
Under review as a conference paper at ICLR 2020

LEARNING TO GENERATE 3D TRAINING DATA
THROUGH HYBRID GRADIENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Synthetic images rendered by graphics engines are a promising source for train-
ing deep networks. However, it is challenging to ensure that they can help train
a network to perform well on real images, because a graphics-based generation
pipeline requires numerous design decisions such as the selection of 3D shapes
and the placement of the camera. In this work, we propose a new method that
optimizes the generation of 3D training data based on what we call “hybrid gra-
dient”. We parametrize the design decisions as a real vector, and combine the
approximate gradient and the analytical gradient to obtain the hybrid gradient of
the network performance with respect to this vector. We evaluate our approach on
the task of estimating surface normal and depth from a single image. Experiments
on standard benchmarks show that our approach can outperform the prior state of
the art on optimizing the generation of 3D training data, particularly in terms of
computational efficiency.

1 INTRODUCTION

Synthetic images rendered by graphics engines have emerged as a promising source of training data
for deep networks, especially for vision and robotics tasks that involve perceiving 3D structures from
RGB pixels (Butler et al., 2012; Yeh et al., 2012; Varol et al., 2017; Ros et al., 2016; McCormac
et al., 2017; Xia et al., 2018; Chang et al., 2017; Kolve et al., 2017; Song et al., 2017; Richter et al.,
2016; 2017; Zhang et al., 2017; Li & Snavely, 2018). A major appeal of generating training images
from computer graphics is that they have a virtually unlimited supply and come with high-quality
3D ground truth for free.

Despite its great promise, however, using synthetic training images from graphics poses its own chal-
lenges. One of them is ensuring that the synthetic training images are useful for real world tasks, in
the sense that they help train a network to perform well on real images. Ensuring this is challenging
because a graphics-based generation pipeline requires numerous design decisions including the se-
lection of 3D shapes, the composition of scene layout, the application of texture, the configuration
of lighting, and the placement of the camera. These design decisions can profoundly impact the
usefulness of the generated training data, but have largely been made manually by researchers in
prior work, potentially leading to suboptimal results.

In this paper we address the problem of automatically optimizing a generation pipeline of synthetic
3D training data, with the explicit objective of improving the generalization performance of a trained
deep network on real images.

One idea is black-box optimization: we try a particular configuration of the pipeline, use the pipeline
to generate training images, train a deep network on these images, and evaluate the network on a
validation set of real images. We can treat the performance of the trained network as a black-box
function of the configuration of the generation pipeline, and apply black-box optimization tech-
niques. In fact, recent work by Yang & Deng (2018) has explored this exact direction. They use
genetic algorithms to optimize the 3D shapes used in the generation pipeline. In particular, they start
with a collection of simple primitive shapes such as cubes and spheres, and evolve them through
mutation and combination into complex shapes, whose fitness is determined by the generalization
performance of a trained network. They show that the 3D shapes evolved from scratch can provide
more useful training data than manually created 3D CAD models.

1

Under review as a conference paper at ICLR 2020

evaluate
Training images

and 3D ground truth
Parameters Performance

3D composition
and rendering

train
Network weights

Hybrid Gradient Approximate Gradient Analytical Gradient

Real images

Figure 1: Our “hybrid gradient” method. We parametrize the design decisions as a real vector β and
optimize the function of performance L with respect to β. From β to the generated training images
and ground truth, we compute the approximate gradient by averaging finite difference approxima-
tions. From training samples X to L, we compute analytical gradients through backpropagation
with unrolled training steps.

The advantage of black-box optimization is that it makes no assumption about the function being
optimized as long as it can be evaluated. As a result, it can be applied to any existing function
including advanced photorealistic renderers. On the other hand, black-box optimization is compu-
tationally expensive—knowing nothing else about the function, it needs many trials to find a good
update to the current solution. In contrast, gradient-based optimization can be much more efficient
by assuming the availability of analytical gradients, which can be efficiently computed and directly
correspond to good updates to the current solution, but the downside is that analytical gradients are
often unavailable, especially for many advanced photorealistic renderers.

In this work, we propose a new method that optimizes the generation of 3D training data based on
what we call “hybrid gradient”. The basic idea is to make use of analytical gradients where they are
available, and combine them with black-box optimization for the rest of the function. Our hypothesis
is that hybrid gradient will lead to more efficient optimization than black-box methods because it
makes use of the partially available analytical gradient.

Concretely, if we parametrize the design decisions as a real vector β, the function mapping β to
network performance L can be decomposed into two parts: (1) from design parameters β to the
generated training imagesX , and (2) from the training imagesX to the network performanceL. The
first part often does not have analytical gradients, due to the use of advanced photorealistic renderers.
We instead compute an approximate gradient by averaging finite difference approximations along
random directions (Mania et al., 2018). For the second part, we compute analytical gradients through
backpropagation—with SGD training unrolled, the performance of the network is a differentiable
function of the training images. Then we combine the approximate gradient and the analytical
gradient to obtain the hybrid gradient of the network performance L with respect to parameters β,
as illustrated in Fig. 1.

A key ingredient of our approach is representing design decisions as real vectors of fixed dimensions,
including the selection and composition of shapes. Yang & Deng (2018) represent 3D shapes as a
finite set of graphs, one for each shape. This representation is suitable for a genetic algorithm but
is incompatible with our method. Instead, we propose to represent 3D shapes as random samples
generated by a Probabilistic Context-Free Grammar (PCFG) (Harrison, 1978). To sample a 3D
shape, we start with an initial shape, and repeatedly sample a production rule in the grammar to
modify it. The (conditional) probabilities of applying the production rules are parametrized as a real
vector of a fixed dimension.

Our approach is novel in multiple aspects. First, to the best our knowledge, we are the first to
propose the idea of hybrid gradient, i.e. combining approximate gradients and analytical gradients,
especially in the context of optimizing the generation of 3D training data. Second, the integration of
PCFG-based shape generation and hybrid gradient is also novel.

We evaluate our approach on the task of estimating surface normal and depth from a single image.
Experiments on standard benchmarks show that our approach can outperform the prior state of the art
on optimizing the generation of 3D training data, particularly in terms of computational efficiency.

2

Under review as a conference paper at ICLR 2020

2 RELATED WORK

Generating 3D training data Synthetic images generated by computer graphics have been ex-
tensively used for training deep networks for numerous tasks, including single image 3D recon-
struction (Song et al., 2015; Hua et al., 2016; McCormac et al., 2017; Janoch et al., 2011; Yang &
Deng, 2018; Chang et al., 2015), optical flow estimation (Mayer et al., 2018; Butler et al., 2012;
Gaidon et al., 2016), human pose estimation (Varol et al., 2017; Chen et al., 2016), action recogni-
tion (Roberto de Souza et al., 2017), natural language modeling (Johnson et al., 2017), and many
others (Qiu et al., 2017; Martinez-Gonzalez et al., 2018; Xia et al., 2018; Tobin et al., 2017; Richter
et al., 2017; 2016; Wu et al., 2018). The success of these works has demonstrated the effectiveness
of synthetic images.

To ensure the relevance of the generated the training data to real world tasks, a large amount of man-
ual effort has been necessary, particularly in acquiring 3D assets such as shapes and scenes (Chang
et al., 2015; Janoch et al., 2011; Choi et al., 2016; Xiang et al., 2016; Hua et al., 2016; McCormac
et al., 2017; Song et al., 2017). To reduce manual labor, some heuristics have been proposed to
automatically generate 3D configurations. For example, Zhang et al. (2017) design an approach to
use entropy of object masks and color distribution of the rendered image to select sampled camera
poses. McCormac et al. (2017) simulate gravity for physically plausible object configurations inside
a room.

Prior work has also performed explicit optimization of 3D configurations. For example, Yeh et al.
(2012) synthesizes layouts with the target of satisfying constraints such as non-overlapping and oc-
cupation. Jiang et al. (2018) learns a probabilistic grammar model for indoor scene generation,
with parameters learned using maximum likelihood estimation on the existing 3D configurations in
SUNCG (Song et al., 2017). Similarly, Veeravasarapu et al. (2017) tunes the parameters for stochas-
tic scene generation using generative adversarial networks, with the goal of making synthetic images
indistinguishable from real images. Qi et al. (2018) synthesize 3D room layouts based on human-
centric relations among furniture, to achieve visual realism, functionality and naturalness of the
scenes. However, these optimization objectives are different from ours, which is the generalization
performance of a trained network on real images.

The closest prior work to ours is that of Yang & Deng (2018), who use a genetic algorithm to opti-
mize the 3D shapes used for rendering synthetic training images. Their optimization objective is the
same as ours, but their optimization method is different in that they do not use any gradient informa-
tion. Similarly, Meta-Sim (Kar et al., 2019) also tries to optimize 3D parameters with REINFORCE
towards better task generalization performance. However, it does not backpropagate analytical gra-
dients from the meta-objective, so their algorithm is still black-box estimation by mulitple trials.

Unrolling and backpropogating through network training One component of our approach is
unrolling and backpropagating through the training iterations of a deep network. This is a tech-
nique that has often been used by existing work in other contexts, including hyperparameter opti-
mization (Maclaurin et al., 2015) and meta-learning (Andrychowicz et al., 2016; Ha et al., 2017;
Munkhdalai & Yu, 2017; Li & Malik, 2017; Finn et al., 2018). Our work is different in that we
apply this technique in a novel context: it is used to optimize the generation of 3D training data and
it is integrated with approximate gradients to form hybrid gradients.

Hyperparameter optimization Our method is connected to hyperparameter optimization in the
sense that we can treat the design decisions of the 3D generation pipeline as hyperparameters of the
training procedure.

Hyperparameter optimization is typically approached as black-box optimization (Bergstra & Bengio,
2012; Bergstra et al., 2011; Lacoste et al., 2914; Brochu et al., 2010). Since black-box optimization
does not assume knowledge about the function being optimized, it requires repeated evaluation of the
function, which is expensive in this case because it contains the process of training and evaluating a
deep network. In contrast, we combine analytical gradients from backpropagation and approximate
gradient from generalized finite difference for more efficient optimization.

3

Under review as a conference paper at ICLR 2020

3 PROBLEM SETUP

Suppose we have a probabilistic generative pipeline. We use a deterministic function, f(β, r) to
represent the sampling operation. This function f takes the real vector β and the random seed r
as input. An image and its 3D ground truth are computed by evaluating the function f(β, r). By
choosing n different random seeds r, we obtain a dataset of size n for training:

X = (f(β, r(1)), f(β, r(2)), · · · , f(β, r(n))) (1)

Then, a deep neural network with initialized weights w0 is trained on the training data X , with
the function train(w0, X) representing the optimization process and generating the weights of the
trained network.

The network is then evaluated on real data X̂ with a validation loss leval to obtain a generalization
performance L:

L = leval(train(w0, X), X̂) (2)

Combining the above two functions, L is a function of β, and the task is to optimize this value L
with respect to the parameters β.

As we mentioned in the previous section, black-box algorithms typically need repeated evaluation
of this function, which is expensive.

4 APPROACH

4.1 GENERATIVE MODELING OF SYNTHETIC TRAINING DATA

We decompose the function f(β, r) into two parts: 3D composition and rendering.

3D composition Context-free grammars have been used in scene generation (Jiang et al., 2018;
Qi et al., 2018) and in parsing of Constructive Solid Geometry (CSG) shapes (Sharma et al., 2018).
Here, we design a probabilistic context-free grammar (PCFG) (Foley et al., 1990) to control the
random generation of unlimited shapes.

In a PCFG, a tree is randomly sampled given a set of probabilities. Starting from a root node, the
leaf nodes of the tree keeps expanding according to a set of rules. The process is stopped until all
leaf nodes cannot expand. Since multiple rules may apply, the parameters in a PCFG define the
probability distribution of applying different rules.

In our PCFG, a shape can be constructed by composing two other shapes through union and dif-
ference, and this construction can be recursively applied until all leaf nodes are a predefined set of
concrete primitive shapes (terminals). The parameters can be the probability of either expanding the
node or replacing it with a terminal.

Given our PCFG model with the probability parameters βS , a 3D shape S can be composed:

S = fS(βS , rS) (3)

Rendering training images we use a graphics renderer R to render the composed shape S. The
rendering configurations P (e.g. camera poses), are also sampled from a distribution controlled by a
set of parameters βR:

P = fR(βR, rR) (4)

Now that we have Eq. 3 and 4, The full function for training data generation can be represented as
follows:

f(β, r) = R(S, P) = R(fS(βS , rS), fR(βR, rR)) (5)

where β = (βR, βS) and r = (rR, rS).

By choosing different random seeds r, we obtain a set of training images and their 3D ground truth
X .

4

Under review as a conference paper at ICLR 2020

Evaluation

synthetic imagessynthetic images

real images

eval

train train train

sample

train train train

sample

real images

eval

Approximation

Backpropagation

Approximation

Synthesis & Training
Update using Hybrid Gradient

Figure 2: The details of using “hybrid gradient” to incrementally update β and train the network.
The analytical gradient is computed by backpropagating through unrolled training steps (colored in
orange). The numerical gradients are computed using finite difference approximation by sampling
in a neighborhood of βt (colored in cyan). Then βt is updated using hybrid gradient, and the trained
network is used as initialization for the next timestamp t+ 1.

4.2 HYBRID GRADIENT

After a deep network is trained on synthetic training data X , it is evaluated on a set of validation
images X̂ to obtain the generalization loss L.

Recall that to compute the hybrid gradient ∂L∂β to optimize β, we multiply two gradients: the gradient
of network training ∂Lt

∂X and the gradient of image generation ∂X
∂β , as is shown in Fig. 2.

Analytical gradient from backpropagation We assume the network is trained on a a set of pre-
viously generated training images X(1), X(2), · · · , X(n). Without loss of generality, we assume
mini-batch stochastic gradient descent (SGD) with a batch size of 1 is used for weight update. Let
function g denote the SGD step and let ltrain denote the training loss:

w(k+1) = w(k) − η ∂ltrain(w
(k), X(k))

∂w(k)
= g(w(k), X(k); ltrain, η) (6)

Note that the SGD step g is differentiable with respect to the network weights w(k) as well as the
training batch X(k), if our training loss ltrain is twice (sub-)differentiable. This requirement is
satisfied in most practical cases. To simplify the equation, we assume the training loss ltrain and the
learning rate η do not change during one update step of β, so the variables can be safely discarded
in the equation.

Therefore, the gradient of the generalization loss L for each sample X(k) can be computed through
backpropagation:

∂L

∂X(k)
=

∂L

∂w(k+1)
· ∂w

(k+1)

∂X(k)
=

∂L

∂w(k+1)
· g′2(w(k), X(k)) (7)

∂L

∂w(k)
=

∂L

∂w(k+1)
· ∂w

(k+1)

∂w(k)
=

∂L

∂w(k+1)
· g′1(w(k), X(k)) (8)

with the initial value ∂L
∂w(n+1) computed from the validation loss leval:

∂L

∂w(n+1)
= l′eval(w

(k+1), X̂). (9)

Aproximate gradient from finite difference For the formulation in Eq. 5, the graphics renderer
can be a general black box and non-differentiable. We can approximate the gradient of each rendered

5

Under review as a conference paper at ICLR 2020

image with ground truth X(1), X(2), · · · with respect to the generation parameters β, with Basic
Random Search, a generalized finite difference method described in (Mania et al., 2018). First, we
sample a set of noise from an uncorrelated multivariate Gaussian distribution (Mania et al., 2018):

δ1, δ2, · · · , δm ∼ N (0, σI) (10)

Next, we approximate the Jacobian for each sample (⊗ denotes cross product) (Mania et al., 2018):

∂X(i)

∂β
≈ 1

m

m∑
j=1

fD(β + δj , ri)− fD(β − δj , ri)
2‖δj‖

⊗ δj
‖δj‖

(11)

Incremental training Following Yang & Deng (2018), we incrementally update parameters β and
network weights w. At timestamp t, we update βt with the hybrid gradient; for network weights, we
simply use the latest trained network for initialization in timestamp t+ 1:

βt+1 = βt − γ
∂Lt
∂βt

= βt − γ
n∑
i=1

∂Lt

∂X
(i)
t

· ∂X
(i)
t

∂βt
w

(1)
t+1 = w

(n+1)
t (12)

5 EXPERIMENTS

We evaluate our algorithm on three different datasets, and two standard prediction tasks for single-
image 3D. The input is an RGB image and the output is pixel-wise surface normal/depth map.

Specifically, We experiment on the task of surface normal estimation on two real datasets: MIT-
Berkeley Intrinsic Images Dataset (MBII) (Barron & Malik, 2015), which focuses on images of
single objects and NYU Depth (Silberman et al., 2012), which focuses on indoor scenes. For the
third dataset, we experiment on the task of depth estimation on the renderings of the scanned human
faces in the Basel Face Model dataset (Paysan et al., 2009).

In all of our experiments, our networks are trained on synthetic images only, and the generalization
loss is computed on the validation split of the datasets mentioned above. For MBII, we use pure
synthetic shapes (Yang & Deng, 2018) to render training images. We first compare our method with
ablation baselines, then show that our algorithm is better than the previous state of the art on MBII.
For NYU Depth, we base our generative model on SUNCG (Song et al., 2017) and augment the
original 3D configurations in Zhang et al. (2017). For Basel Face Model, we sample synthetic faces
from a morphable model and evaluate on renderings of scanned faces.

5.1 MIT-BERKELEY INTRINSIC IMAGES

Following the work of Yang & Deng (2018), we recover the surface normals of an object from a
single image.

Synthetic shape generation In Yang & Deng (2018), a population of primitive shapes such as
cylinders, spheres and cubes are evolved and rendered to train deep networks. The evolution oper-
ators are defined as transformations of individual shapes, as well as boolean operations of shapes
in Constructive Solid Geometry (CSG) (Foley et al., 1990). In our algorithm, we also use the CSG
grammar for our PCFG.

S => E; E => C(E, T(E)) | P; C => union | subtract;
P => sphere | cube | truncated_cone | tetrahedron;
T => attach * rand_translate * rand_rotate * rand_scale;

In this PCFG, the final shape S is generated by recursively composing (C) other shapes E with trans-
formations T, until primitives P are sampled at all E nodes. The parameter vector β consists of three
parts: (1) The probability of the different rules; (2) The means and variations of log-normal distribu-
tions controlling shape primitives (P), such as the radius of the sphere; (3) The means and variations
of log-normal distributions controlling transformation parameters (T), such as scale values. Exam-
ples of sampled shapes are shown in Fig. 3. For the generalization loss L, we simply compute the
mean angle error of predictions on the training set of the MIT-Berkeley dataset.

6

Under review as a conference paper at ICLR 2020

Table 1: Ablation Study: the diagnostic experiment to compare with random but fixed β. We sample
10 values of β in advance, and then train the networks with the same setting as in hybrid gradient.
The best, median and worst performance is reported on the test images, and the corresponding values
of β are used to initialize β0 for hybrid gradient for comparison. The results show that our approach
is consistently better than the baselines with fixed β.

Summary Stats ↑ Errors ↓
≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ MAE Median MSE

Fixed β
β = βbest 19.9% 52.7% 70.5% 24.0◦ 21.5◦ 0.2282
β = βmedian 20.7% 50.9% 67.5% 24.8◦ 22.1◦ 0.2461
β = βworst 17.9% 46.7% 64.6% 25.6◦ 23.8◦ 0.2553

Hybrid gradient
β0 = βbest 22.7% 58.5% 73.9% 22.5◦ 19.3◦ 0.2065
β0 = βmedian 24.0% 60.1% 75.7% 21.8◦ 18.8◦ 0.1938
β0 = βworst 26.0% 58.6% 73.9% 22.0◦ 19.1◦ 0.1998

We compose our shape in mesh representations, slightly different from the implicit functions in
Yang & Deng (2018). Therefore, we re-implemented their algorithm with mesh representations for
fair comparison. For network training and evaluation, we follow Yang & Deng (2018) and train the
Stacked Hourglass Network (Newell et al., 2016) on the images, and use the standard split of the
MBII dataset for the optimization of β and testing.

We report the performance of surface normal directions with the metrics commonly used in previous
works, including mean angle error (MAE), median angle error, mean squared error (MSE), and the
proportion of pixels that normals fall in an error range (≤ N◦). See Appendix for detailed definition.

Ablation study We first sample 10 random values of β in advance, then for each β we train a net-
work, with the exact same training and evaluation configurations as in our hybrid gradient. We then
report the best, median and worst performance of those 10 networks, and label the corresponding β
as βbest, βmedian and βworst. In hybrid gradient, we initialize β0 from these three values and report
the performance on test images also in Table 1.

From the table we can observe that training with a fixed β can hardly match the performance of
our method, even with multiple trials. Instead, our hybrid gradient approach can optimize β to
a reasonable performance regardless of different initialization. This simple diagnostic experiment
demonstrates that our algorithm is working properly.

Comparison with previous work In this experiment, we compare with black-box algorithms in-
cluding Basic Random Search (Mania et al., 2018) and Shape Evolution (Yang & Deng, 2018). Be-
cause we use mesh implementation instead of implicit computation graph in Yang & Deng (2018)
for CSG, we re-implemented Shape Evolution with the same setting for fair comparison. We fol-
low Yang & Deng (2018) for the initialization of β, train the networks and update β for the same
number of steps. We then report the test performance of the network which has the best validation
performance. The results are shown in Table 2.

We also run the experiments on the same set of CPUs and GPUs, and plot the test mean angle
error with respect to the CPU time, GPU time and total computation time (Fig. 4). We see that our
algorithm is more efficient than the above baselines. Shapes sampled from our optimized PCFG are
shown in Fig. 3.

Figure 3: Sampled shapes from our probabilistic context-free grammar, with parameters optimized
using hybrid gradient.

7

Under review as a conference paper at ICLR 2020

Table 2: Our approach compared to previous work, on the test set of MIT-Berkeley images (Barron
& Malik, 2015). The results show that our approach is better than the state of the art as reported in
Yang & Deng (2018).

Summary Stats ↑ Errors ↓
≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ MAE Median MSE

SIRFS (Barron & Malik, 2015) 20.4% 53.3% 70.9% 26.2◦ — 0.2964
Evolution (Yang & Deng, 2018)(Reported) 21.6% 55.5% 73.5% 23.3◦ — 0.2204
Evolution (Yang & Deng, 2018)(Our Impl.) 23.0% 58.3% 73.8% 22.5◦ 18.8◦ 0.2042

Basic Random Search (Mania et al., 2018) 21.9% 59.6% 74.0% 22.8◦ 19.2◦ 0.2106
Hybrid gradient 24.5% 59.3% 74.3% 22.0◦ 18.9◦ 0.1984

0 20 40
GPU time (hours)

20

30

40

50

M
ea

n
A

ng
le

 E
rr

or
 (

)

0 100 200
CPU time (hours)

0 100 200
Total time (hours)

Hybrid Gradient
Basic Random Search (Mania et al., 2018)

Evolution (Yang & Deng, 2018)

Figure 4: Mean angle error on the test images vs. computation time, compared to two black-box
optimization baselines.

5.2 NYU DEPTH

Scene perturbation We design our scene generation grammar as an augmentation of collected
SUNCG scenes (Song et al., 2015) with the cameras from Zhang et al. (2017):

S => E,P;
E => T_shapes * R_shapes * E0; P => T_camera * R_camera * P0;
T_shapes => translate(rand_x, rand_y, rand_z);
R_shapes => rotate_euler(rand_yaw, rand_pitch, rand_roll);

For each 3D scene S, we perturb the positions and poses of the original cameras (P0) and shapes
(E0) using random translations and rotations. The position perturbations follow a mixture of uncor-
related Gaussians, and the perturbations for pose angles (yaw, pitch & roll) follow a mixture of von
Mises, i.e. wrapped Gaussians. The vector β consists of the parameters of the above distributions.

Training Setup Our networks are trained on synthetic images only, and evaluated on NYU Depth
V2 (Silberman et al., 2012) with the same setup as in Zhang et al. (2017). For real images in our
optimization pipeline, we sample a subset of images from the standard validation images in NYU
Depth V2. We initialize our network using the original model in Zhang et al. (2017) and initialize
β0 using a small value. To compare with random β, we construct a dataset of 40k images with a
small random β for each image. We then load the same pre-trained network and train for the same
number of iterations as in hybrid gradient. We then evaluate the networks on the test set of NYU
Depth V2 (Silberman et al., 2012), following the same protocol. The results are reported in Table 3.
Note that none of these networks has seen a single real image except for validation.

The numbers indicate that our parametrized generation of SUNCG augmentation exceeds the orig-
inal baseline performance. Note that the network trained with random β is worse than original
performance. This means without proper optimization of perturbation parameters, such random
augmentation may hurt generalization, demonstrating that good choices of these parameters are cru-
cial for generalization to real images.

8

Under review as a conference paper at ICLR 2020

Table 3: The performance of the finetuned networks on the test set of NYU Depth V2 Silberman
et al. (2012), compared to the original network in Zhang et al. (2017). The networks are only trained
on the synthetic images. Without optimizing the parameters (random β), the augmentation hurts the
generalization performance. With proper search of β using hybrid gradient, we are able to achieve
better performance than the original model.

Summary Stats ↑ Errors ↓
≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ Mean Median

Original (Zhang et al., 2017) 24.1% 49.7% 61.5% 28.8◦ 22.7◦

Augmentation with random β 23.0% 48.8% 61.3% 29.2◦ 23.2◦

Agumentation with Hybrid gradient 27.3% 52.5% 63.8% 28.1◦ 21.1◦

5.3 BASEL FACE MODEL

Synthetic face generation We exploit an off-the-shelf 3DMM morphable face and expression
model (Dai et al., 2017; Zhu et al., 2015; 2016) to generating human 3D models, with face and pose
parameters randomly sampled from mixtures of Gaussians or von Mises. Because the number of
paramaters for 3DMM is over 400, we only include the first 10 principal dimensions for geometry,
texture and expression parameters in the decision vector β, and uniformly sample for the remaining
dimensions.

Evaluation We evaluate on the renderings of the scanned human faces (Paysan et al., 2009). We
split the 10 identities into two disjoint sets for validation and test, then use the rendering parameters
provided in the dataset to recreate the renderings as well as depth images. For each scan, there are 3
lighting directions and 9 pose angles, creating 135 validation images and 135 test images. For depth
evaluation, we use the standard metrics including the relative difference (absolute and squared) and
root mean squared error (linear, log and scale-invariant log). The definitions are listed in Eigen et al.
(2014) and also detailed in the Appendix.

Table 4: The results on the scanned faces of the Basel Face Model. Our method is able to search for
the synthetic face parameters such that the trained network can generalize better.

Relative Difference RMSE

Absolute Squared Linear Log Log (scale inv)

Training with random β 0.03718 9.701× 10−3 0.1395 0.1014 0.09717
Basic Random Search (Mania et al., 2018) 0.02330 1.728× 10−3 0.0581 0.0299 0.02700

Hybrid gradient 0.02256 1.649× 10−1 0.0570 0.0293 0.02603

The results in 4 show that our algorithm is able to search for better β so that the network trained on
the synthetic faces and generalize better on the scanned faces.

6 CONCLUSION

In this paper, we have proposed hybrid gradient, a novel approach to the problem of automatically
optimizing a generation pipeline of synthetic 3D training data. We evaluate our approach on the
task of estimating surface normal and depth from a single image. Our experiments show that our
algorithm can outperform the prior state of the art on optimizing the generation of 3D training data,
particularly in terms of computational efficiency.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

9

Under review as a conference paper at ICLR 2020

Jonathan T Barron and Jitendra Malik. Shape, illumination, and reflectance from shading. TPAMI,
2015.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13(1):281–305, February 2012. ISSN 1532-4435.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Proceedings of the 24th International Conference on Neural Information Pro-
cessing Systems, NIPS’11, pp. 2546–2554. Curran Associates Inc., 2011. ISBN 978-1-61839-
599-3.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Blender Institute, Amsterdam, 2019. URL http://www.blender.org.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, October 2012.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. International Conference on 3D Vision (3DV), 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhenhua Wang, Changhe Tu, Dani Lischinski,
Daniel Cohen-Or, and Baoquan Chen. Synthesizing training images for boosting human 3d pose
estimation. In 3D Vision (3DV), 2016.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset of object scans.
arXiv:1602.02481, 2016.

Hang Dai, Nick Pears, William A. P. Smith, and Christian Duncan. A 3d morphable model of
craniofacial shape and texture variation. In The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using
a multi-scale deep network. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 2366–2374.
Curran Associates, Inc., 2014.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 9516–9527. Curran Associates, Inc., 2018.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:
Principles and Practice (2Nd Ed.). Addison-Wesley Longman Publishing Co., Inc., 1990. ISBN
0-201-12110-7.

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy for multi-
object tracking analysis. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

David Ha, Andrew Dai, and Quoc Le. Hypernetworks. In ICLR, 2017.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 1978. ISBN 0201029553.

10

http://www.blender.org

Under review as a conference paper at ICLR 2020

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit
Yeung. Scenenn: A scene meshes dataset with annotations. In International Conference on 3D
Vision (3DV), 2016.

A. Janoch, S. Karayev, , J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. A category-level 3-d
object dataset: Putting the kinect to work. In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 1168–1174, Nov 2011.

Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny Lin, Lap-Fai Yu, Demetri Terzopou-
los, and Song-Chun Zhu. Configurable 3d scene synthesis and 2d image rendering with per-pixel
ground truth using stochastic grammars. International Journal of Computer Vision, 126(9):920–
941, 2018.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets. In
ICCV, 2019.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for
visual ai, 2017.

Alexandre Lacoste, Hugo Larochelle, Mario Marchand, and François Laviolette. Sequential model-
based ensemble optimization. In Proceedings of the Thirtieth Conference on Uncertainty in Arti-
ficial Intelligence, UAI’14, pp. 440–448. AUAI Press, 2914. ISBN 978-0-9749039-1-0.

Ke Li and Jitendra Malik. Learning to optimize. In ICLR, 2017.

Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrinsic image decomposition through
physically-based rendering. In The European Conference on Computer Vision (ECCV), Septem-
ber 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pp. 2113–
2122, 2015.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp. 1800–1809. Curran Associates, Inc., 2018.

Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-Garcia, Alvaro Jover-Alvarez, Sergio Orts-
Escolano, and Jose Garcia-Rodriguez. UnrealROX: An extremely photorealistic virtual reality
environment for robotics simulations and synthetic data generation. ArXiv e-prints, 2018.

Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. What makes good synthetic training data for learning disparity and optical
flow estimation? Int. J. Comput. Vision, 126(9):942–960, September 2018. ISSN 0920-5691.

John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J. Davison. Scenenet rgb-d: Can
5m synthetic images beat generic imagenet pre-training on indoor segmentation? In The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pp. 2554–2563. JMLR.org, 2017.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estima-
tion. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VIII, volume 9912 of Lecture Notes in Computer
Science, pp. 483–499. Springer, 2016.

11

Under review as a conference paper at ICLR 2020

Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A 3d face
model for pose and illumination invariant face recognition. In Stefano Tubaro and Jean-Luc Duge-
lay (eds.), Sixth IEEE International Conference on Advanced Video and Signal Based Surveil-
lance, AVSS 2009, 2-4 September 2009, Genova, Italy, pp. 296–301. IEEE Computer Society,
2009. doi: 10.1109/AVSS.2009.58.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. Human-centric indoor
scene synthesis using stochastic grammar. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, Yizhou Wang,
and Alan Yuille. Unrealcv: Virtual worlds for computer vision. ACM Multimedia Open Source
Software Competition, 2017.

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
from computer games. In Computer Vision – ECCV 2016, pp. 102–118. Springer International
Publishing, 2016.

Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for benchmarks. In The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

Cesar Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio Manuel Lopez. Procedural
generation of videos to train deep action recognition networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio Lopez. The SYN-
THIA Dataset: A large collection of synthetic images for semantic segmentation of urban scenes.
In CVPR, 2016.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In Computer Vision – ECCV 2012, pp. 746–760. Springer Berlin
Heidelberg, 2012.

Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understand-
ing benchmark suite. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 567–576, 2015.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
Semantic scene completion from a single depth image. Proceedings of 29th IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30,
2017.

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, and
Cordelia Schmid. Learning from synthetic humans. In CVPR, 2017.

V. S. R. Veeravasarapu, Constantin A. Rothkopf, and Visvanathan Ramesh. Adversarially tuned
scene generation. CoRR, abs/1701.00405, 2017.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. In ICLR (Workshop). OpenReview.net, 2018.

12

Under review as a conference paper at ICLR 2020

Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: Real-world perception for embodied agents. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su, Roozbeh Mottaghi,
Leonidas Guibas, and Silvio Savarese. Objectnet3d: A large scale database for 3d object recog-
nition. In European Conference Computer Vision (ECCV), 2016.

Dawei Yang and Jia Deng. Shape from shading through shape evolution. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D. Goodman, and Pat Hanrahan. Synthesizing
open worlds with constraints using locally annealed reversible jump mcmc. ACM Trans. Graph.,
31(4):56:1–56:11, July 2012. ISSN 0730-0301.

Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee, Hailin Jin, and Thomas
Funkhouser. Physically-based rendering for indoor scene understanding using convolutional neu-
ral networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Xiangyu Zhu, Zhen Lei, Junjie Yan, Dong Yi, and Stan Z. Li. High-fidelity pose and expression
normalization for face recognition in the wild. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 787–796. IEEE Computer
Society, 2015. doi: 10.1109/CVPR.2015.7298679.

Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z. Li. Face alignment across large
poses: A 3d solution. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 146–155. IEEE Computer Society, 2016.
doi: 10.1109/CVPR.2016.23.

13

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 METRICS

Here we detail the metrics that we used in the paper. Assume ni and n∗i are the unit normal vector
at i-th pixel (of N total) in the prediction and ground truth normal maps, respectively. di and d∗i are
depth values of the i-th pixel in the prediction and ground truth depth maps, respectively.

• Mean Angle Error (MAE): 1
N

∑
i arccos(ni · n∗i)

• Median Angle Error (MAE): median
i

[arccos(ni · n∗i)]

• Threshold δ: Percentage of ni such that arccos(ni · n∗i) ≤ δ
• Mean Squared Error (MSE): 1

N

∑
i[arccos(ni · n∗i)]2

• Absolute Relative Difference: 1
N

∑
i |di − d∗i |/d∗i

• Squared Relative Difference: 1
N

∑
i(di − d∗i)2/d∗i

• RMSE (linear):
√

1
N

∑
i(di − d∗i)2

• RMSE (log):
√

1
N

∑
i(log di − log d∗i)

2

• RMSE (log, scale-invariant):
√

1
N

∑
i(log di − log d∗i · [1N

∑
i(log di − log d∗i)])

2

A.2 MIT-BERKELEY INTRINSIC IMAGE DATASET

Our decision vector β for PCFG is a 29-d vector, with 4 dimensions representing the probabilities of
sampling different primitives, 2 for sampling union or difference, 1 for whether to expand the tree
node or replace it with a terminal, 6 for translation mean/variance, 6 for scaling log mean/variance,
2 for sphere radius log mean/variance, 2 for box length mean and variance, 4 for cylinder radius and
height log mean/variance, and 2 for tetrahedron length log mean/variance.

For optimizing β, we use the mean angle error loss on the validation set as the generalization loss,
and use RMSprop (Tieleman & Hinton, 2012) to obtain the gradient for β. Note that some dimen-
sions of β are constrained (such as probability needs to be non-negative), so we simply clip the value
of β to valid ranges when sampling near β for finite difference computation and updating β. We
present the qualitative results in Fig. 5.

Input

Ground
truth

Prediction

MAE
(Heatmap)

Figure 5: The test set of the MIT-Berkeley Intrinsic Images dataset.

A.3 NYU DEPTH V2

The decision vector β is 108-d. It includes the parameters for mixtures of Gaussians/Von Mises for
6 degree-of-freedom (vertical, horizontal and fordinal displacement, yaw, pitch, roll rotation) for
shapes in the scene and the camera. Each mixture contains 9 parameters (3 probabilities, 3 means
and 3 variances). Examples of perturbed scenes and the original scenes are shown in Fig. 6.

14

Under review as a conference paper at ICLR 2020

Original

Perturbed

Image Normals Image Normals Image Normals

Figure 6: The original scenes in the SUNCG dataset, and our scenes with camera and objects per-
turbed using our PCFG.

A.4 BASEL FACE MODEL

The decision vector β has 204 dimensions. We use an off-the-shelf 3DMM implementation1 to
generate face meshes and textures for training. The 3DMM has 199 parameters for face iden-
tity, 29 for expression and 199 for texture. In implementation, we use 10 principal dimension for
face/expression/texture respectively, and randomly sample from a mixture of 3 multivariate Gaus-
sians. Note that the dimensions are independent, so we have a total of 183 parameters for generating
the face mesh. For the 3-dof face pose angle, we also use mixtures of 3 von Mises, which have 21
parameters in total.

For rendering the training set, we apply human skin subsurface model using Blender(Blender Online
Community, 2019), with a random white directional light uniformly distributed on −z hemisphere.
For rendering the test set (the scanned faces in the Basel Face Model), we render with the same 3
lighting angles and 9 pose angles, and the same camera intrinsics as in the original dataset. Fig. 7
shows The training images randomly generated by the PCFG (left) and example test images(right).

Synthetic faces generated from the PCFG Re-renderings of real scans

Figure 7: Training images generated using PCFG with 3DMM face model, and 6 example images
from the test set.

1https://github.com/YadiraF/face3d

15

	Introduction
	Related Work
	Problem Setup
	Approach
	Generative Modeling of Synthetic Training Data
	Hybrid Gradient

	Experiments
	MIT-Berkeley Intrinsic Images
	NYU Depth
	Basel Face Model

	Conclusion
	Appendix
	Metrics
	MIT-Berkeley Intrinsic Image Dataset
	NYU Depth V2
	Basel Face Model

