3)σ4

E . The fourth moment U -statistics we use are

Wa =
1

2

∑
ijj′

N−1
i• ZijZij′(Yij − Yij′)

4

Wb =
1

2

∑
iji′

N−1
•j ZijZi′j(Yij − Yi′j)

4, and

We =
1

2

∑
iji′j′

ZijZi′j′(Yij − Yi′j′)
4.

(24)

Theorem 4.3. Let Yij follow the random effects model (1) with the observation
pattern Zij as described in Section 3. Then the statistics defined at (24) have
means
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E(Wa) = (μB,4 + 3σ4
B + 12σ2

Bσ
2
E + μE,4 + 3σ4

E)(N −R)

E(Wb) = (μA,4 + 3σ4
A + 12σ2

Aσ
2
E + μE,4 + 3σ4

E)(N − C), and

E(We) = (μA,4 + 3σ4
A + 12σ2

Aσ
2
E)(N

2 −
∑
i

N2
i•)

+ (μB,4 + 3σ4
B + 12σ2

Bσ
2
E)(N

2 −
∑
j

N2
•j)

+ (μE,4 + 3σ4
E)(N

2 −N) + 12σ2
Aσ

2
B

(
N2 −

∑
i

N2
i• −

∑
j

N2
•j +N

)
.

Proof. See Section 9.9.

Using Theorem 4.3, we compute estimates μ̂A,4, μ̂B,4, and μ̂E,4, by solving
the 3× 3 system of equations

M

⎛
⎝μ̂A,4

μ̂B,4

μ̂E,4

⎞
⎠ =

⎛
⎝Wa −ma

Wb −mb

We −me

⎞
⎠ , (25)

where M is the same matrix that we used for the U -statistics in equation (10),
with

ma = (3σ̂4
B + 12σ̂2

Bσ̂
2
E + 3σ̂4

E)(N −R),

mb = (3σ̂4
A + 12σ̂2

Aσ̂
2
E + 3σ̂4

E)(N − C), and

me = (3σ̂4
A + 12σ̂2

Aσ̂
2
E)(N

2 −
∑
i

N2
i•) + (3σ̂4

B + 12σ̂2
Bσ̂

2
E)(N

2 −
∑
j

N2
•j)

+ 3σ̂4
E(N

2 −N) + 12σ̂2
Aσ̂

2
B

(
N2 −

∑
i

N2
i• −

∑
j

N2
•j +N

)
.

Then, κ̂A = μ̂A,4/σ̂
4
A − 3, κ̂B = μ̂B,4/σ̂

4
B − 3, and κ̂E = μ̂E,4/σ̂

4
E − 3.

We compute the statistics (24) via

Wa =
∑
i

(∑
j

Zij(Yij − Ȳi•)
4 + 3N−1

i• S2
i•

)

Wb =
∑
j

(∑
i

Zij(Yij − Ȳ•j)
4 + 3N−1

•j S2
•j

)
, and

We = N
∑
ij

Zij(Yij − Ȳ••)
4 + 3S2

••,

(26)

where Ȳ•• = N−1
∑

ij ZijYij and S•• =
∑

ij Zij(Yij − Ȳ••)
2.

Therefore, the kurtosis estimates κ̂ requires R+ C + 1 new quantities∑
j

Zij(Yij − Ȳi•)
4,

∑
i

Zij(Yij − Ȳ•j)
4, and

∑
ij

Zij(Yij − Ȳ••)
4 (27)

beyond those used to compute θ̂. These can be computed in a second pass over
the data after Ȳi•, Ȳ•j and Ȳ•• have been computed in the first pass. They can
also be computed in the first pass using update formulas analogous to the second
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moment formulas (11). Such formulas are given by [15], citing an unpublished
paper by Terriberry.

Because the kurtosis estimates are used in formulas for V̂ar(θ̂) and those
formulas already require a second pass over the data, it is more convenient to
compute (27) and the sample fourth moments in a second pass. By a similar
argument as in Section 4.1, obtaining κ̂A, κ̂B , and κ̂E has space complexity
O(R + C) and time complexity O(N), and is therefore scalable. As with the
variance component estimates, in practice sometimes we get kurtosis estimates
less than −2, outside the parameter space. In this paper, we simply threshold the
kurtoses at −2, in line with the common practice of raising variance estimates
to zero.

4.3. Algorithm summary

For clarity of exposition, here we gather all of the steps in our algorithm for
estimating σ2

A, σ
2
B , and σ2

E and the variances of those estimators. An outline
is shown in Figure 1. We assume that all of the computations below can be
done with large enough variable storage that overflow does not occur. This may
require an extended precision representation beyond 64 bit floating point, such
as that in the python package mpmath [9].

The first task is to compute θ̂. In a first pass over the data compute counts
N , R, C, row values Ni•, Ȳi•, Si• for all unique rows i in the data set, and
column values N•j , Ȳ•j , S•j for all unique columns j in the data set as well as
Ȳ•• and S••. Incremental updates are used as described in (11).

Fig 1. Schematic of our algorithm. The expressions in the smallest boxes are the values
computed at each step.
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Then compute

Ua =
∑
i

Si•, Ub =
∑
j

S•j , and Ue = NS••,

the matrix M from (10) and then θ̂ = (σ̂2
A, σ̂

2
B , σ̂

2
E)

T = M−1(Ua, Ub, Ue)
T in

time O(R+ C).

The second task is to compute approximately the variance of θ̂. First, we es-
timate the kurtoses. A second pass over the data computes the centered fourth
moments in (27). Then one calculates the fourth order U -statistics of equa-
tion (26), solves (25) for the centered fourth moments, and converts them to
kurtosis estimates, all in time O(R+ C).

In that second pass over the data, we also compute

ZNp,q ≡
∑
ij

ZijN
p
i•N

q
•j (28)

for (
p
q

)
∈

{(
−1
−1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
1
1

)
,

(
−1
2

)
,

(
2
−1

)}

as well as Ti• and T•j of equation (2) for all i and j in the data.
Then, we estimate the variances of the U -statistics. Some of these next com-

putations require even more bits per variable than are needed to avoid overflow,
because they involve subtraction in a way that could lose precision. To estimate
the variances of Ua and Ub, we apply the upper bounds discussed in Section 4.2.2
to (12) and (13) and plug in σ̂2

A, σ̂
2
B , σ̂

2
E , κ̂A, κ̂B , and κ̂E , calculating using time

and space O(R+ C)

V̂ar(Ua) = σ̂4
B(κ̂B + 2)

(∑
j

N2
•j − ZN−1,1

)
+ 2σ̂4

B

(
ZN−1,1 −R

∑
i

N−1
i•

)

+ 4σ̂2
Bσ̂

2
E(N −R) + σ̂4

E(κ̂E + 2)
∑
i

Ni•(1−N−1
i• )2

+ 2σ̂4
E

∑
i

(1−N−1
i• )

and

V̂ar(Ub) = σ̂4
A(κ̂A + 2)

(∑
i

N2
i• − ZN1,−1

)
+ 2σ̂4

A

(
ZN1,−1 − C

∑
j

N−1
•j

)

+ 4σ̂2
Aσ̂

2
E(N − C) + σ̂4

E(κ̂E + 2)
∑
j

N•j(1−N−1
•j )2

+ 2σ̂4
E

∑
j

(1−N−1
•j ).

To estimate Var(Ue) and the covariances of the U -statistics, we again plug
in the variance component and kurtosis estimates into Theorem 4.1 without
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approximation. We get V̂ar(Ue) from (14), using ZN1,1 from the second pass

over the data. We get Ĉov(Ua, Ue) from (16) using ZN−1,1, ZN−1,2 and Ti•,

and Ĉov(Ub, Ue) from (17) using ZN1,−1, ZN2,−1 and T•j . We get Ĉov(Ua, Ub)
from (15) using ZN−1,−1. It can be easily verified that these calculations also
take time and space O(R+ C).

The final plug-in estimator of variance is

V̂ar

⎛
⎝σ̂2

A

σ̂2
B

σ̂2
E

⎞
⎠ = M−1

⎛
⎜⎝ V̂ar(Ua) Ĉov(Ua, Ub) Ĉov(Ua, Ue)

Ĉov(Ub, Ua) V̂ar(Ub) Ĉov(Ub, Ue)

Ĉov(Ue, Ua) Ĉov(Ue, Ub) V̂ar(Ue)

⎞
⎟⎠ (M−1)T (29)

where M is the matrix in (10).

Aggregating the computation times and counting the number of intermediate
values we must calculate, we see that our algorithm takes time O(N) and space
O(R+ C).

5. Predictions

Here we consider an application of variance component estimation to the pre-
diction of a missing observation Yij at given values of i and j in model (1).
An equivalent problem is predicting the expected value at those levels of the
factors, μ+ ai + bj = E(Yij | ai, bj).

5.1. Best linear predictor

A gold standard is the best linear predictor (BLP), [19, Chapter 7.3], which min-
imizes the MSE over the class of predictors of the form Ŷij(λ) =

∑
rs λrsZrsYrs,

where λ is the vector of all λrs. In this section, we characterize the weights λ∗
rs

of the BLP. We begin with the MSE

L(λ) = E((Ŷij(λ)− Yij)
2) (30)

Lemma 5.1. The MSEs for the linear predictor
∑

rs λrsZrsYrs are

L(λ) = μ2
(
1−

∑
rs

λrsZrs

)2

+ σ2
A + σ2

B + σ2
E

+ σ2
A

∑
rss′

λrsλrs′ZrsZrs′ + σ2
B

∑
rsr′

λrsλr′sZrsZr′s + σ2
E

∑
rs

λ2
rsZrs

− 2
(
σ2
A

∑
s

λisZis + σ2
B

∑
r

λrjZrj + σ2
Eλ

2
ijZij

)
.

(31)

Proof. See Section 9.10.1.
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The weights λ∗
rs of the BLP must satisfy the stationarity condition ∂L(λ∗

rs)/
∂λ = 0. As shown in Section 9.10.2, when Zrs = 0, the condition holds no
matter the value of λ∗

rs. When Zrs = 1, the condition becomes

σ2
Eλ

∗
rs = μ2

(
1−

∑
r′s′

λ∗
r′s′Zr′s′

)
+ σ2

A

(
1i=r −

∑
s′

λ∗
rs′Zrs′

)

+ σ2
B

(
1j=s −

∑
r′

λ∗
r′sZr′s

) (32)

We can compute λ∗
rs by solving an N × N system of equations but that

ordinarily costs O(N3) time. Shortcuts are possible if there is a special pattern in
the Zij , such as balanced data, but we don’t know of any faster way to solve (32)
for general Z. Therefore, we consider a smaller class of linear predictors called
shrinkage predictors.

5.2. Shrinkage predictors

It is reasonable to suppose that the most important observations for predicting
Yij are those in its row and column. Therefore we consider predicting Yij through
a linear combination of the overall average, the average in row i, and the average
in column j. We use estimators of the form

Ŷij(λ) = λ0

∑
rs

ZrsYrs + λa

∑
s

ZisYis + λb

∑
r

ZrjYrj (33)

where λ =
(
λ0 λa λb

)T
. Then λ0, λa, and λb are chosen to minimize L(λ). By

writing (33) in terms of row and column totals we avoid complicated treatments
for the situation where row or column means are unavailable because Ni• = 0
or N•j = 0 (or both). As an example, if min(Ni•, N•j) > 0, then the predictor

Ŷij = Ȳi• + Ȳ•j − Ȳ•• (from Theorem 5.3 below) has λ0 = −1/N , λa = 1/Ni•

and λb = 1/N•j .

Lemma 5.2. The MSEs for the linear predictor (33) are

L(λ) = μ2
(
1− λ0N − λaNi• − λbN•j

)2
+ λ2

0

(
σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN
)

+ λ2
a

(
σ2
AN

2
i• + σ2

BNi• + σ2
ENi•

)
+ λ2

b

(
σ2
AN•j + σ2

BN
2
•j + σ2

EN•j

)
+ σ2

A + σ2
B + σ2

E − 2λ0

(
σ2
ANi• + σ2

BN•j + σ2
EZij

)
− 2λa

(
σ2
ANi• + σ2

BZij + σ2
EZij

)
− 2λb

(
σ2
AZij + σ2

BN•j + σ2
EZij

)
+ 2λ0λa

(
σ2
AN

2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•

)
+ 2λ0λb

(
σ2
A

∑
r

ZrjNr•

+ σ2
BN

2
•j + σ2

EN•j

)
+ 2λaλbZij

(
σ2
ANi• + σ2

BN•j + σ2
E

)
.
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Proof. See Section 9.10.3.

Theorem 5.1. The λ∗ that minimizes the MSE L = E((Ŷij − Yij)
2) satisfies

Hλ∗ = c, where

c =

⎛
⎝ N Ni• N•j Zij

Ni• Ni• Zij Zij

N•j Zij N•j Zij

⎞
⎠

⎛
⎜⎜⎝
μ2

σ2
A

σ2
B

σ2
E

⎞
⎟⎟⎠ , and H =

⎛
⎝H11 H12 H13

∗ H22 H23

∗ ∗ H33

⎞
⎠

is a symmetric matrix with upper triangular elements

H11 = μ2N2 + σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN

H12 = μ2NNi• + σ2
AN

2
i• + σ2

BTi• + σ2
ENi•

H13 = μ2NN•j + σ2
AT•j + σ2

BN
2
•j + σ2

EN•j

H22 = μ2N2
i• + σ2

AN
2
i• + σ2

BNi• + σ2
ENi•

H23 = μ2Ni•N•j + σ2
AZijNi• + σ2

BZijN•j + σ2
EZij , and

H33 = μ2N2
•j + σ2

AN•j + σ2
BN

2
•j + σ2

EN•j .

Proof. See Section 9.10.4.

Given estimates of μ and θ we can plug them in to get estimates of the
optimal λ for prediction at (i, j). Assuming that the algorithm to compute θ̂
and its variance has been executed, all of c and most of H can be computed
using quantities found in the first pass over the data. The rest are available after
a second pass.

Therefore, since solving Hλ∗ = c takes time O(1), λ∗ for predicting a given
Yij can be found in time O(N). If we wanted to find λ∗ for k different sets of
i and j, the computation cost is O(N + k); we simply would have to store k
different H’s and c’s.

Predicting a missing Yij using Theorem 5.1 is simple. Next we look at some
special cases to understand how it performs.

Special case: Yij in new row and new column

In this case, Nrj = Nis = 0 for any r, s, and Ni• = N•j = 0. The only nonzero
entry of H is H11 = μ2N2 + σ2

A

∑
r N

2
r• + σ2

B

∑
s N

2
•s + σ2

EN , and the only
nonzero entry of c is c1 = μ2N . Hence λ∗

a = λ∗
b = 0 and

λ∗
0 =

μ2N

μ2N2 + σ2
A

∑
r N

2
r• + σ2

B

∑
s N

2
•s + σ2

EN
.

The prediction Ŷij is then a shrinkage

λ∗
0Y•• = Nλ∗

0Ȳ•• =
μ2

μ2 + σ2
A

∑
r N

2
r•/N

2 + σ2
B

∑
s N

2
•s/N

2 + σ2
E/N

Ȳ••.

In practice we would plug in estimates of μ and the variance components. As
we would expect, this estimate is very close to Ȳ•• for large N , when μ̂ �= 0 and
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the limits (6) hold. In that case, the corresponding MSE is L
.
= σ2

A + σ2
B + σ2

E ,
which can be verified to be approximately the same as the MSE of the BLP.

Special case: Yij in new row but old column

Suppose that Zis = 0 for any s but ∃r where Zrj = 1, so Ni• = 0 and N•j > 0.
We would expect most of the weight to be on Ȳ•j , the average in the column
containing Yij . This is indeed the case if T•j is not large compared to N , that is,
if the rows that are co-observed with column j do not comprise a large fraction
of the data.

Let ck denote the kth entry of c and Hk� be the entry of H in row k and
column 
. In this case, c2 is zero as is the second row and second column of H.

Therefore, without loss of generality we can take λ∗
a = 0 and λ̃∗ =

(
λ∗
0 λ∗

b

)T
can be computed by solving the system H̃λ̃∗ = c̃, where

H̃ =

(
H11 H13

H31 H33

)
and c̃ =

(
c1
c3

)
.

The following theorem describes the relative size of λ∗
0 and λ∗

b in the big data
limit.

Theorem 5.2. Suppose that we are predicting Yij where Ni• = 0 but N•j > 0.
Assume that 0 < μ2, σ2

A, σ
2
B , σ

2
E < ∞ and that T•j ≡

∑
r Nr•Zrj � ηN . Then

λ∗
0

λ∗
b

=
1

N

σ2
A + σ2

E

σ2
B

(1 +O(η))

as η → 0.

Proof. See Section 9.10.5.

Note that λ∗
0 is the coefficient of a sum of N observations, while λ∗

b is the
coefficient of a sum of N•j observations. Therefore, to more equitably compare
the importances of the overall average and the column average for predicting
Yij , we consider the ratio

Nλ∗
0

N•jλ∗
b

≈ σ2
A + σ2

E

σ2
BN•j

.

We may interpret this as the column j average being some multiple of N•j times
as important as the overall average. This makes sense because the more data
we have in column j, the better estimate we would be able to get of μ+ bj ; the
overall average only tells us about μ. Also, note that the larger σ2

E is relative to
σ2
B , the more weight we put on the overall average; we do not trust using only

the column average.

Special case: Large Ni• and large N•j

Next we show that if both row i and column j have a very large number of
observations, and the observation matrix Z is not too extreme, then Ŷij is
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approximately Ȳi• + Ȳ•j − Ȳ•• as we might expect. As a result, the customized
weights in Theorem 5.1 are most useful for cases where one or both of Ni• and
N•j are not very large.

Theorem 5.3. Suppose that 1/η � Ni• � ηN and 1/η � N•j � ηN both hold
for some η ∈ (0, 1) and that 0 < μ2, σ2

A, σ
2
B , σ

2
E < ∞. Then

Ŷij = (Ȳi• + Ȳ•j − Ȳ••)(1 +O(η)), as η → 0.

Proof. See Section 9.10.6.

6. Experimental results

6.1. Simulations

First, we compare the performance of our method of moments algorithm (MoM),
described in Section 4.3, to maximum likelihood estimation as implemented in
the commonly used R package for mixed models, lme4. We assume that the
random effects are normally distributed. We do so because it is the assumption
implicitly made by lme4, and so we expect that these are the conditions under
which lme4 performs best.

For our algorithm, we consider a range of data sizes, with R = C ranging
from 10 to 500. At each fixed value of R = C, for 100 iterations, we generate
data according to model (1) with σ2

A = 2, σ2
B = 0.5, and σ2

E = 1. Exactly
25 percent of the cells were randomly chosen to be observed. We measure the
CPU time needed to obtain the variance component estimates σ̂2

A, σ̂2
B , and

σ̂2
E (labeled short) and the CPU time need to obtain the variance component

estimates as well as conservative estimates of the variances of those estimates
(labeled long). In addition, we measure the mean squared errors of the variance
component estimates. At the end, those five measurements were averaged over
the 100 iterations.

With regard to lme4, our simulation steps are nearly the same, with the
following differences. Due to the slowness of lme4, we only consider data sizes
with R = C up to 300. In addition, because lme4 finds the maximum likelihood
variance component estimates, the variances of those estimates were computed
asymptotically using the inverse expected Fisher information matrix. The sim-
ulation results are shown in Figure 2.

Note that lme4 always takes more time than our algorithm. From Figure 2,
we see that our method of moments algorithm takes time at most linear in the
data size to compute both the variance component estimates and conservative
estimates of the variances of those estimates. For lme4 the computation time is
always superlinear in the data size, for data sets large enough that the startup
cost of the package is no longer dominant.

The MSEs of σ̂2
A for our algorithm and lme4 are comparable. Moreover, both

decrease sublinearly with the data size. The same is true for the MSEs of σ̂2
B .

However, the MSE of σ̂2
E in lme4 is noticeably smaller than that of our algorithm;
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Fig 2. Simulation results: log-log plots of the five recorded measurements against RC, which
is proportional to the number of observations.

this appears to be the price we pay for the decreased computation time. In both
cases, though, the MSE of σ̂2

E decreases approximately linearly with the data
size. In sum, our algorithm provides estimates that are nearly as efficient as
MLE and is scalable to huge data sets, unlike MLE.

We also considered data with other aspect ratios, e.g. R = 2C and C = 2R.
The CPU time required and the MSEs of the variance component estimates
behave similarly to the case R = C. For the sake of brevity, we do not explicitly
show the results of those simulations here.

Remark: In our simulations we investigated the conservativeness of the esti-
mates of the variances of σ̂2

A, σ̂
2
B , and σ̂2

E due to the over-estimates described in
Section 4.2.2. When R = C, it appears that they are conservative by a factor of
at most four. The factors corresponding to σ2

A and σ2
B approached 1 as the data

size increased. Therefore, we believe that the upper bounds are a reasonable
approximation of the true variances of the variance components.

6.2. Real world data

We illustrate our algorithm, coded in Python, on three real world data sets that
are too large for lme4 to handle in a timely manner.
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The first, from [22], contains a random sample of ratings of movies by users,
which are grades from A+ to F converted into a numeric scale. There are 211,231
ratings by 7,642 users on 11,916 movies, filtered with the condition that each
user rates at least ten movies. Only 0.23 percent of the user-movie matrix is
observed.

The estimated variances of the user random effect, the movie random effect,
and the error are 2.57, 2.86, and 7.68. The estimated kurtoses are −2, −2,
and 6.56. Conservative estimates of the variances of the estimated variance
components are 0.0030, 0.0018, and 0.0060. Therefore, most of the variation in
the moving rating comes from error or the interaction between movies and users;
this is not surprising, since different people have different tastes.

The second data set, from [23], contains ratings of 1000 songs by 15,400 users,
on a scale of 1 to 5. The first group of 10,000 users were randomly selected on
the condition that they had rated at least 10 of the 1000 songs. The rest of the
users were randomly selected from responders on a survey that asked them to
rate a random subset of 10 of the 1000 songs. The songs were selected to have
at least 500 ratings. Here, about 2 percent of the user-song pairs were observed.

The estimated variances of the user random effect, the song random effect,
and the error are 0.97, 0.24, and 1.30. The estimated kurtoses are −2, −2,
and 3.31. Conservative estimates of the variances of the estimated variance
components are 4.5×10−5, 10−5, and 5.8×10−5, yielding conservative standard
errors of about 0.007, 0.003 and 0.008. In this case there is negligible sampling
variability in the variance component estimates. For determining the rating, the
user effect is dominant over the song effect, but as in the previous example, the
greatest variation comes from error or interactions between song and user.

The third data set from [10] contains the numbers of times artists’ songs
are played by about 360, 000 users. Only the counts for the top k (for some k)
artists for each user is recorded. The users are randomly selected. This data set
is extremely sparse; only about 0.03 percent of user-artist pairs are observed.

The estimated variances of the user random effect, the artist random effect,
and the error are 1.65, 0.22, and 0.27. The estimated kurtoses are 0.019, −2,
and 23.14. Conservative estimates of the variances of the estimated variance
components are 1.68× 10−5, 4.06× 10−7, and 1.37× 10−6, yielding small stan-
dard errors of about 0.004, 0.0006 and 0.001. The biggest source of variation in
the number of plays is the user. The kurtosis of the row effect is nearly zero,
indicating possible normality.

In all three data sets at least one of the estimated kurtoses was −2, which
would be unexpected if the model is correctly specified. However, if model (1)
does not fit the data well, such behavior may occur. We suspect that more real-
istic models incorporating fixed effects and SVD-like interactions would reduce
the prevalence of such kurtosis estimates.

7. Conclusion

When traditional maximum likelihood or MCMC methods are used, with both
theory and simulations, we have found that fitting large two-factor crossed un-
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balanced random effects models has costs that are superlinear in the number of
data points. With the method of moments it is possible to get, in linear time,
parameter estimates and somewhat conservative estimates of their variance. The
space requirements are proportional to the number of distinct levels of the fac-
tors; this will often be sublinear in N . We also developed shrinkage predictors
of missing data that utilize our method of moments estimates.

Through simulations on normally distributed data, we show that our method
of moments estimates are competitive with maximum likelihood estimates. We
trade off a small increase in the MSE of one variance component for a dramatic
decrease in computation time as N gets large. In the real data with large N ,
we saw negligible sampling uncertainty in our variance estimaes despite using
over-estimates.

As stated in the introduction, the crossed random effects model we consider
here is the simplest one for which we found no useful prior solution. We expect
that richer models, which are the basis of our future work, will provide better
fits to real world data.

7.1. Informative missingness

We have assumed throughout that the missingness pattern in Zij is not infor-
mative. But in many applications the observed values are likely to differ in some
way from the missing values. For instance, in movie ratings data people may be
more likely to watch and rate movies they believe they will like, and so missing
values could be lower on average than observed ones. In general, the observed
ratings may have both high and low values oversampled relative to middling
values.

From observed values alone we cannot tell how different the missing values
would be. To do so requires making untestable assumptions about the missing-
ness mechanism. Even in cases where followup sampling can be made, e.g., giving
some users incentives to make additional ratings, there will still be difficulties
such as users refusing to make those ratings, or if forced, making inaccurate
ratings. Methods to adjust for missingness have to be designed on a case by
case basis, using whatever additional data and assumptions can be brought to
bear. The uncertainties of the estimates from such methods can be quantified
using, with further development, the techniques of this paper.

8. Appendix A

8.1. Proof of Theorem 2.1

In the balanced case we may assume that i ∈ {1, 2, . . . , R} and j ∈ {1, 2, . . . , C}.
The posterior distribution of the parameters is given by

p(μ, a, b, σ2
A, σ

2
B , σ

2
E | Y ) ∝

R∏
i=1

1√
2πσ2

A

exp
(
− a2i
2σ2

A

) C∏
j=1

1√
2πσ2

B

exp
(
−

b2j
2σ2

B

)
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×
R∏
i=1

C∏
j=1

1√
2πσ2

E

exp
(
− (Yij − μ− ai − bj)

2

2σ2
E

)

∝ σ−R
A σ−C

B σ−RC
E exp

(
−
∑

i a
2
i

2σ2
A

−
∑

j b
2
j

2σ2
B

−
∑

ij(Yij − μ− ai − bj)
2

2σ2
E

)

Then, φ ≡ p(a, b | μ, σ2
A, σ

2
B , σ

2
E , Y ) is proportional to

exp
(
−
∑

i a
2
i

2

( 1

σ2
A

+
C

σ2
E

)
−

∑
j b

2
j

2

( 1

σ2
B

+
R

σ2
E

)
−

∑
ij aibj

σ2
E

)
.

Therefore, the posterior distribution of a and b is a joint normal with precision
matrix

Q =

⎛
⎜⎜⎝
σ2
E + Cσ2

A

σ2
Aσ

2
E

IR
1

σ2
E

1R1
T
C

1

σ2
E

1C1
T
R

σ2
E +Rσ2

B

σ2
Bσ

2
E

IC

⎞
⎟⎟⎠ .

From Theorem 1 of [18], for the Gibbs sampler described in Section 2.1, we
have the following result. Let A = I−diag(Q−1

11 , Q
−1
22 )Q, where Q11 denotes the

upper left block of Q and Q22 denotes the lower right block. Let L be the block
lower triangular part of A, and U = A − L. Then, the convergence rate ρ is
given by the spectral radius of the matrix B = (I − L)−1U . Now, we compute
ρ. First

A = I −

⎛
⎜⎜⎝

σ2
Aσ

2
E

σ2
E + Cσ2

A

IR 0

0
σ2
Bσ

2
E

σ2
E +Rσ2

B

IC

⎞
⎟⎟⎠Q

=

⎛
⎜⎜⎝

0 − σ2
A

σ2
E + Cσ2

A

1R1
T
C

− σ2
B

σ2
E +Rσ2

B

1C1
T
R 0

⎞
⎟⎟⎠ .

Next

L =

⎛
⎝ 0 0

− σ2
B

σ2
E +Rσ2

B

1C1
T
R 0

⎞
⎠ and U =

⎛
⎝0 − σ2

A

σ2
E + Cσ2

A

1R1
T
C

0 0

⎞
⎠

from which

B =

⎛
⎝ IR 0

σ2
B

σ2
E +Rσ2

B

1C1
T
R IC

⎞
⎠

−1

U =

⎛
⎝ IR 0

− σ2
B

σ2
E +Rσ2

B

1C1
T
R IC

⎞
⎠U
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Table 2

Median CPU time in seconds.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

R=10
C=10 20 9 23 20 27 21 19 21 21
R=20
C=20 33 10 37 35 45 34 32 33 33
R=50
C=50 71 17 80 79 101 71 68 75 70
R=100
C=100 143 361 159 156 199 139 133 141 136
R=200
C=200 326 984 351 323 462 300 279 303 280
R=500
C=500 1157 2356 1205 955 1786 952 851 1019 817
R=1000
C=1000 3432 15046 4099 2302 4760 2513 2141 2635 1966
R=2000
C=2000 10348 88756 11434 6991 15836 7815 5712 9274 6006
R=50
C=100 105 287 121 112 151 103 101 107 102
R=10
C=200 138 316 167 139 200 138 137 142 138
R=100
C=1000 898 5148 964 807 1179 795 748 822 760

=

⎛
⎜⎜⎝
0 − σ2

A

σ2
E + Cσ2

A

1R1
T
C

0
Rσ2

Aσ
2
B

(σ2
E + Cσ2

A)(σ
2
E +Rσ2

B)
1C1

T
C

⎞
⎟⎟⎠ .

Clearly, B has rank one. Then, its spectral radius must be equal to its nonzero
eigenvalue, which is also the trace of B. Hence,

ρ =
RCσ2

Aσ
2
B

(σ2
E + Cσ2

A)(σ
2
E +Rσ2

B)
.

8.2. Simulation results

The results of our simulations described in Section 2 are presented here in
Tables 2 through 6.

9. Appendix B

9.1. Partially observed random effects model

The random effects model is

Yij = μ+ ai + bj + eij , i, j ∈ N (34)

for ai
iid∼ Fa, bj

iid∼ Fb and eij
iid∼ Fe independent of each other. These ran-

dom variables have mean 0, variances σ2
A, σ

2
B , σ

2
E and kurtoses κA, κB , κE ,

respectively. We will not need their skewnesses.
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Table 3

Median estimates of μ and number of lags after which ACF(μ̂) ≤ 0.5.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

R=10 0.72 0.94 1.27 1.07 1.18 2.40 0.76 0.74 1.51
C=10 26 29 24 178 689 1604 1252 1522 1392
R=20 0.81 1.02 1.01 1.07 0.94 2.89 1.69 1.08 1.47
C=20 34 43 26 75 841 1019 1674 1720 1765
R=50 1.09 0.91 0.98 0.98 1.04 2.97 1.66 1.70 1.58
C=50 83 84 75 8 610 5000+ 1158 1681 1104
R=100 0.98 1.02 1.13 0.99 0.85 2.73 1.57 1.61 1.49
C=100 123 185 144 2 398 5000+ 1145 1713 1522
R=200 1.01 1.02 1.03 1.01 0.95 3.22 1.60 1.31 1.52
C=200 257 346 272 1 1 1278 1508 1692 807
R=500 0.99 1.01 0.99 0.99 1.00 2.26 1.58 1.15 1.55
C=500 536 617 576 9 4 1572 924 1687 1613
R=1000 0.97 1.02 1.04 0.99 0.96 2.39 1.55 1.07 1.53
C=1000 801 790 694 1 2501 5000+ 1133 1656 1008
R=2000 0.98 1.01 1.00 1.01 1.00 2.57 1.55 1.03 1.55
C=2000 672 721 771 1 5000+ 1086 1176 1716 799
R=50 0.89 1.03 0.95 1.01 1.06 2.70 1.57 1.61 1.45
C=100 144 155 118 7 1095 5000+ 1219 1725 1371
R=10 0.86 1.08 0.84 0.94 0.80 2.40 1.41 1.36 1.23
C=200 329 244 299 120 944 3339 1518 1657 1437
R=100 1.06 1.06 1.02 1.01 1.03 2.73 1.57 1.11 1.55
C=1000 573 536 672 1 1 3330 1161 1681 3333

Table 4

Median estimates of σ2
A and number of lags after which ACF(σ̂2

A) ≤ 0.5.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

R=10 2.76 2.49 2.05 2.07 2.45 2.39 1.88 2.05 1.38
C=10 1 1 1 898 768 1604 759 606 1232
R=20 2.00 2.06 1.65 1.89 2.32 1.48 1.96 1.76 2.00
C=20 1 1 1 930 829 850 873 822 1083
R=50 1.94 1.96 2.17 1.77 2.21 1.44 2.06 2.03 1.95
C=50 1 1 1 797 720 5000+ 1035 1032 1079
R=100 2.21 2.14 2.23 1.88 1.87 1.11 2.19 1.92 1.95
C=100 1 1 1 649 398 5000+ 994 917 1522
R=200 2.09 2.09 2.10 2.08 1.99 1.16 2.02 2.12 2.01
C=200 1 1 1 410 437 1281 1598 673 1135
R=500 1.97 2.12 1.99 1.64 1.96 1.07 2.02 2.01 1.97
C=500 1 1 1 407 197 1572 895 826 1599
R=1000 1.96 1.99 2.02 1.90 1.95 1.78 2.01 1.96 1.99
C=1000 1 1 1 122 2656 5000+ 1133 989 912
R=2000 1.97 2.00 2.03 1.94 1.99 1.04 2.01 2.00 1.99
C=2000 1 1 1 69 5000+ 1086 1181 1262 1161
R=50 2.22 2.29 2.05 2.24 1.98 1.10 2.00 1.96 2.09
C=100 1 1 1 948 672 5000+ 1103 787 1005
R=10 2.34 1.74 3.05 2.70 2.72 0.88 1.89 1.43 1.16
C=200 1 1 1 891 1023 3309 1492 724 988
R=100 2.04 2.03 2.14 1.98 1.98 1.46 1.90 1.87 2.05
C=1000 1 1 1 512 450 3329 985 1086 3333

We use letters i, i′, r, r′ to index rows. Letters j, j′, s, s′ are used for columns.
In internet applications, the actual indices may be people rating items, items
being rated, cookies, URLs, IP addresses, query strings, image identifiers and
so on. We simplify the index set to N for notational convenience. One feature
of these variables is that we fully expect future data to bring hitherto unseen
levels. That is why a countable index set is appropriate.
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Table 5

Median estimates of σ2
B and number of lags after which ACF(σ̂2

B) ≤ 0.5.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

R=10 0.66 0.81 0.88 0.46 0.89 1.47 0.45 0.43 0.45
C=10 1 1 1 382 638 1604 1214 956 1297
R=20 0.54 0.45 0.44 0.43 0.44 1.55 0.49 0.46 0.57
C=20 1 1 1 261 410 978 937 1217 704
R=50 0.49 0.49 0.49 0.49 0.53 1.35 0.49 0.43 0.48
C=50 1 1 1 123 138 5000+ 1308 786 1463
R=100 0.51 0.54 0.49 0.46 0.48 0.84 0.52 0.47 0.49
C=100 1 1 1 65 66 5000+ 691 1169 1522
R=200 0.49 0.51 0.51 0.47 0.50 1.67 0.51 0.49 0.50
C=200 1 1 1 36 37 1266 1497 1241 831
R=500 0.51 0.49 0.50 0.28 0.47 1.56 0.50 0.48 0.47
C=500 1 1 1 770 16 1572 696 993 1619
R=1000 0.51 0.50 0.50 0.40 0.50 2.94 0.51 0.50 0.49
C=1000 1 1 1 477 2514 5000+ 1133 855 556
R=2000 0.50 0.50 0.49 0.39 0.50 1.65 0.48 0.49 0.50
C=2000 1 1 1 224 5000+ 1086 1220 830 1253
R=50 0.50 0.51 0.53 0.48 0.54 1.93 0.53 0.49 0.49
C=100 1 1 1 69 85 5000+ 1378 910 1419
R=10 0.47 0.51 0.51 0.40 0.52 1.65 0.61 0.59 0.55
C=200 1 1 1 23 52 3332 1289 1004 1408
R=100 0.50 0.49 0.50 0.47 0.49 2.95 0.50 0.49 0.50
C=1000 1 1 1 6 8 3328 1345 962 3333

Table 6

Median estimates of σ2
E and number of lags after which ACF(σ̂2

E) ≤ 0.5.

Method Gibbs Block Reparam. Lang. MALA Indp. RWM RWM Sub. pCN

R=10 1.02 0.99 0.96 0.91 1.17 0.17 0.76 0.80 0.75
C=10 1 1 1 196 334 1604 1354 1329 1504
R=20 0.97 0.98 1.00 0.91 1.00 0.17 0.48 0.45 0.37
C=20 1 1 1 61 75 1218 1649 1614 1827
R=50 1.00 1.01 0.98 0.96 0.99 0.17 0 0.01 0
C=50 1 1 1 10 12 5000+ 1107 1616 1466
R=100 1.00 1.00 1.00 0.98 1.00 0.16 0 0.38 0
C=100 1 1 1 3 3 5000+ 1199 1714 1532
R=200 1.00 1.00 1.00 1.01 1.01 0.21 0 0.66 0
C=200 1 1 1 1 1 1266 1626 1691 636
R=500 1.00 1.00 1.00 118.45 52.70 0.14 0 0.87 0
C=500 1 1 1 545 138 1572 834 1702 1616
R=1000 1.00 1.00 1.00 65.22 2.66 0.15 0 0.93 0
C=1000 1 1 1 385 3062 5000+ 1518 1724 621
R=2000 1.00 1.00 1.00 115.59 1.05 0.18 0 0.97 0
C=2000 1 1 1 10 5000+ 1021 1194 1702 1014
R=50 1.01 0.99 1.00 0.98 1.01 0.15 0 0.19 0
C=100 1 1 1 5 6 5000+ 1676 1774 1442
R=10 0.99 0.99 1.01 0.92 0.99 0.17 0 0.55 0
C=200 1 1 1 12 15 3309 1570 1678 1279
R=100 1.00 1.00 1.00 3.50 3.46 0.19 0 0.87 0
C=1000 1 1 1 3 3 3330 1454 1699 3333

We will want to estimate σ2
A, σ

2
B , σ

2
E and get a formula for the variance

of those estimates. Many, perhaps most, of the Yij values are missing. Here
we assume that the missingness is not informative. For further discussion see
Section 7.1.

The variable Zij ∈ {0, 1} takes the value 1 if Yij is available and 0 otherwise.
The total sample size is N =

∑
ij Zij . We assume that 1 � N < ∞. We also
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need Ni• =
∑

j Zij and N•j =
∑

i Zij . The number of unique observed rows
and columns are, respectively,

R ≡
∑
i

1Ni•>0, and C ≡
∑
j

1N•j>0.

In the sum above, only finitely many summands are nonzero. When we sum
over i, i′, r, r′, the sum is over the set {i | Ni• > 0}. Similarly sums over column
indices j, j′, s, s′ are over the set {j | N•j > 0}. These ranges are what one would
naturally get in a pass over data logs showing all records.

We frequently need the number of columns jointly observed in two rows such
as i and i′. This is

∑
j ZijZi′j = (ZZT)ii′ . Similarly, columns j and j′ are jointly

observed in
∑

i ZijZij′ = (ZTZ)jj′ rows.
The matrix Z encodes several different measurement regimes as special cases.

These include crossed designs, nested designs and IID sampling, as follows. A
crossed design with an R×C matrix of completely observed data can be repre-
sented via Zij = 11�i�R11�j�C . If maxi Ni• = 1 and maxj N•j > 1 then the data
have a nested structure, with N•j distinct rows in column j and (ZTZ)jj′ = 0
for j �= j′. Similarly maxj N•j = 1 with maxi Ni• > 1 yields columns nested in
rows. If maxi Ni• = maxj N•j = 1 then we have N IID observations.

We note some identities:∑
ir

(ZZT)ir =
∑
ijr

ZijZrj =
∑
j

N2
•j , and (35)

∑
ir

N−1
i• (ZZT)ir =

∑
ijr

N−1
i• ZijZrj =

∑
ij

ZijN
−1
i• N•j . (36)

We need some notation for equality among index sets. The notation 1ij=rs

means 1i=r1j=s. It is different from 1{i,j}={r,s} which we also use. Additionally,
1ij �=rs means 1− 1ij=rs.

9.2. Weighted U statistics

We will work with weighted U-statistics

Ua =
1

2

∑
ijj′

uiZijZij′(Yij − Yij′)
2

Ub =
1

2

∑
iji′

vjZijZi′j(Yij − Yi′j)
2, and

Ue =
1

2

∑
iji′j′

wijZijZi′j′(Yij − Yi′j′)
2,

for weights ui, vj and wij chosen below.
We can write Ua =

∑
i uiNi•(Ni• − 1)s2i• where s2i• is an unbiased estimate

of σ2
B + σ2

E from within any row i with Ni• � 2. Under our model the values in
row i are IID with mean μ+ ai and variance σ2

B + σ2
E , and so
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Var(s2i•) = (σ2
B + σ2

E)
2
( 2

Ni• − 1
+

κ(bj + eij)

Ni•

)

where κ(bj + eij) = (κBσ
4
B + κEσ

4
E)/(σ

2
B + σ2

E)
2 is the kurtosis of Yij for the

given i and any j. Thus

Var(s2i•) =
2(σ2

B + σ2
E)

2

Ni• − 1
+

κBσ
4
B

Ni•
+

κEσ
4
E

Ni•
. (37)

Inverse variance weighting then suggests that we weight s2i• proportionally to
a value between Ni• and Ni• − 1. Weighting proportional to Ni• − 1 has the
advantage of zeroing out rows with Ni• = 1. This consideration motivates us to
take ui = 1/Ni•, and similarly vj = 1/N•j .

If Ue is dominated by contributions from eij then the observations enter
symmetrically and there is no reason to not take wij = 1. Even if the eij do
not dominate, the statistic Ue compares more data pairs than the others. It
is unlikely to be the information limiting statistic. So wij = 1 is a reasonable
default.

If the data are IID then only Ue above is nonzero. This is appropriate as only
the sum σ2

A + σ2
B + σ2

E can be identified in that case. For data that are nested
but not IID, only two of the U-statistics above are nonzero and in that case
only one of σ2

A and σ2
B can be identified separately from σ2

E .

The U-statistics we use are then

Ua =
1

2

∑
ijj′

N−1
i• ZijZij′(Yij − Yij′)

2

Ub =
1

2

∑
iji′

N−1
•j ZijZi′j(Yij − Yi′j)

2, and

Ue =
1

2

∑
iji′j′

ZijZi′j′(Yij − Yi′j′)
2.

(38)

Because we only sum over i with Ni• > 0 and j with N•j > 0, our sums never
include 0/0.

9.2.1. Expected U -statistics

Here we find the expected values for our three U -statistics.

Lemma 9.1. Under the random effects model (34), the U-statistics in (38)
satisfy⎛

⎜⎝E(Ua)

E(Ub)

E(Ue)

⎞
⎟⎠ =

⎛
⎜⎝ 0 N −R N −R

N − C 0 N − C

N2 −
∑

i N
2
i• N2 −

∑
j N

2
•j N2 −N

⎞
⎟⎠

⎛
⎜⎝σ2

A

σ2
B

σ2
E

⎞
⎟⎠ . (39)
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Proof. First we note that

E((ai − ai′)
2) = 2σ2

A(1− 1i=i′)

E((bj − bj′)
2) = 2σ2

B(1− 1j=j′), and

E((eij − ei′j′)
2) = 2σ2

E(1− 1i=i′1j=j′).

Now Yij − Yij′ = bj − bj′ + eij − eij′ , and so

E(Ua) =
1

2

∑
ijj′

N−1
i• ZijZij′

(
2σ2

B(1− 1j=j′) + 2σ2
E(1− 1i=i1j=j′)

)
= (σ2

B + σ2
E)

∑
ijj′

N−1
i• ZijZij′(1− 1j=j′)

= (σ2
B + σ2

E)
∑
ij′

Zij′(1− 1j=j′)

= (σ2
B + σ2

E)
∑
i

(Ni• − 1)

= (σ2
B + σ2

E)(N −R).

The same argument give E(Ub) = (σ2
A + σ2

E)(N − C).

The matrix in (39) is

M ≡

⎛
⎜⎝ 0 N −R N −R

N − C 0 N − C

N2 −
∑

i N
2
i• N2 −

∑
j N

2
•j N2 −N

⎞
⎟⎠ . (40)

Our moment based estimates are⎛
⎜⎝σ̂2

A

σ̂2
B

σ̂2
E

⎞
⎟⎠ = M−1

⎛
⎜⎝Ua

Ub

Ue

⎞
⎟⎠ . (41)

They are only well defined when M is nonsingular. The determinant of M is

(N −R)
[
(N − C)(N2 −

∑
j

N2
•j)

]
− (N −R)

[
(N − C)(N2 −N)− (N − C)(N2 −

∑
i

N2
i•)

]
= (N −R)(N − C)

[
N2 −

∑
i

N2
i• −

∑
j

N2
•j +N

]
.

The first factor is positive so long as maxi Ni• > 1, and the second factor
requires maxj N•j > 1. We already knew that we needed these conditions in
order to have all three U-statistics depend on the Yij . It is still of interest to
know when the third factor is positive. It is sufficient that no row or column has
over half of the data.
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9.3. The variance

From equation (41) we get

Var

⎛
⎜⎝σ̂2

A

σ̂2
B

σ̂2
E

⎞
⎟⎠ = M−1Var

⎛
⎜⎝Ua

Ub

Ue

⎞
⎟⎠M−1

where M is given at (40). So we need the variances and covariances of the three
U statistics.

To find variances, we will work out E(U2) for our U -statistics. Those involve

E((Yij − Yi′j′)
2(Yrs − Yr′s′)

2)

= E
(
(ai − ai′ + bj − bj′ + eij − ei′j′)

2(ar − ar′ + bs − bs′ + ers − er′s′)
2
)

= E

[(
(ai − ai′)

2 + (bj − bj′)
2 + (eij − ei′j′)

2

+ 2(ai − ai′)(bj − bj′) + 2(ai − ai′)(eij − ei′j′) + 2(bj − bj′)(eij − ei′j′)
)

×
(
(ar − ar′)

2 + (bs − bs′)
2 + (ers − er′s′)

2

+ 2(ar − ar′)(bs − bs′) + 2(ar − ar′)(ers − er′s′) + 2(bs − bs′)(ers − er′s′)
)]
.

This expression involves 8 indices and it has 36 terms. Some of those terms
simplify due to independence and some vanish due to zero means. To shorten
some expressions we use

BA,ii′,rr′ ≡ E((ai − ai′)(ar − ar′))

DA,ii′ ≡ E((ai − ai′)
2), and,

QA,ii′,rr′ ≡ E((ai − ai′)
2(ar − ar′)

2)

with mnemonics bilinear, diagonal and quartic. There are similarly defined terms
for component B. For the error term we have

BE,iji′j′,rsr′s′ ≡ E((eij − ei′j′)(ers − er′s′))

DE,ij,i′j′ ≡ E((eij − ei′j′)
2), and,

QE,iji′j′,rsr′s′ ≡ E((eij − ei′j′)
2(ers − er′s′)

2).

The generic contribution E((Yij −Yi′j′)
2(Yrs−Yr′s′)

2) to the mean square of
a U -statistic equals

QA,ii′,rr′ +QB,jj′,ss′ +QE,iji′j′,rsr′s′ + DA,ii′DB,ss′ + DA,ii′DE,rs,r′s′

+ DB,jj′DA,rr′ + DB,jj′DE,rs,r′s′ + DE,ij,i′j′DA,rr′ + DE,ij,i′j′DB,ss′

+ 4BA,ii′,rr′BB,jj′,ss′ + 4BA,ii′,rr′BE,iji′j′,rsr′s′ + 4BB,jj′,ss′BE,iji′j′,rsr′s′ .

(42)

The other 24 terms are zero.
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9.3.1. Variance parts

Here we collect expressions for the quantities appearing in the generic term of
our squared U -statistics.

Lemma 9.2. In the random effects model (34),

BA,ii′,rr′ = σ2
A

(
1i=r − 1i=r′ − 1i′=r + 1i′=r′

)
,

BB,jj′,ss′ = σ2
B

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
, and

BE,iji′j′,rsr′s′ = σ2
E

(
1ij=rs − 1ij=r′s′ − 1i′j′=rs + 1i′j′=r′s′

)
.

Proof. The first one follows by expanding and using E(aiar) = σ2
A1i=r, et cetera.

The other two use the same argument.

Lemma 9.3. In the random effects model (34),

DA,ii′ = 2σ2
A(1− 1i=i′),

DB,jj′ = 2σ2
B(1− 1j=j′), and

DE,ij,i′j′ = 2σ2
E(1− 1ij=i′j′).

Proof. Take i = r and i′ = r′ in Lemma 9.2.

Lemma 9.4. In the random effects model (34),

QA,ii′,rr′ = 1i �=i′1r �=r′σ
4
A

(
4 + (κA + 2)(1i∈{r,r′} + 1i′∈{r,r′})

+ 4× 1{i,i′}={r,r′}

)
,

QB,jj′,ss′ = 1j �=j′1s �=s′σ
4
B

(
4 + (κB + 2)(1j∈{s,s′} + 1j′∈{s,s′})

+ 4× 1{j,j′}={s,s′}

)
, and

QE,iji′j′,rsr′s′ = 1ij �=i′j′1rs �=r′s′σ
4
E

(
4 + (κE + 2)(1ij∈{rs,r′s′} + 1i′j′∈{rs,r′s′})

+ 4× 1{ij,i′j′}={rs,r′s′}

)
.

Proof. We prove the first one; the others are similar. This quantity is 0 if i = i′ or
r = r′. When i �= i′ and r �= r′, there are 3 cases to consider: |{i, i′} ∩ {r, r′}| =
0, |{i, i′} ∩ {r, r′}| = 1 and |{i, i′} ∩ {r, r′}| = 2. The kurtosis is defined via
κA = E(a4)/σ4

A − 3, so E(a4) = (κA + 3)σ4
A.

For no overlap, we find

E((a1 − a2)
2(a3 − a4)

2) = E((a1 − a2)
2)2 = 4σ4

A.

For a single overlap,

E((a1 − a2)
2(a1 − a3)

2) = E((a21 − 2a1a2 + a22)(a
2
1 − 2a1a3 + a23))

= E(a41) + 3σ4
A = σ4

A(κA + 6).
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For a double overlap,

E((a1 − a2)
4) = E(a41 − 4a1a

3
2 + 6a21a

2
2 − 4a31a2 + a42)

= 2E(a41) + 6σ4
A = σ4

A(2κA + 12).

As a result,

E((ai − ai′)
2(ar − ar′)

2) =

⎧⎪⎨
⎪⎩
4σ4

A, |{i, i′} ∩ {r, r′}| = 0,

σ4
A(κA + 6), |{i, i′} ∩ {r, r′}| = 1,

σ4
A(2κA + 12), |{i, i′} ∩ {r, r′}| = 2,

and so E((ai − ai′)
2(ar − ar′)

2) equals

1i �=i′1r �=r′σ
4
A

(
4 + (κA + 2)(1i∈{r,r′} + 1i′∈{r,r′}) + 4× 1{i,i′}={r,r′}

)
.

9.4. Variance of Ua

We will work out E(U2
a ) and then subtract E(Ua)

2. First we write

U2
a =

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′(Yij − Yij′)
2(Yrs − Yrs′)

2.

For E(U2
a ) we use the special case i = i′ and r = r′ of (42),

E(U2
a ) =

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′

[
QA,ii,rr +QB,jj′,ss′ +QE,ijij′,rsrs′ + DA,iiDB,ss′ + DA,iiDE,rs,rs′

+ DB,jj′DA,rr + DB,jj′DE,rs,rs′ + DE,ij,ij′DA,rr + DE,ij,ij′DB,ss′

+ 4BA,ii,rrBB,jj′,ss′ + 4BA,ii,rrBE,ijij′,rsrs′ + 4BB,jj′,ss′BE,ijij′,rsrs′

]
=

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′

[
QB,jj′,ss′︸ ︷︷ ︸

Term 1

+QE,ijij′,rsrs′︸ ︷︷ ︸
Term 2

+ DB,jj′DE,rs,rs′︸ ︷︷ ︸
Term 3

+DE,ij,ij′DB,ss′︸ ︷︷ ︸
Term 4

+4BB,jj′,ss′BE,ijij′,rsrs′︸ ︷︷ ︸
Term 5

]

after eliminating terms that are always 0. We handle these five sums in the next
paragraphs.

Term 1

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′QB,jj′,ss′

=
σ4
B

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′(1− 1j=j′)(1− 1s=s′)
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4 + (κB + 2)(1j∈{s,s′} + 1j′∈{s,s′}) + 4× 1{j,j′}={s,s′}

)
= σ4

B

(
(N −R)2 + (κB + 2)

∑
ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• )

+ 2
∑
ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1)
)
.

Term 2

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′QE,ijij′,rsrs′

=
σ4
E

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′1j �=j′1s �=s′

×
(
4 + (κE + 2)1i=r(1j∈{s,s′} + 1j′∈{s,s′}) + 41i=r1{j,j′}={s,s′}

)
= σ4

E

(
(N −R)2 + (κE + 2)

∑
i

Ni•(1−N−1
i• )2 + 2

∑
i

(1−N−1
i• )

)
.

Terms 3 and 4 These terms are equal by symmetry. We evaluate term 3.

1

4

∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′DB,jj′DE,rs,rs′

=
1

4

(∑
ijj′

N−1
i• ZijZij′DB,jj′

)(∑
rss′

N−1
r• ZrsZrs′DE,rs,rs′

)
.

Now∑
ijj′

N−1
i• ZijZij′DB,jj′ = 2σ2

B

∑
ijj′

N−1
i• ZijZij′(1− 1j=j′) = 2σ2

B(N −R)

and∑
rss′

N−1
r• ZrsZrs′DE,rs,rs′ = 2σ2

E

∑
rss′

N−1
r• ZrsZrs′(1− 1s=s′) = 2σ2

E(N −R)

by the same steps. Therefore term 3 of E(U2
a ) equals σ2

Bσ
2
E(N − R)2 and the

sum of terms 3 and 4 is 2σ2
Bσ

2
E(N −R)2.

Term 5 The term equals∑
ijj′

∑
rss′

N−1
i• N−1

r• ZijZij′ZrsZrs′BB,jj′,ss′BE,ijij′,rsrs′

=
∑
ijj′

∑
ss′

N−1
i• ZijZij′BB,jj′,ss′

∑
r

N−1
r• ZrsZrs′BE,ijij′,rsrs′ .
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Now∑
r

N−1
r• ZrsZrs′BE,ijij′,rsrs′ = σ2

EN
−1
i• ZisZis′

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
.

Term 5 is then

σ2
E

∑
ijj′

∑
ss′

N−2
i• ZijZij′ZisZis′

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
BB,jj′,ss′

= σ2
Eσ

2
B

∑
ijj′

∑
ss′

N−2
i• ZijZij′ZisZis′1j=s

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
− σ2

Eσ
2
B

∑
ijj′

∑
ss′

N−2
i• ZijZij′ZisZis′1j=s′

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
− σ2

Eσ
2
B

∑
ijj′

∑
ss′

N−2
i• ZijZij′ZisZis′1j′=s

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
+ σ2

Eσ
2
B

∑
ijj′

∑
ss′

N−2
i• ZijZij′ZisZis′1j′=s′

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
= 4σ2

Bσ
2
E(N −R)

Combination Combining the results of the previous sections, we have

E(U2
a ) = σ4

B

(
(N −R)2 + (κB + 2)

∑
ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• )

+ 2
∑
ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1)
)

+ 2σ2
Bσ

2
E(N −R)2 + 4σ2

Bσ
2
E(N −R)

+ σ4
E

(
(N −R)2 + (κE + 2)

∑
i

Ni•(1−N−1
i• )2 + 2

∑
i

(1−N−1
i• )

)
.

Subtracting E(Ua)
2 = (N −R)2(σ2

B + σ2
E)

2 we find that Var(Ua) equals

4σ2
Bσ

2
E(N −R) + σ4

E

(
(κE + 2)

∑
i

Ni•(1−N−1
i• )2 + 2

∑
i

(1−N−1
i• )

)

+ σ4
B

(
(κB + 2)

∑
ir

(ZZT)ir(1−N−1
i• )(1−N−1

r• )

+ 2
∑
ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1)
)
.

(43)

9.4.1. Variance of Ub

This case is exactly symmetric to the one above with Var(Ua) given by (43).
Therefore Var(Ub) equals

4σ2
Aσ

2
E(N − C) + σ4

E

(
(κE + 2)

∑
j

N•j(1−N−1
•j )2 + 2

∑
j

(1−N−1
•j )

)
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+ σ4
B

(
(κA + 2)

∑
js

(ZTZ)js(1−N−1
•j )(1−N−1

•s ) (44)

+ 2
∑
js

N−1
•j N−1

•s (ZTZ)js((Z
TZ)js − 1)

)
.

9.5. Variance of Ue

As before, we find E(U2
e ) and then subtract E(Ue)

2. Now

U2
e =

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′(Yij − Yi′j′)
2(Yrs − Yr′s′)

2.

From (42),

E(U2
e ) =

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′

[
QA,ii′,rr′︸ ︷︷ ︸
Term 1

+QB,jj′,ss′︸ ︷︷ ︸
Term 2

+QE,iji′j′,rsr′s′︸ ︷︷ ︸
Term 3

+ DA,ii′DB,ss′︸ ︷︷ ︸
Term 4

+DA,ii′DE,rs,r′s′︸ ︷︷ ︸
Term 5

+DB,jj′DA,rr′︸ ︷︷ ︸
Term 6

+DB,jj′DE,rs,r′s′︸ ︷︷ ︸
Term 7

+ DE,ij,i′j′DA,rr′︸ ︷︷ ︸
Term 8

+DE,ij,i′j′DB,ss′︸ ︷︷ ︸
Term 9

+4BA,ii′,rr′BB,jj′,ss′︸ ︷︷ ︸
Term 10

+ 4BA,ii′,rr′BE,iji′j′,rsr′s′︸ ︷︷ ︸
Term 11

+4BB,jj′,ss′BE,iji′j′,rsr′s′︸ ︷︷ ︸
Term 12

]
.

We handle the twelve sums in the next paragraphs.

Terms 1 and 2 Term 1 is

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′QA,ii′,rr′

=
1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′1i �=i′1r �=r′σ
4
A

(
4 + (κA + 2)(1i∈{r,r′} + 1i′∈{r,r′}) + 4× 1{i,i′}={r,r′}

)
=

σ4
A

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′(1− 1i=i′)(1− 1r=r′)

(
4 + (κA + 2)(1i∈{r,r′} + 1i′∈{r,r′}) + 4× 1{i,i′}={r,r′}

)
= σ4

A

(
N4 − 2N2

∑
i

N2
i• + 3

(∑
i

N2
i•

)2

− 2
∑
i

N4
i•

)

+ σ4
A(κA + 2)

(
N2

∑
i

N2
i• − 2N

∑
i

N3
i• +

∑
i

N4
i•

)
.

We can use the symmetry of the roles of A and B and their indices. Therefore,
term 2 is equal to
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σ4
B

(
N4 − 2N2

∑
j

N2
•j + 3

(∑
j

N2
•j

)2

− 2
∑
j

N4
•j

)

+ σ4
B(κB + 2)

(
N2

∑
j

N2
•j − 2N

∑
j

N3
•j +

∑
j

N4
•j

)
.

Term 3

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′QE,iji′j′,rsr′s′

=
σ4
E

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′(1− 1ij=i′j′)(1− 1rs=r′s′)

(
4 + (κE + 2)(1ij∈{rs,r′s′} + 1i′j′∈{rs,r′s′}) + 4× 1{ij,i′j′}={rs,r′s′}

)
= σ4

EN(N − 1)[N(N − 1) + 2] + σ4
E(κE + 2)N(N − 1)2.

Term 4

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′DA,ii′DB,ss′

=
1

4

(∑
ii′jj′

ZijZi′j′DA,ii′

)( ∑
rr′ss′

ZrsZr′s′DB,ss′

)
.

The first factor is∑
ii′jj′

ZijZi′j′DA,ii′ = 2σ2
A

∑
ii′jj′

ZijZi′j′(1− 1i=i′) = 2σ2
A(N

2 −
∑
i

N2
i•).

By the same argument, the second factor is∑
rr′ss′

ZrsZr′s′DB,ss′ = 2σ2
B(N

2 −
∑
s

N2
•s),

and so term 4 is

σ2
Aσ

2
B(N

2 −
∑
i

N2
i•)(N

2 −
∑
j

N2
•j).

Term 5

1

4

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′DA,ii′DE,rs,r′s′

=
1

4

(∑
ii′jj′

ZijZi′j′DA,ii′

)( ∑
rr′ss′

ZrsZr′s′DE,rs,r′s′

)
.

The first factor is computed in the previous section. The second factor is∑
rr′ss′

ZrsZr′s′DE,rs,r′s′ = 2σ2
E

∑
rr′ss′

ZrsZr′s′(1− 1rs=r′s′) = 2σ2
EN(N − 1).
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Thus, term 5 is

σ2
Aσ

2
EN(N − 1)(N2 −

∑
i

N2
i•).

Terms 6–9 By symmetry of indices, term 6 is the same as term 4:

σ2
Aσ

2
B(N

2 −
∑
i

N2
i•)(N

2 −
∑
j

N2
•j).

Term 7 is like term 5 with factors A and B interchanged. Thus, term 7 is equal
to

σ2
Bσ

2
EN(N − 1)(N2 −

∑
j

N2
•j).

By symmetry of indices, term 8 is the same as term 5:

σ2
Aσ

2
EN(N − 1)(N2 −

∑
i

N2
i•).

By symmetry of indices, term 9 is the same as term 7:

σ2
Bσ

2
EN(N − 1)(N2 −

∑
j

N2
•j).

Term 10∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′BA,ii′,rr′BB,jj′,ss′

= σ2
Aσ

2
B

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′
(
1i=r − 1i=r′ − 1i′=r + 1i′=r′

)
(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
= 4σ2

Aσ
2
B

(
N3 − 2N

∑
ij

ZijNi•N•j +
∑
ij

N2
i•N

2
•j

)
.

Terms 11 and 12∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′BA,ii′,rr′BE,iji′j′,rsr′s′

= σ2
Aσ

2
E

∑
ii′jj′

∑
rr′ss′

ZijZi′j′ZrsZr′s′
(
1i=r − 1i=r′ − 1i′=r + 1i′=r′

)
(
1ij=rs − 1ij=r′s′ − 1i′j′=rs + 1i′j′=r′s′

)
= σ2

Aσ
2
E

(
4N3 − 4N

∑
i

N2
i•

)
.

For term 12, we can use the symmetry with term 11, interchanging rows
columns. Thus, term 12 is

σ2
Bσ

2
E

(
4N3 − 4N

∑
j

N2
•j

)
.
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Combination Summing up the results of the previous twelve sections, we
have that E(U2

e ) equals

σ4
AN

4 − 2σ4
AN

2
∑
i

N2
i• + 3σ4

A

(∑
i

N2
i•

)2

− 2σ4
A

∑
i

N4
i• + σ4

BN
4 − 2σ4

B

∑
j

N4
•j

+ σ4
A(κA + 2)

(
N2

∑
i

N2
i• − 2N

∑
i

N3
i• +

∑
i

N4
i•

)
− 2σ4

BN
2
∑
j

N2
•j

+ 3σ4
B

(∑
j

N2
•j

)2

+ σ4
B(κB + 2)

(
N2

∑
j

N2
•j − 2N

∑
j

N3
•j +

∑
j

N4
•j

)

+ σ4
E

(
N4 − 2N3 + 3N2 − 2N

)
+ σ4

E(κE + 2)N(N − 1)2

+ σ2
Aσ

2
B(N

2 −
∑
i

N2
i•)(N

2 −
∑
j

N2
•j) + σ2

Aσ
2
EN(N − 1)(N2 −

∑
i

N2
i•)

+ σ2
Aσ

2
B(N

2 −
∑
i

N2
i•)(N

2 −
∑
j

N2
•j) + σ2

Bσ
2
EN(N − 1)(N2 −

∑
j

N2
•j)

+ σ2
Aσ

2
EN(N − 1)(N2 −

∑
i

N2
i•) + σ2

Bσ
2
EN(N − 1)(N2 −

∑
j

N2
•j)

+ 4σ2
Aσ

2
B

(
N3 − 2N

∑
ij

ZijNi•N•j +
∑
ij

N2
i•N

2
•j

)
+ 4σ2

Aσ
2
E

(
N3 −N

∑
i

N2
i•

)
+ σ2

Bσ
2
E

(
4N3 − 4N

∑
j

N2
•j

)
.

Then, we have, applying some simplifications,

Var(Ue) = E(U2
e )− E(Ue)

2

= 2σ4
A

((∑
i

N2
i•

)2

−
∑
i

N4
i•

)
+ 2σ4

B

((∑
j

N2
•j

)2

−
∑
j

N4
•j

)
+ 2σ4

EN(N − 1)

+ (κA + 2)σ4
A

∑
i

N2
i•(N −Ni•)

2 + (κB + 2)σ4
B

∑
j

N2
•j(N −N•j)

2

+ (κE + 2)σ4
EN(N − 1)2 + 4σ2

Aσ
2
B

∑
ij

(Ni•N•j −NZij)
2

+ 4σ2
Aσ

2
EN

(
N2 −

∑
i

N2
i•

)
+ 4σ2

Bσ
2
EN

(
N2 −

∑
j

N2
•j

)
. (45)

9.6. Covariance of Ua and Ub

We use the formula Cov(Ua, Ub) = E(UaUb) − E(Ua)E(Ub), so we just need to
compute E(UaUb). Using our preferred normalization,

UaUb =
1

4

(∑
ijj′

N−1
i• ZijZij′(Yij − Yij′)

2
)(∑

rr′s

N−1
•s ZrsZr′s(Yrs − Yr′s)

2
)
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=
1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s(Yij − Yij′)
2(Yrs − Yr′s)

2.

Then,

E(UaUb) =
1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s

(
QE,ijij′,rsr′s︸ ︷︷ ︸

Term 1

+ DB,jj′DA,rr′︸ ︷︷ ︸
Term 2

+DB,jj′DE,rs,r′s︸ ︷︷ ︸
Term 3

+DE,ij,ij′DA,rr′︸ ︷︷ ︸
Term 4

)
.

We consider each term separately.

Term 1

1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′sQE,ijij′,rsr′s

=
σ4
E

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s1j �=j′1r �=r′

(
4 + (κE + 2)(1ij∈{rs,r′s} + 1ij′∈{rs,r′s}) + 4× 1{ij,ij′}={rs,r′s}

)
= σ4

E

(
N −R

)(
N − C

)
+ σ4

E(κE + 2)
∑
ij

Zij(1−N−1
i• )(1−N−1

•j ).

Term 2

1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′sDB,jj′DA,rr′

=
1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s2σ
2
B(1− 1j=j′)2σ

2
A(1− 1r=r′)

= σ2
Aσ

2
B

(
N −R

)(
N − C

)
.

Term 3

1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′sDB,jj′DE,rs,r′s

=
1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s2σ
2
B(1− 1j=j′)2σ

2
E(1− 1r=r′)

= σ2
Bσ

2
E

(
N −R

)(
N − C

)
.

Term 4

1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′sDE,ij,ij′DA,rr′
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=
1

4

∑
ijj′

∑
rr′s

N−1
i• N−1

•s ZijZij′ZrsZr′s2σ
2
E(1− 1j=j′)2σ

2
A(1− 1r=r′)

= σ2
Aσ

2
E

(
N −R

)(
N − C

)
.

Combination Adding up the four terms, we have

E(UaUb) = σ4
E

(
N −R

)(
N − C

)
+ σ4

E(κE + 2)
∑
ij

Zij(1−N−1
i• )(1−N−1

•j )

+ σ2
Aσ

2
B

(
N −R

)(
N − C

)
+ σ2

Bσ
2
E

(
N −R

)(
N − C

)
+ σ2

Aσ
2
E

(
N −R

)(
N − C

)
,

and so

Cov(Ua, Ub) = E(UaUb)− E(Ua)E(Ub)

= E(UaUb)− (σ2
B + σ2

E)(σ
2
A + σ2

E)(N −R)(N − C)

= σ4
E(κE + 2)

∑
ij

Zij(1−N−1
i• )(1−N−1

•j ).

Notice that Cov(Ua, Ub) = 0 when σ2
E = 0. This can be verified by noting

that when σ2
E = 0 then Ua is a function only of ai while Ub is a function only

of bj . Therefore Ua and Ub are independent when σ2
E = 0.

9.7. Covariance of Ua and Ue

We use the formula Cov(Ua, Ue) = E(UaUe) − E(Ua)E(Ue), so we just need to
compute E(UaUe). First,

UaUe =
1

4

(∑
ijj′

N−1
i• ZijZij′(Yij − Yij′)

2
)( ∑

rr′ss′

ZrsZr′s′(Yrs − Yr′s′)
2
)

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′(Yij − Yij′)

2(Yrs − Yr′s′)
2.

Then,

E(UaUe) =
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′

(
QB,jj′,ss′︸ ︷︷ ︸

Term 1

+QE,ijij′,rsr′s′︸ ︷︷ ︸
Term 2

+ DB,jj′DA,rr′︸ ︷︷ ︸
Term 3

+DB,jj′DE,rs,r′s′︸ ︷︷ ︸
Term 4

+DE,ij,ij′DA,rr′︸ ︷︷ ︸
Term 5

+DE,ij,ij′DB,ss′︸ ︷︷ ︸
Term 6

+ 4BB,jj′,ss′BE,ijij′,rsr′s′︸ ︷︷ ︸
Term 7

)
.

We consider each term separately.
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Term 1

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′QB,jj′,ss′

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′1j �=j′1s �=s′σ

4
B

(
4 + (κB + 2)(1j∈{s,s′} + 1j′∈{s,s′}) + 4× 1{j,j′}={s,s′}

)
= 2σ4

B

(∑
i

N−1
i•

(∑
j

ZijN•j

)2

−
∑
ij

N−1
i• ZijN

2
•j

)

+ σ4
B

(
N −R

)(
N2 −

∑
j

N2
•j

)
+ σ4

B(κB + 2)
∑
ij

Zij(N −N•j)N•j(1−N−1
i• )

Term 2

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′QE,ijij′,rsr′s′

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′1j �=j′1rs �=r′s′σ

4
E

(
4 + (κE + 2)(1ij∈{rs,r′s′} + 1ij′∈{rs,r′s′}) + 4× 1{ij,ij′}={rs,r′s′}

)
= σ4

EN(N − 1)(N −R) + 2σ4
E(N −R) + σ4

E(κE + 2)(N −R)(N − 1)

Term 3

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′DB,jj′DA,rr′

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′2σ

2
B(1− 1j=j′)2σ

2
A(1− 1r=r′)

= σ2
Aσ

2
B

(
N −R

)(
N2 −

∑
r

N2
r•

)
Term 4

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′DB,jj′DE,rs,r′s′

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′2σ

2
B(1− 1j=j′)2σ

2
E(1− 1r=r′1s=s′)

= σ2
Bσ

2
E

(
N −R

)(
N2 −N)

Term 5

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′DE,ij,ij′DA,rr′
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=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′2σ

2
E(1− 1j=j′)2σ

2
A(1− 1r=r′)

= σ2
Aσ

2
E

(
N −R

)(
N2 −

∑
r

N2
r•

)
using the result for term 3.

Term 6

1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′DE,ij,ij′DB,ss′

=
1

4

∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′2σ

2
E(1− 1j=j′)2σ

2
B(1− 1s=s′)

= σ2
Bσ

2
E

(
N −R

)(
N2 −

∑
s

N2
•s

)
Term 7∑

ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′BB,jj′,ss′BE,ijij′,rsr′s′

=
∑
ijj′

∑
rr′ss′

N−1
i• ZijZij′ZrsZr′s′σ

2
B

(
1j=s − 1j=s′ − 1j′=s + 1j′=s′

)
× σ2

E

(
1ij=rs − 1ij=r′s′ − 1ij′=rs + 1ij′=r′s′

)
= 4σ2

Bσ
2
EN(N −R)

Combination We add up the seven terms, replacing some Nr• and N•s ex-
pressions by equivalents using Ni• and N•j , getting

E(UaUe) = σ4
B

(
N −R

)(
N2 −

∑
j

N2
•j

)

+ 2σ4
B

(∑
i

N−1
i•

(∑
j

ZijN•j

)2

−
∑
ij

N−1
i• ZijN

2
•j

)

+ σ4
B(κB + 2)

∑
ij

Zij(N −N•j)N•j(1−N−1
i• ) + 2σ4

E(N −R)

+ σ4
EN(N − 1)(N −R) + σ4

E(κE + 2)(N −R)(N − 1)

+ σ2
Aσ

2
B

(
N −R

)(
N2 −

∑
i

N2
i•

)
+ σ2

Bσ
2
E

(
N −R

)(
N2 −N)

+ σ2
Aσ

2
E

(
N −R

)(
N2 −

∑
i

N2
i•

)
+ σ2

Bσ
2
E

(
N −R

)(
N2 −

∑
j

N2
•j

)
+ 4σ2

Bσ
2
EN(N −R).

Now E(Ua)E(Ue) equals

(N −R)(σ2
B + σ2

E)
(
σ2
A(N

2 −
∑
i

N2
i•) + σ2

B(N
2 −

∑
j

N2
•j) + σ2

E(N
2 −N)

)
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which contains terms equalling several of those in E(UaUe) above. Subtracting
those term from E(UaUe) yields

Cov(Ua, Ue) = 2σ4
B

(∑
i

N−1
i•

(∑
j

ZijN•j

)2

−
∑
ij

N−1
i• ZijN

2
•j

)

+ σ4
B(κB + 2)

∑
ij

Zij(N −N•j)N•j(1−N−1
i• ) + 2σ4

E(N −R)

+ σ4
E(κE + 2)(N −R)(N − 1) + 4σ2

Bσ
2
EN(N −R).

9.7.1. Covariance of Ub and Ue

By interchanging the roles of the rows and columns in Cov(Ua, Ue), we find that

Cov(Ub, Ue) = 2σ4
A

(∑
j

N−1
•j

(∑
i

ZijNi•

)2

−
∑
ij

N−1
•j ZijN

2
i•

)

+ σ4
A(κA + 2)

∑
ij

Zij(N −Ni•)Ni•(1−N−1
•j )

+ 2σ4
E(N − C) + σ4

E(κE + 2)(N − C)(N − 1)

+ 4σ2
Aσ

2
EN(N − C).

9.8. Asymptotic approximation: Proof of Theorem 4.2

We suppose that the following inequalities all hold

Ni• � δN, N•j � δN, R � δN, C � δN,

N � δ
∑
i

N2
i•, N � δ

∑
j

N2
•j ,

∑
i

N2
i• � δN2, and

∑
j

N2
•j � δN2

for the same small δ > 0. The first six inequalities are assumed in the theorem
statement. The last two follow from the first two. We also assume that

0 < κA + 2, κB + 2, κE + 2, σ4
A, σ

4
B , σ

4
E < ∞.

Note that we can bound σ2
Aσ

2
B , σ

2
Aσ

2
E , and σ2

Aσ
2
B away from 0 and ∞ uniformly

with those other quantities.
We also suppose that∑

ij

ZijN
−1
i• N•j � δ

∑
i

N2
i•, and

∑
ij

ZijNi•N
−1
•j � δ

∑
j

N2
•j . (46)

The bounds in (46) seem reasonable but it appears that they cannot be derived
from the first eight bounds above.

We begin with the coefficient of σ4
B(κB + 2) in Var(Ua) from equation (12).

It is ∑
ir

(ZZT)ir(1−N−1
i• −N−1

r• +N−1
i• N−1

r• )
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=
∑
j

N2
•j − 2

∑
ij

ZijN
−1
i• N•j +

∑
ij

ZijN
−1
i• N−1

r•

=
∑
j

N2
•j(1 +O(δ)).

The third, fourth and fifth terms in Var(Ua) are all O(δ). The second term
contains ∑

ir

N−1
i• N−1

r• (ZZT)ir((ZZT)ir − 1) �
∑
ir

N−1
i• (ZZT)ir

=
∑
irj

N−1
i• ZijZrj

=
∑
ij

ZijN
−1
i• N•j

= O(δ).

It follows that Var(Ua) = σ4
B(κB + 2)

∑
j N

2
•j(1 + O(δ)). Similarly Var(Ub) =

σ4
A(κA + 2)

∑
i N

2
i•(1 +O(δ)).

The expression for Var(Ue) contains terms σ4
A(κA +2)N2

∑
j N

2
•j +σ4

B(κB +

2)N2
∑

i N
2
i•. All other terms are O(δ) times these two, mostly through N 	∑

i N
2
i•,

∑
j N

2
•j 	 N2. The coefficient of σ2

Aσ
2
B contains

N
∑
ij

ZijNi•N•j � δN2
∑
ij

ZijNi• = δN2
∑
i

N2
i•

so it is of smaller order than the lead term, as well as∑
i

N2
i•

∑
j

N2
•j � δN2

∑
i

N2
i•.

As a result

Var(Ue) =
(
σ4
A(κA + 2)N2

∑
j

N2
•j + σ4

B(κB + 2)N2
∑
i

N2
i•

)
(1 +O(δ)).

Turning to the covariances

Cov(Ua, Ub) = σ4
E(κE + 2)

∑
ij

Zij(1−N−1
i• −N−1

•j +N−1
i• N−1

•j )

= σ4
E(κE + 2)(N −R− C +O(R))

= σ4
E(κE + 2)N(1 +O(δ)).

Next Cov(Ua, Ue) contains the term σ4
B(κB + 2)N

∑
ij ZijN•j =

σ4
B(κB + 2)N

∑
j N

2
•j . The terms appearing after that one are O(N2) =

O(δN
∑

j N
2
•j). The largest term preceding it is dominated by

∑
i

N−1
i•

(∑
j

ZijN•j

)2

� δN
∑
i

N−1
i•

(∑
j

ZijN•j

)(∑
j

Zij

)
= δN

∑
j

N2
•j .
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It follows that Cov(Ua, Ue) = σ4
B(κB + 2)N

∑
j N

2
•j(1 + O(δ)) and similarly,

Cov(Ub, Ue) = σ4
A(κA + 2)N

∑
i N

2
i•(1 +O(δ)).

Next, using (19)

Var(σ̂2
A) =

(Var(Ue)

N4
+

Var(Ua)

N2
− 2

Cov(Ua, Ue)

N3

)
(1 +O(δ))

= σ4
A(κA + 2)

1

N2

∑
i

N2
i•(1 +O(δ)), and similarly

Var(σ̂2
B) = σ4

B(κB + 2)
1

N2

∑
j

N2
•j(1 +O(δ)).

The last variance is

Var(σ̂2
E) =

(Var(Ua)

N2
+

Var(Ub)

N2
+

Var(Ue)

N4
− 2

N3
Cov(Ua, Ue)

− 2

N3
Cov(Ub, Ue) +

2

N2
Cov(Ua, Ub)

)
(1 +O(δ))

= σ4
E(κE + 2)

1

N
(1 +O(δ)).

Next we verify that these variance estimates are asymptotically uncorrelated.
Ignoring the 1 +O(δ) factors we have

Cov(σ̂2
A, σ̂

2
B)

.
=

Var(Ue)

N4
− Cov(Ub, Ue)

N3
− Cov(Ua, Ue)

N3
+

Cov(Ua, Ub)

N2

.
=

1

N2

(
σ4
A(κA + 2)

∑
i

N2
i• + σ4

B(κB + 2)
∑
j

N2
•j)

)

− 1

N2
σ4
A(κA + 2)

∑
i

N2
i• −

1

N2
σ4
B(κB + 2)

∑
j

N2
•j

+
1

N
σ4
E(κE + 2)

=
1

N
σ4
E(κE + 2)

which is O(δ) times Var(σ̂2
A) and Var(σ̂2

B). Likewise

Cov(σ̂2
A, σ̂

2
E)

.
=

1

N3
Cov(Ua, Ue) +

1

N3
Cov(Ub, Ue)−

1

N4
Var(Ue)−

1

N2
Var(Ua)

− 1

N2
Cov(Ua, Ub) +

1

N3
Cov(Ua, Ue)

.
= σ4

B(κB + 2)
2

N2

∑
j

N2
•j + σ4

A(κA + 2)
1

N2

∑
i

N2
i•

−
(
σ4
A(κA + 2)

∑
i

N2
i• + σ4

B(κB + 2)
∑
j

N2
•j

) 1

N2

− σ4
B(κB + 2)

1

N2

∑
j

N2
•j − σ4

E(κE + 2)
1

N



Variance components in large crossed random effects models 1287

= −σ4
E(κE + 2)

1

N

which is much smaller than Var(σ̂2
A). Similarly Cov(σ̂2

B , σ̂
2
E)

.
= −σ4

E(κE +2)/N ,
is much smaller than Var(σ̂2

B).

9.9. Estimating kurtoses

To estimate the kurtoses κA, κB and κE in our variance formulas, it suffices to
estimate fourth central moments such as μA,4 = σ4

A(κA+3) and similarly defined
μB,4 and μE,4. Given σ̂2

A, σ̂
2
B , and σ̂2

E , we can do this via GMM. Consider the
following estimating equations and their expectations,

Wa =
1

2

∑
ijj′

1

Ni•
ZijZij′(Yij − Yij′)

4

Wb =
1

2

∑
ii′j

1

N•j
ZijZi′j(Yij − Yi′j)

4

We =
1

2

∑
ii′jj′

ZijZi′j′(Yij − Yi′j′)
4

Using previous results,

E(Wa) =
1

2

∑
ijj′

1

Ni•
ZijZij′E

(
(bj − bj′ + eij − eij′)

4
)

=
1

2

∑
ijj′

ZijZij′

Ni•
E
(
(bj − bj′)

4 + 6(bj − bj′)
2(eij − eij′)

2 + (eij − eij′)
4
)

= (N −R)
(
μB,4 + 3σ4

B + 12σ2
Bσ

2
E + μE,4 + 3σ4

E

)
.

By symmetry,

E(Wb) = (N − C)
(
μA,4 + 3σ4

A + 12σ2
Aσ

2
E + μE,4 + 3σ4

E

)
.

Next

E(We) =
1

2

∑
ii′jj′

ZijZi′j′E
(
(Yij − Yi′j′)

4
)

=
1

2

∑
ii′jj′

ZijZi′j′E
(
(ai − ai′ + bj − bj′ + eij − ei′j′)

4
)

=
1

2

∑
ii′jj′

ZijZi′j′E
(
(ai − ai′)

4 + 6(ai − ai′)
2(bj − bj′)

2 + (bj − bj′)
4

+ 6(ai − ai′)
2(eij − ei′j′)

2 + 6(bj − bj′)
2(eij − ei′j′)

2 + (eij − ei′j′)
4
)

+ (μE,4 + 3σ4
E)N(N − 1) + 12σ2

Aσ
2
B(N

2 −
∑
i

N2
i• −

∑
j

N2
•j +N).
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These expectations are all linear in the fourth moments. Therefore, given
estimates of σ2

A, σ
2
B , and σ2

E , we can solve another three-by-three system of
equations to get estimates of the fourth moments.

Letting M be the matrix in equation (40) we find that⎛
⎝E(Wa)
E(Wb)
E(We)

⎞
⎠ = M

⎛
⎝μA,4

μB,4

μE,4

⎞
⎠+

⎛
⎝3(N −R)σ4

B + 12(N −R)σ2
Bσ

2
E + 3(N −R)σ4

E

3(N − C)σ4
A + 12(N − C)σ2

Aσ
2
E + 3(N − C)σ4

E

H

⎞
⎠

where

H = (3σ4
A + 12σ2

Aσ
2
E)(N

2 −
∑
i

N2
i•) + (3σ4

B + 12σ2
Bσ

2
E)(N

2 −
∑
j

N2
•j)

+ 3σ4
EN(N − 1) + 12σ2

Aσ
2
B(N

2 −
∑
i

N2
i• −

∑
j

N2
•j +N).

For plug-in method of moment estimators we replace expected W -statistics
by their sample quantities, replace the variance components by their estimates
and solve the matrix equation getting μ̂A,4 et cetera. Then κ̂A = μ̂A,4/σ̂

4
A − 3

and so on.

9.10. Best linear predictor

Here we consider linear predicton of Yij . We begin with predictions of the form

Ŷij = Ŷij(λ) =
∑

rs λrsZrsYrs. Then we consider predictions of a reduced form
that consider only the totals in row i, in row j and in the whole data set.

9.10.1. Proof of Lemma 5.1

Let Ŷij =
∑

rs ZijλijYij and L = E((Yij − Ŷij)
2). Then

L = μ2
(
1−

∑
rs

λrsZrs

)2

+Var(Yij) + Var(Ŷij)− 2Cov(Yij , Ŷij).

First Var(Yij) = σ2
A + σ2

B + σ2
E . Next

Cov(Yij , Ŷij) =
∑
rs

λrsZrs

(
σ2
A1i=r + σ2

B1j=s + σ2
E1i=r1j=s

)
= σ2

A

∑
s

λisZis + σ2
B

∑
r

λrjZrj + σ2
Eλ

2
ijZij ,

and finally

Var(Ŷij) =
∑
rs

∑
r′s′

λrsλr′s′ZrsZr′s′
(
σ2
A1r=r′ + σ2

B1s=s′ + σ2
E1r=r′1s=s′

)



Variance components in large crossed random effects models 1289

= σ2
A

∑
rss′

λrsλrs′ZrsZrs′ + σ2
B

∑
rsr′

λrsλr′sZrsZr′s + σ2
E

∑
rs

λ2
rsZrs.

Thus

L = μ2
(
1−

∑
rs

λrsZrs

)2

+ σ2
A + σ2

B + σ2
E

+ σ2
A

∑
rss′

λrsλrs′ZrsZrs′ + σ2
B

∑
rsr′

λrsλr′sZrsZr′s + σ2
E

∑
rs

λ2
rsZrs

− 2
(
σ2
A

∑
s

λisZis + σ2
B

∑
r

λrjZrj + σ2
Eλ

2
ijZij

)
.

9.10.2. Stationary conditions

The partial derivative of L with respect to λr′′s′′ is

2μ2
(
1−

∑
rs

λrsZrs

)
(−Zr′′s′′) + 2σ2

Eλr′′s′′Zr′′s′′

+ σ2
A

∑
rss′

ZrsZrs′(λrs′1rs=r′′s′′ + λrs1rs′=r′′s′′)− 2σ2
A

∑
s

Zis1is=r′′s′′

+ σ2
B

∑
rsr′

ZrsZr′s(λr′s1rs=r′′s′′ + λrs1r′s=r′′s′′)− 2σ2
B

∑
r

Zrj1rj=r′′s′′ .

After taking account of the indicator functions we get

2Zr′′s′′

(
μ2

(
1−

∑
rs

λrsZrs

)
(−1) + σ2

Eλr′′s′′ + σ2
A

∑
s′

Zr′′s′λr′′s′

+ σ2
B

∑
r′

Zr′s′′λr′s′′ − σ2
AZis′′1i=r′′ − σ2

BZr′′j1j=s′′

)
.

We can replace Zis′′1i=r′′ by 1i=r′′ because of the leading factor Zr′′s′′ . This
and a corresponding change to the coefficient of σ2

B yield

2Zrs

(
μ2

(∑
r′s′

λr′s′Zr′s′ − 1
)
+ σ2

Eλrs + σ2
A

∑
s′

Zrs′λrs′ + σ2
B

∑
r′

Zr′sλr′s

− σ2
A1i=r − σ2

B1j=s

)
.

9.10.3. Proof of Lemma 5.2

Here we consider
Ŷij = λ0Y•• + λaYi• + λbY•j

where Yrj

Y•• =
∑
rs

ZrsYrs, Yi• =
∑
s

ZisYis, and Y•j =
∑
r

ZrjYrj .

The mean squared error is L = E((Yij − Ŷij)
2). Expanding it we get
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L = μ2
(
1− (λ0N + λaNi• + λbN•j)

)2
+Var(Yij) + λ2

0Var(Y••) + λ2
aVar(Yi•)

+ λ2
bVar(Y•j)− 2λ0Cov(Yij , Y••)− 2λaCov(Yij , Yi•)− 2λbCov(Yij , Y•j)

+ 2λ0λaCov(Y••, Yi•) + 2λ0λbCov(Y••, Y•j) + 2λaλbCov(Yi•, Y•j).

As before Var(Yij) = σ2
A + σ2

B + σ2
E . We set about finding the other terms.

First

Var(Y••) = σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN,

Var(Yi•) = σ2
AN

2
i• + σ2

BNi• + σ2
ENi•, and

Var(Y•j) = σ2
AN•j + σ2

BN
2
•j + σ2

EN•j .

Second

Cov(Yij , Y••) = σ2
ANi• + σ2

BN•j + σ2
EZij ,

Cov(Yij , Yi•) = σ2
ANi• + σ2

BZij + σ2
EZij , and

Cov(Yij , Y•j) = σ2
AZij + σ2

BN•j + σ2
EZij .

The remaining terms use somewhat longer arguments.

Cov(Yi•, Y••) =
∑
rss′

ZrsZis′Cov(Yrs, Yis′)

=
∑
rss′

ZrsZis′
(
1i=rσ

2
A + 1s=s′σ

2
B + 1i=r1s=s′σ

2
E

)
= σ2

AN
2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•, and then

Cov(Y•j , Y••) = σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j

by symmetry. Finally

Cov(Yi•, Y•j) =
∑
rs

ZisZrjCov(Yis, Yrj)

=
∑
rs

ZisZrj

(
σ2
A1i=r + σ2

B1j=s + σ2
E1i=r1j=s

)
= σ2

A

∑
s

ZisZij + σ2
B

∑
r

ZijZrj + σ2
EZij

= Zij

(
σ2
ANi• + σ2

BN•j + σ2
E

)
.

Combining these pieces we find that

L = μ2
(
1− λ0N − λaNi• − λbN•j

)2
+ λ2

0

(
σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN
)

+ σ2
A + σ2

B + σ2
E + λ2

a

(
σ2
AN

2
i• + σ2

BNi• + σ2
ENi•

)
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+ λ2
b

(
σ2
AN•j + σ2

BN
2
•j + σ2

EN•j

)
− 2λ0

(
σ2
ANi• + σ2

BN•j + σ2
EZij

)
− 2λa

(
σ2
ANi• + σ2

BZij + σ2
EZij

)
− 2λb

(
σ2
AZij + σ2

BN•j + σ2
EZij

)
+ 2λ0λa

(
σ2
AN

2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•

)
+ 2λ0λb

(
σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j

)
+ 2λaλbZij

(
σ2
ANi• + σ2

BN•j + σ2
E

)
.

9.10.4. Proof of Theorem 5.1

From the result of Lemma 5.2, we see that L is quadratic in λ. Since L is
bounded below by 0, it follows that L attains its minimum on R3, which would
be any solution of the stationarity condition ∇λL = 0. We find the components
of this gradient.

1

2

∂L

∂λ0
= Nμ2(λ0N + λaNi• + λbN•j − 1)−

(
σ2
ANi• + σ2

BN•j

)
+ λ0

(
σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN
)

+ λa

(
σ2
AN

2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•

)
+ λb

(
σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j

)
1

2

∂L

∂λa
= Ni•μ

2(λ0N + λaNi• + λbN•j − 1) + λa

(
σ2
AN

2
i• + σ2

BNi• + σ2
ENi•

)
−

(
σ2
ANi• + σ2

BZij

)
+ λ0

(
σ2
AN

2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•

)
+ λbZij

(
σ2
ANi• + σ2

BN•j + σ2
E

)
, and

1

2

∂L

∂λb
= N•jμ

2(λ0N + λaNi• + λbN•j − 1) + λb

(
σ2
AN•j + σ2

BN
2
•j + σ2

EN•j

)
−

(
σ2
AZij + σ2

BN•j

)
+ λ0

(
σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j

)
+ λaZij

(
σ2
ANi• + σ2

BN•j + σ2
E

)
.

We write this as
Hλ∗ = c

where

c =

⎛
⎝ Nμ2 + σ2

ANi• + σ2
BN•j

Ni•μ
2 + σ2

ANi• + σ2
BZij

N•jμ
2 + σ2

AZij + σ2
BN•j

⎞
⎠ =

⎛
⎝ N Ni• N•j

Ni• Ni• Zij

N•j Zij N•j

⎞
⎠

⎛
⎝μ2

σ2
A

σ2
B

⎞
⎠
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and H is a symmetric matrix with upper triangle

H =

⎛
⎝H11 H12 H13

∗ H22 H23

∗ ∗ H33

⎞
⎠

with elements

H11 = μ2N2 + σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN

H12 = μ2NNi• + σ2
AN

2
i• + σ2

B

∑
s

ZisN•s + σ2
ENi•

H13 = μ2NN•j + σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j

H22 = μ2N2
i• + σ2

AN
2
i• + σ2

BNi• + σ2
ENi•

H23 = μ2Ni•N•j + σ2
AZijNi• + σ2

BZijN•j + σ2
EZij , and

H33 = μ2N2
•j + σ2

AN•j + σ2
BN

2
•j + σ2

EN•j .

Using Ti• ≡
∑

s ZisN•s and T•j ≡
∑

r ZrjNr• some of these simplify:

H12 = μ2NNi• + σ2
AN

2
i• + σ2

BTi• + σ2
ENi•, and

H13 = μ2NN•j + σ2
AT•j + σ2

BN
2
•j + σ2

EN•j .

9.10.5. Proof of Theorem 5.2

To begin with, we note that N•j =
∑

r Zrj �
∑

r Nr•Zrj � ηN . We write(
λ∗
0

λ∗
b

)
=

1

det H̃

(
H33 −H13

−H31 H11

)(
c1
c3

)
.

Then

det H̃λ∗
0 = H33c1 −H13c3

= N•j(μ
2N•j + σ2

A + σ2
BN•j + σ2

E)(Nμ2 +N•jσ
2
B)

− (μ2NN•j + σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j)N•j(μ
2 + σ2

B)

= μ2
(
σ2
ANN•j + σ2

ENN•j − σ2
AN•j

∑
r

ZrjNr• − σ2
EN

2
•j

)
+ σ2

B

(
σ2
AN

2
•j − σ2

AN•j

∑
r

ZrjNr•

)
= μ2(σ2

A + σ2
E)NN•j(1 +O(η)),

and

det H̃λ∗
b = H11c3 −H31c1
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= (μ2N2 + σ2
A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN)N•j(μ
2 + σ2

B)

− (μ2NN•j + σ2
A

∑
r

ZrjNr• + σ2
BN

2
•j + σ2

EN•j)(Nμ2 +N•jσ
2
B)

= μ2
(
σ2
AN•j

∑
r

N2
r• + σ2

BN•j

∑
s

N2
•s − σ2

AN
∑
r

ZrjNr• − σ2
BNN2

•j

)
+ σ2

B

(
μ2N2N•j + σ2

AN•j

∑
r

N2
r• + σ2

BN•j

∑
s

N2
•s + σ2

ENN•j

− μ2NN2
•j − σ2

AN•j

∑
r

ZrjNr• − σ2
BN

3
•j − σ2

EN
2
•j

)
= μ2σ2

BN
2N•j(1 +O(η)).

Thus
λ∗
0

λ∗
b

=
σ2
A + σ2

E

σ2
BN

(1 +O(η)),

and so

det H̃ = H11H33 −H2
13

=
(
μ2N2 + σ2

A

∑
r

N2
r• + σ2

B

∑
s

N2
•s + σ2

EN
)

(
μ2N2

•j + σ2
BN

2
•j + σ2

AN•j + σ2
EN•j

)
−

(
μ2NN•j + σ2

A

∑
r

Nr•Zrj + σ2
BN

2
•j + σ2

EN•j

)2

≈ μ2N2N2
•j(μ

2 + σ2
B)− (μ2NN•j)

2 = μ2N2N2
•jσ

2
B .

As a result the prediction for a new row in a large column is essentially that
column average plus O(1/N•j) times the global average.

9.10.6. Asymptotic weights: Proof of Theorem 5.3

Here we have

1 � Ni• � ηN, 1 � N•j � ηN, Ni• � ηN2
i•,

N•j � ηN2
•j , N � ηN2,

∑
r

N2
r• � ηN2,

∑
s

N2
•s � ηN2,

∑
r

Nr•Zrj � ηNN•j , and
∑
s

N•sZis � ηNNi•.

The first five follow easily from 1 < 1/η � Ni•, N•j � ηN . The last four follow
from the others. For instance

∑
r N

2
r• �

∑
r Nr•(ηN) = ηN2, and

∑
r Nr•Zrj �∑

r Zrj(ηN) = ηN•jN . We also have 0 < μ2, σ2
A, σ

2
B , σ

2
E < ∞.
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Then

H =

⎛
⎝ μ2N2 μ2NNi• μ2NN•j

μ2NNi• (μ2 + σ2
A)N

2
i• μ2Ni•N•j

μ2NN•j μ2Ni•N•j (μ2 + σ2
B)N

2
•j

⎞
⎠ (1 +O(η))

and using symbolic computation (via Wolfram|Alpha, September 6, 2015)

H−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ2(σ2
A + σ2

B) + σ2
Aσ

2
B

σ2
Aσ

2
Bμ

2N2

−1

σ2
ANi•N

−1

σ2
BN•jN

−1

σ2
ANi•N

1

σ2
AN

2
i•

0

−1

σ2
BN•jN

0
1

σ2
BN

2
•j

⎞
⎟⎟⎟⎟⎟⎟⎠

(1 +O(η)).

The determinant of H−1 is (σ2
Aσ

2
Bμ

2N2
i•N

2
•jN

2)−1(1+O(η)), so we need Ni• � 1
and N•j � 1 to make matrix inversion a continuous operation. Similarly

c =

⎛
⎝ Nμ2

Ni•(μ
2 + σ2

A)
N•j(μ

2 + σ2
B)

⎞
⎠ (1 +O(η)).

Thus ignoring the O(η) terms

λ∗
0
.
=

(μ2(σ2
A + σ2

B) + σ2
Aσ

2
B

σ2
Aσ

2
Bμ

2N2

)
Nμ2 −

( 1

σ2
ANi•N

)
Ni•(μ

2 + σ2
A)

−
( 1

σ2
BN•jN

)
N•j(μ

2 + σ2
B)

=
μ2(σ2

A + σ2
B) + σ2

Aσ
2
B

σ2
Aσ

2
BN

− μ2 + σ2
A

σ2
AN

− μ2 + σ2
B

σ2
BN

=
μ2(σ2

A + σ2
B) + σ2

Aσ
2
B

σ2
Aσ

2
BN

− μ2σ2
B + σ2

Aσ
2
B

σ2
Aσ

2
BN

− μ2σ2
A + σ2

Bσ
2
B

σ2
Aσ

2
BN

= − 1

N
.

The end result −1/N is of the same order of magnitude as the original terms.
Therefore λ∗

0 = (−1/N)(1 +O(η)). Similarly

λ∗
a

.
= − 1

σ2
ANi•N

Nμ2 +
1

σ2
AN

2
i•

Ni•(μ
2 + σ2

A) = − μ2

σ2
ANi•

+
μ2 + σ2

A

σ2
ANi•

=
1

Ni•

and

λ∗
b
.
=

1

N•j
,

and both of these approximations involve multiplication by 1 + O(η). In this
limit then

Ŷij = Ȳi•(1 +O(η)) + Ȳ•j(1 +O(η))− Ȳ••(1 +O(η))

which make intuitive sense as (μ̂+ âi) + (μ̂+ b̂j)− μ̂.
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[15] Pébay, P. (2008). Formulas for robust, one-pass parallel computation
of covariances and arbitrary-order statistical moments. Technical Report
SAND2008-6212, Sandia National Laboratories.

[16] Raudenbush, S. W. (1993). A crossed random effects model for unbalanced
data with applications in cross-sectional and longitudinal research. Journal
of Educational and Behavioral Statistics, 18(4):321–349.

[17] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various
Metropolis Hastings algorithms. Statistical Science, 16(4):351–367.

[18] Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation struc-
ture, blocking and parameterization for the Gibbs sampler. Journal of the
Royal Statistical Society. Series B (Methodological), 59(2):291–317.

[19] Searle, S. R., Casella, G., and McCulloch, C. E. (2006). Variance compo-
nents. John Wiley & Sons. MR2298115

[20] Snijders, T. A. (2011). Multilevel analysis. In Lovric, M., editor, Interna-
tional Encyclopedia of Statistical Science, pages 879–882. Springer Berlin
Heidelberg.

[21] Van Dyk, D. A. and Meng, X.-L. (2001). The art of data augmentation.
Journal of Computational and Graphical Statistics, 10(1):1–50. MR1936358

[22] Yahoo!-Webscope (2015a). Dataset ydata-ymovies-user-movie-ratings-
train-v1 0. http://research.yahoo.com/Academic_Relations.

[23] Yahoo!-Webscope (2015b). Dataset ydata-ymusic-rating-study-v1 0-train.
http://research.yahoo.com/Academic_Relations.

[24] Yu, Y. and Meng, X.-L. (2011). To center or not to center: That is not the
question – an ancillarity–sufficiency interweaving strategy (ASIS) for boost-
ing MCMC efficiency. Journal of Computational and Graphical Statistics,
20(3):531–570.

http://www.ams.org/mathscinet-getitem?mr=2298115
http://www.ams.org/mathscinet-getitem?mr=1936358
http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

	Introduction
	MCMC for large crossed data
	Gibbs sampling
	Other MCMC algorithms
	Simulation results

	Further notation and assumptions
	Moment estimates of variance components
	U-statistics for variance components
	Variances of the estimators
	True variance of 
	Computable approximations of Var(U)
	Asymptotic approximation of 
	Estimating kurtoses

	Algorithm summary

	Predictions
	Best linear predictor
	Shrinkage predictors

	Experimental results
	Simulations
	Real world data

	Conclusion
	Informative missingness

	Appendix A
	Proof of Theorem 2.1
	Simulation results

	Appendix B
	Partially observed random effects model
	Weighted U statistics
	Expected U-statistics

	The variance
	Variance parts

	Variance of 
	Variance of 

	Variance of 
	Covariance of  and 
	Covariance of  and 
	Covariance of  and 

	Asymptotic approximation: Proof of Theorem 4.2
	Estimating kurtoses
	Best linear predictor
	Proof of Lemma 5.1
	Stationary conditions
	Proof of Lemma 5.2
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Asymptotic weights: Proof of Theorem 5.3


	Acknowledgments
	References

